Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
The effect of crystallinity degree of MoSe2 on the potassium ions storage performance in potassium-ion batteries (PIBs) has been largely overlooked in the energy communities. In this study, we experimentally realize MoSe2 grown on graphene nanoribbons (MoSe2-GNR) with tunable crystallinity by tailoring the thermal annealing temperature, and further investigate the effect of crystallinity degree in MoSe2-GNR on the potassium ions storage performance. The spectral, electrochemical, and microscopy experiments indicate that high-temperature thermal annealing results in a high crystallinity degree of MoSe2-GNR with decreased interlayer spacing of (002). The MoSe2-GNR with high crystallinity degree exhibits a high capacity, but suffers from reduced cycling stability. What is more, the in-situ X-ray powder diffractometer (in-situ XRD) and in-situ Raman experiments reveal the phase transition in MoSe2 triggered by potassium ions insertion/extraction during the potassium ions storage. The work sheds light on the development of MoSe2-based anode materials for PIBs.
Armand, M.; Tarascon, J. M. Building better batteries. Nature 2008, 451, 652–657.
Jiang, M. X.; Hu, Y. J.; Mao, B. G.; Wang, Y. X.; Yang, Z.; Meng, T.; Wang, X.; Cao, M. H. Strain-regulated Gibbs free energy enables reversible redox chemistry of chalcogenides for sodium ion batteries. Nat. Commun. 2022, 13, 5588.
Wang, Z. H.; Feng, X.; Bai, Y.; Yang, H. Y.; Dong, R. Q.; Wang, X. R.; Xu, H. J.; Wang, Q. Y.; Li, H.; Gao, H. C. et al. Probing the energy storage mechanism of quasi-metallic Na in hard carbon for sodium-ion batteries. Adv. Energy Mater. 2021, 11, 2003854.
Wang, S. J.; Zhao, S.; Guo, X.; Wang, G. X. 2D material-based heterostructures for rechargeable batteries. Adv. Energy Mater. 2022, 12, 2100864.
Li, J. F.; Fu, H. W.; Gu, M. Y.; Chen, J.; Zhou, J.; Fan, L.; Lu, B. A. Ether-based gel polymer electrolyte for high-voltage potassium ion batteries. Nano Lett. 2024, 24, 11419–11428.
Zhang, C. L.; Zhao, H. P.; Lei, Y. Recent research progress of anode materials for potassium-ion batteries. Energy Environ. Mater. 2020, 3, 105–120.
Hosaka, T.; Kubota, K.; Hameed, A. S.; Komaba, S. Research development on K-ion batteries. Chem. Rev. 2020, 120, 6358–6466.
Qu, Z. X.; Zhang, X. X.; Huang, R. L.; Wu, S. M.; Chen, R. J.; Wu, F.; Li, L. Ultrastable bioderived organic anode induced by synergistic coupling of binder/carbon-network for advanced potassium-ion storage. Nano Lett. 2022, 22, 4115–4123.
Ge, J. M.; Fan, L.; Wang, J.; Zhang, Q. F.; Liu, Z. M.; Zhang, E. J.; Liu, Q.; Yu, X. Z.; Lu, B. A. MoSe2/N-doped carbon as anodes for potassium-ion batteries. Adv. Energy Mater. 2018, 8, 1801477.
Feng, W. T.; Feng, N. Y.; Liu, W.; Cui, Y. P.; Chen, C.; Dong, T. T.; Liu, S.; Deng, W. Q.; Wang, H. L.; Jin, Y. C. Liquid-state templates for constructing B, N, co-doping porous carbons with a boosting of potassium-ion storage performance. Adv. Energy Mater. 2021, 11, 2003215.
Qin, G. H.; Liu, Y. H.; Liu, F. S.; Sun, X.; Hou, L. R.; Liu, B. B.; Yuan, C. Z. Magnetic field assisted construction of hollow red P nanospheres confined in hierarchical N-doped carbon nanosheets/nanotubes 3D framework for efficient potassium storage. Adv. Energy Mater. 2021, 11, 2003429.
Zhou, L.; Cao, Z.; Zhang, J.; Cheng, H.; Liu, G.; Park, G. T.; Cavallo, L.; Wang, L. M.; Alshareef, H. N.; Sun, Y. K. et al. Electrolyte-mediated stabilization of high-capacity micro-sized antimony anodes for potassium-ion batteries. Adv. Mater. 2021, 33, 2005993.
Zhang, S. P.; Ling, F. X.; Wang, L. F.; Xu, R.; Ma, M. Z.; Cheng, X. L.; Bai, R. L.; Shao, Y.; Huang, H. J.; Li, D. J. et al. An open-ended Ni3S2-Co9S8 heterostructures nanocage anode with enhanced reaction kinetics for superior potassium-ion batteries. Adv. Mater. 2022, 34, 2201420.
Xu, Y. N.; Liu, X. F.; Su, H.; Jiang, S.; Zhang, J. M.; Li, D. Hierarchical bimetallic selenides CoSe2–MoSe2/rGO for sodium/potassium-ion batteries anode: Insights into the intercalation and conversion mechanism. Energy Environ. Mater. 2022, 5, 627–636.
Luo, B.; Wu, P.; Zhang, J. F.; Cao, L.; Wang, C. H.; Lu, B.; Zhang, B.; Ou, X. van der Waals heterostructure engineering by 2D space-confinement for advanced potassium-ion storage. Nano Res. 2021, 14, 3854–3863.
Li, Z. W.; Han, M. S.; Zhang, Y. B.; Yuan, F.; Fu, Y.; Yu, J. Single-layered MoS2 fabricated by charge-driven interlayer expansion for superior lithium/sodium/potassium-ion-battery anodes. Adv. Sci. 2023, 10, 2207234.
Di, S. J.; Ding, P.; Wang, Y. Y.; Wu, Y. L.; Deng, J.; Jia, L.; Li, Y. G. Interlayer-expanded MoS2 assemblies for enhanced electrochemical storage of potassium ions. Nano Res. 2020, 13, 225–230.
Zhang, R. D.; Bao, J. Z.; Pan, Y. L.; Sun, C. F. Highly reversible potassium-ion intercalation in tungsten disulfide. Chem. Sci. 2019, 10, 2604–2612.
Ren, X. D.; Zhao, Q.; Mcculloch, W. D.; Wu, Y. Y. MoS2 as a long-life host material for potassium ion intercalation. Nano Res. 2017, 10, 1313–1321.
Javed, S.; Suo, G. Q.; Mu, R. R.; Lin, C. J.; Li, J. R. Progress and strategies in transition metal chalcogenides as anode for potassium-ion batteries. J. Energy Storage 2024, 97, 112781.
Ali, Z.; Zhang, T.; Asif, M.; Zhao, L. N.; Yu, Y.; Hou, Y. L. Transition metal chalcogenide anodes for sodium storage. Mater. Today 2020, 35, 131–167.
Peng, Y.; Wei, M. X.; Zhang, D.; Liu, X.; Xiong, X. S.; Gao, W. J.; Fan, W. J.; Yang, H. Y.; Zhou, Q.; Wang, T. et al. Recent advances in metal selenides as advanced anode materials for potassium-ion batteries. Nano Energy 2024, 130, 110077.
Lin, H. Z.; Li, M. L.; Yang, X.; Yu, D. X.; Zeng, Y.; Wang, C. Z.; Chen, G.; Du, F. Nanosheets-assembled CuSe crystal pillar as a stable and high-power anode for sodium-ion and potassium-ion batteries. Adv. Energy Mater. 2019, 9, 1900323.
Li, J. J.; Zhang, W.; Zheng, W. T. Metal selenides find plenty of space in architecting advanced sodium/potassium ion batteries. Small 2024, 20, 2305021.
Chong, S. K.; Wei, X. D.; Wu, Y. F.; Sun, L.; Shu, C. Y.; Lu, Q. B.; Hu, Y. Z.; Cao, G. Z.; Huang, W. Expanded MoSe2 nanosheets vertically bonded on reduced graphene oxide for sodium and potassium-ion storage. ACS Appl. Mater. Interfaces 2021, 13, 13158–13169.
Yousaf, M.; Wang, Y. S.; Chen, Y. J.; Wang, Z. P.; Firdous, A.; Ali, Z.; Mahmood, N.; Zou, R. Q.; Guo, S. J.; Han, R. P. S. A 3D trilayered CNT/MoSe2/C heterostructure with an expanded MoSe2 interlayer spacing for an efficient sodium storage. Adv. Energy Mater. 2019, 9, 1900567.
Li, Y.; Han, M. S.; Zhou, Z. H.; Xia, X. H.; Chen, Q. G.; Chen, M. H. Topological insulator-assisted MoSe2/Bi2Se3 heterostructure: Achieving fast reaction kinetics toward high rate sodium-ion batteries. ChemElectroChem 2021, 8, 697–704.
Lee, J. S.; Park, J. S.; Baek, K. W.; Saroha, R.; Yang, S. H.; Kang, Y. C.; Cho, J. S. Coral-like porous microspheres comprising polydopamine-derived N-doped C-coated MoSe2 nanosheets composited with graphitic carbon as anodes for high-rate sodium- and potassium-ion batteries. Chem. Eng. J. 2023, 456, 141118.
Li, J.; Hu, H. X.; Qin, F. R.; Zhang, P.; Zou, L.; Wang, H. B.; Zhang, K.; Lai, Y. Q. Flower-like MoSe2/C composite with expanded (002) planes of few-layer MoSe2 as the anode for high-performance sodium-ion batteries. Chem. Eur. J. 2017, 23, 14004–14010.
Feng, W. T.; Wei, X. R.; Cao, F. L.; Li, Y. T.; Zhang, X. H.; Li, Y. P.; Liu, W.; Han, J. W.; Kong, D. B.; Zhi, L. J. Defective MoSSe with local-expanded structure for high-rate potassium ion battery. Energy Storage Mater. 2024, 65, 103186.
Zhong, F. L.; Xu, A. D.; Zeng, Q.; Wang, Y. J.; Li, G. L.; Xu, Z. G.; Yan, Y. R.; Wu, S. P. Confining MoSe2 nanosheets into N-doped hollow porous carbon microspheres for fast-charged and long-life potassium-ion storage. ACS Appl. Mater. Interfaces 2021, 13, 59882–59891.
Huang, H. W.; Cui, J.; Liu, G. X.; Bi, R.; Zhang, L. Carbon-coated MoSe2/MXene hybrid nanosheets for superior potassium storage. ACS Nano 2019, 13, 3448–3456.
Park, G. D.; Park, J. S.; Kim, J. K.; Kang, Y. C. Recent advances in heterostructured anode materials with multiple anions for advanced alkali-ion batteries. Adv. Energy Mater. 2021, 11, 2003058.
Ge, P.; Zhang, L. M.; Yang, Y.; Sun, W.; Hu, Y. H.; Ji, X. B. Advanced MoSe2/carbon electrodes in Li/Na-ions batteries. Adv. Mater. Interfaces 2020, 7, 1901651.
Wang, Y. Y.; Kang, W. P.; Wei, X. F.; Lu, X. Q.; Sun, D. F. Seed-induced strategy for the construction of nitrogen-doped carbon coated MoSe2/ZnSe-NC nanotubes with enriched phase boundaries toward boosting Na/K-ion storage. Chem. Eng. J. 2024, 482, 148927.
Zeng, L. X.; Kang, B. Y.; Luo, F. Q.; Fang, Y. X.; Zheng, C.; Liu, J. B.; Liu, R. P.; Li, X. Y.; Chen, Q. H.; Wei, M. D. et al. Facile synthesis of ultra-small few-layer nanostructured MoSe2 embedded on N, P co-doped bio-carbon for high-performance half/full sodium-ion and potassium-ion batteries. Chem. Eur. J. 2019, 25, 13411–13421.
Zhao, Y.; Sun, Z. T.; Yi, Y. Y.; Lu, C.; Wang, M. L.; Xia, Z.; Lian, X. Y.; Liu, Z. F.; Sun, J. Y. Precise synthesis of N-doped graphitic carbon via chemical vapor deposition to unravel the dopant functions on potassium storage toward practical K-ion batteries. Nano Res. 2021, 14, 1413–1420.
Tao, S.; Zhang, X. Y.; Gao, Z. Y.; Chen, T. Y.; Min, H. H.; Yang, H.; Chen, H. Y.; Shen, X. D.; Wang, J.; Yang, H. Dynamic electronic and ionic transport actuated by cobalt-doped MoSe2/rGO for superior potassium-ion batteries. Small 2023, 19, 2304200.
Genorio, B.; Lu, W.; Dimiev, A. M.; Zhu, Y.; Raji, A. R. O.; Novosel, B.; Alemany, L. B.; Tour, J. M. In situ intercalation replacement and selective functionalization of graphene nanoribbon stacks. ACS Nano 2012, 6, 4231–4240.
Wang, T.; Wang, Z.; Salvatierra, R. V.; Mchugh, E.; Tour, J. M. Top-down synthesis of graphene nanoribbons using different sources of carbon nanotubes. Carbon 2020, 158, 615–623.
Cui, L. F.; Wang, Z. D.; Kang, S. F.; Fang, Y. Y.; Chen, Y.; Gao, W. K.; Zhang, Z. Y.; Gao, X.; Song, C. Y.; Chen, X. D. et al. N, P codoped hollow carbon nanospheres decorated with MoSe2 ultrathin nanosheets for efficient potassium-ion storage. ACS Appl. Mater. Interfaces 2022, 14, 12551–12561.
Liu, Y. L.; Zhai, Y. J.; Wang, N. N.; Zhang, Y. H.; Lu, Z. X.; Xue, P.; Bai, L.; Guo, M. Q.; Huang, D.; Bai, Z. C. Ultrathin MoSe2 nanosheets confined in N-doped macroporous carbon frame for enhanced potassium ion storage. ChemistrySelect 2020, 5, 2412–2418.
Yu, L.; Wang, G. R.; Gao, J. Y.; Li, J.; Peng, B.; Zhang, G. Q. Sacrificial nanowire catalyzed polymerization process generates hierarchical MoSe2 grafted carbonaceous nanotubes for superior potassium ion storage. ACS Appl. Energy Mater. 2021, 4, 6757–6767.
Kang, W. P.; Wang, Y. Y.; Xu, J. Recent progress in layered metal dichalcogenide nanostructures as electrodes for high-performance sodium-ion batteries. J. Mater. Chem. A 2017, 5, 7667–7690.
Zhu, Y. R.; Li, J. Y.; Yun, X. R.; Zhao, G. G.; Ge, P.; Zou, G. Q.; Liu, Y.; Hou, H. S.; Ji, X. B. Graphitic carbon quantum dots modified nickel cobalt sulfide as cathode materials for alkaline aqueous batteries. Nano-Micro Lett. 2020, 12, 16.
Liu, H.; Guo, H.; Liu, B. H.; Liang, M. F.; Lv, Z. L.; Adair, K. R.; Sun, X. L. Few-layer MoSe2 nanosheets with expanded (002) planes confined in hollow carbon nanospheres for ultrahigh-performance Na-ion batteries. Adv. Funct. Mater. 2018, 28, 1707480.
Yi, Y. Y.; Sun, Z. T.; Li, C.; Tian, Z. N.; Lu, C.; Shao, Y. L.; Li, J.; Sun, J. Y.; Liu, Z. F. Designing 3D biomorphic nitrogen-doped MoSe2/graphene composites toward high-performance potassium-ion capacitors. Adv. Funct. Mater. 2020, 30, 1903878.
Wang, Z. D.; Gao, W. K.; Ding, C. J.; Qi, H. Y.; Kang, S. F.; Cui, L. F. Boosting potassium-ion storage in large-diameter carbon nanotubes/MoP hybrid. J. Colloid Interface Sci. 2021, 584, 875–884.
Shen, Q.; Jiang, P. J.; He, H. C.; Chen, C. M.; Liu, Y.; Zhang, M. Encapsulation of MoSe2 in carbon fibers as anodes for potassium ion batteries and nonaqueous battery-supercapacitor hybrid devices. Nanoscale 2019, 11, 13511–13520.
Teng, Y. Q.; Zhao, H. L.; Zhang, Z. J.; Li, Z. L.; Xia, Q.; Zhang, Y.; Zhao, L. N.; Du, X. F.; Du, Z. H.; Lv, P. P. et al. MoS2 nanosheets vertically grown on graphene sheets for lithium-ion battery anodes. ACS Nano 2016, 10, 8526–8535.
Zheng, F. H.; Zhong, W. T.; Deng, Q.; Pan, Q. C.; Ou, X.; Liu, Y. Z.; Xiong, X. H.; Yang, C. H.; Chen, Y.; Liu, M. L. Three-dimensional (3D) flower-like MoSe2/N-doped carbon composite as a long-life and high-rate anode material for sodium-ion batteries. Chem. Eng. J. 2019, 357, 226–236.
Wang, W.; Jiang, B.; Qian, C.; Lv, F.; Feng, J. R.; Zhou, J. H.; Wang, K.; Yang, C.; Yang, Y.; Guo, S. J. Pistachio-shuck-like MoSe2/C core/shell nanostructures for high-performance potassium-ion storage. Adv. Mater. 2018, 30, 1801812.
Niu, F. E.; Yang, J.; Wang, N. N.; Zhang, D. P.; Fan, W. L.; Yang, J.; Qian, Y. T. MoSe2-covered N,P-doped carbon nanosheets as a long-life and high-rate anode material for sodium-ion batteries. Adv. Funct. Mater. 2017, 27, 1700522.
Xu, D.; Chen, L.; Su, X. Z.; Jiang, H. L.; Lian, C.; Liu, H. L.; Chen, L.; Hu, Y. J.; Jiang, H.; Li, C. Z. Heterogeneous MoSe2/nitrogen-doped-carbon nanoarrays: Engineering atomic interface for potassium-ion storage. Adv. Funct. Mater. 2022, 32, 2110223.
Zhao, Z. C.; Hu, Z. Q.; Liang, H. Y.; Li, S. D.; Wang, H. T.; Gao, F.; Sang, X. C.; Li, H. S. Nanosized MoSe2@carbon matrix: A stable host material for the highly reversible storage of potassium and aluminum ions. ACS Appl. Mater. Interfaces 2019, 11, 44333–44341.
Li, N. N.; Sun, L.; Wang, K.; Zhang, J.; Liu, X. H. Anchoring MoSe2 nanosheets on N-doped carbon nanotubes as high performance anodes for potassium-ion batteries. Electrochim. Acta 2020, 360, 136983.
Zhang, X. Q.; Xiong, Y. L.; Zhang, L.; Hou, Z. G.; Qian, Y. T. Hierarchical interlayer-expanded MoSe2/N–C nanorods for high-rate and long-life sodium and potassium-ion batteries. Inorg. Chem. Front. 2021, 8, 1271–1278.
The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.