AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (4 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Highlight | Open Access | Online First

Passive isothermal film enabled by synergistic sky radiation energy harvesting and storage

Bin Yin1Zichao Xiong1Hanyu Chen1Primož Poredoš2Ruzhu Wang1Tingxian Li1Jiaxing Xu1( )
Institute of Refrigeration and Cryogenics, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
Laboratory for Sustainable Technologies in Buildings, Faculty of Mechanical Engineering, University of Ljubljana, 1000 Ljubljana, Slovenia
Show Author Information

Abstract

The substantial energy demand associated with active heating, cooling, and ventilation presents a pressing challenge for sustainable development. Conventional systems rely heavily on electricity, contributing to environmental strain and high energy costs. Passive radiative cooling and solar heating offer promising alternatives but are often limited by the spatial-temporal mismatch between energy supply and demand, especially in arid climates with extreme diurnal temperature fluctuations. In a recent Nature Communications paper, Kim et al. reported a novel self-switchable passive isothermal film, co-driven by radiative cooling and solar heating, and coupled with sorption thermal energy storage and salt dissolution-based cold storage. This innovative design enables all-day temperature regulation in harsh climate conditions, offering a compelling solution for building energy conservation.

References

[1]

Wang G, Dillon M E. Recent geographic convergence in diurnal and annual temperature cycling flattens global thermal profiles. Nat. Clim. Chang. 2014, 4, 988–992.

[2]

Chao, T. F.; Zhou, X.; Cao, B.; Liao, P.; Liu, H. B.; Chen, Y.; Park, H. W.; Zeng, S. X.; Lu, H. Pleckstrin homology domain-containing protein PHLDB3 supports cancer growth via a negative feedback loop involving p53. Nat. Commun. 2016, 7, 13755.

[3]

Deng, Y.; Yang, Y. H.; Xiao, Y. H.; Zeng, X. P.; Xie, H. L.; Lan, R. C.; Zhang, L. Y.; Yang, H. Annual energy-saving smart windows with actively controllable passive radiative cooling and multimode heating regulation. Adv. Mater. 2024, 36, 2401869.

[4]
Wang, S. Q.; Wu, M. Q.; Han, H.; Du, R. X.; Zhao, Z. C.; Liu, W. J.; Wu, S.; Wang, R. Z.; Li, T. X. Regulating cold energy from the universe by bifunctional phase change materials for sustainable cooling. Adv. Energy Mater., in press, DOI: 10.1002/aenm.202402667.
[5]

Yao, H. Z.; Cheng, H. H.; Liao, Q. H.; Hao, X. Z.; Zhu, K. X.; Hu, Y. J.; Qu, L. T. Integrated radiative and evaporative cooling beyond daytime passive cooling power limit. Nano Res. Energy 2023, 2, e9120060.

[6]

Zhu, K. X.; Yao, H. Z.; Song, J. J.; Liao, Q. H.; He, S.; Guang, T. L.; Wang, H. Y.; Hao, X. Z.; Lu, B.; Lin, T. Y. et al. Temperature-adaptive dual-modal photonic textiles for thermal management. Sci. Adv. 2024, 10, eadr2062.

[7]

Xu, J. X.; Wang, P. F.; Bai, Z. Y.; Cheng, H. H.; Wang, R. Z.; Qu, L. T.; Li, T. X. Sustainable moisture energy. Nat. Rev. Mater. 2024, 9, 722–737.

[8]

Xu, J. X.; Chao, J. W.; Li, T. X.; Yan, T. S.; Wu, S.; Wu, M. Q.; Zhao, B. C.; Wang, R. Z. Near-zero-energy smart battery thermal management enabled by sorption energy harvesting from air. ACS Cent. Sci. 2020, 6, 1542–1554.

[9]

Kim, S.; Park, J. H.; Lee, J. W.; Kim, Y.; Kang, Y. T. Self-recovering passive cooling utilizing endothermic reaction of NH4NO3/H2O driven by water sorption for photovoltaic cell. Nat. Commun. 2023, 14, 2374.

[10]

Kim, S.; Lee, S.; Lee, J.; Choi, H. W.; Choi, W.; Kang, Y. T. Passive isothermal film with self-switchable radiative cooling-driven water sorption layer for arid climate applications. Nat. Commun. 2024, 15, 8000.

[11]

Wang, Z. H.; Hölzel, H.; Moth-Poulsen, K. Status and challenges for molecular solar thermal energy storage system based devices. Chem. Soc. Rev. 2022, 51, 7313–7326.

[12]

Yu, L.; Huang, Y. M.; Li, W. H.; Shi, C. M.; Sheldon, B. W.; Chen, Z.; Chen, M. J. Radiative-coupled evaporative cooling: Fundamentals, development, and applications. Nano Res. Energy 2024, 3, e9120107.

Nano Research Energy
Cite this article:
Yin B, Xiong Z, Chen H, et al. Passive isothermal film enabled by synergistic sky radiation energy harvesting and storage. Nano Research Energy, 2024, https://doi.org/10.26599/NRE.2024.9120145

830

Views

355

Downloads

0

Crossref

0

Scopus

Altmetrics

Received: 05 November 2024
Revised: 15 November 2024
Accepted: 19 November 2024
Published: 29 November 2024
© The Author(s) 2024. Published by Tsinghua University Press.

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return