AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (6.3 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access | Online First

Subtle tuning of micro-environment in COFs nanoribbons actuates low electricity-consumption photo-assisted Co-electrolysis of methanol and CO2

Yi-Rong Wang1,§Hui-Min Ding1,§Ming Yue1,§Qi Li1Jing-wen Shi1Qing Huang2Jie Zhou3Ying Zang1( )Yifa Chen1( )Shun-Li Li1Ya-Qian Lan1( )
Guangdong Provincial Key Laboratory of Carbon Dioxide Resource Utilization, School of Chemistry, South China Normal University, Guangzhou 510006, China
College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
Key Laboratory of Electrochemical Energy Storage and Energy Conversion of Hainan Province, School of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China

§ Yi-Rong Wang, Hui-Min Ding, and Ming Yue contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

The lower electricity consumption (EC) and higher value-added products are much desired yet still challenging for the development of CO2 coupling electrocatalytic systems. Herein, we give insight into the inherent nature of the retrenchment of EC by exploring the photo-assisted co-electrolysis of methanol and CO2 system using a kind of hydroxyl-rich covalent organic frameworks (Dha-COF-Co) with well-tuned pore structure and morphology. Specifically, the hydroxyl induced hydrogen bond interaction in Dha-COF-Co enables to simultaneously regulate the pore microenvironment and nanoribbon morphology of COFs for performance boosting. Notably, the obtained Dha-COF-Co nanoribbon exhibits an overall EC retrenchment of ~41.2% (highest in porous crystalline materials to date) when replacing the anodic OER with MOR in the photo-electrocatalytic MOR-CO2RR coupling system, as well as superior FEHCOOH (anode, ~100%) and FECO (cathode, >95%) at 1.8 V. Combined theoretical calculations with various characterizations, the vital role of hydroxyl group in both microenvironment and morphology tuning that can facilitate the CO2RR and MOR kinetics to retrench the EC has been intensively discussed.

Electronic Supplementary Material

Download File(s)
0146_ESM.pdf (5.7 MB)

References

[1]

Wakerley, D.; Lamaison, S.; Wicks, J.; Clemens, A.; Feaster, J.; Corral, D.; Jaffer, S. A.; Sarkar, A.; Fontecave, M.; Duoss, E. B. et al. Gas diffusion electrodes, reactor designs and key metrics of low-temperature CO2 electrolysers. Nat. Energy 2022, 7, 130–143.

[2]

Peng, X. Y.; Zeng, L. B.; Wang, D. S.; Liu, Z. B.; Li, Y.; Li, Z. J.; Yang, B.; Lei, L. C.; Dai, L. M.; Hou, Y. Electrochemical C–N coupling of CO2 and nitrogenous small molecules for the electrosynthesis of organonitrogen compounds. Chem. Soc. Rev. 2023, 52, 2193–2237.

[3]

Cai, T.; Sun, H. B.; Qiao, J.; Zhu, L. L.; Zhang, F.; Zhang, J.; Tang, Z. J.; Wei, X. L.; Yang, J.; Yuan, Q. Q. et al. Cell-free chemoenzymatic starch synthesis from carbon dioxide. Science 2021, 373, 1523–1527.

[4]

Kim, J. Y. T.; Zhu, P.; Chen, F. Y.; Wu, Z. Y.; Cullen, D. A.; Wang, H. T. Recovering carbon losses in CO2 electrolysis using a solid electrolyte reactor. Nat. Catal. 2022, 5, 288–299.

[5]

Masel, R. I.; Liu, Z. C.; Yang, H. Z.; Kaczur, J. J.; Carrillo, D.; Ren, S. X.; Salvatore, D.; Berlinguette, C. P. An industrial perspective on catalysts for low-temperature CO2 electrolysis. Nat. Nanotechnol. 2021, 16, 118–128.

[6]

Ma, W. C.; He, X. Y.; Wang, W.; Xie, S. J.; Zhang, Q. H.; Wang, Y. Electrocatalytic reduction of CO2 and CO to multi-carbon compounds over Cu-based catalysts. Chem. Soc. Rev. 2021, 50, 12897–12914.

[7]

Huang, L.; Gao, G.; Yang, C. B.; Li, X. Y.; Miao, R. K.; Xue, Y. R.; Xie, K.; Ou, P. F.; Yavuz, C. T.; Han, Y. et al. Pressure dependence in aqueous-based electrochemical CO2 reduction. Nat. Commun. 2023, 14, 2958.

[8]

Hao, Y. N.; Hu, F.; Zhu, S. Q.; Sun, Y. J.; Wang, H.; Wang, L. Q.; Wang, Y.; Xue, J. J.; Liao, Y. F.; Shao, M. H. et al. MXene-regulated metal-oxide interfaces with modified intermediate configurations realizing nearly 100% CO2 electrocatalytic conversion. Angew. Chem., Int. Ed. 2023, 62, e202304179.

[9]

Liu, M. H.; Yang, S.; Yang, X. B.; Cui, C. X.; Liu, G. J.; Li, X. W.; He, J.; Chen, G. Z.; Xu, Q.; Zeng, G. F. Post-synthetic modification of covalent organic frameworks for CO2 electroreduction. Nat. Commun. 2023, 14, 3800.

[10]

Ma, X. D.; Xu, L.; Liu, S. J.; Zhang, L. B.; Tan, X. X.; Wu, L. M.; Feng, J. Q.; Liu, Z. M.; Sun, X. F.; Han, B. X. Electrochemical C–C coupling between CO2 and formaldehyde into ethanol. Chem Catal. 2022, 2, 3207–3224.

[11]

Li, H. B.; Jiang, Y. L.; Li, X. Y.; Davey, K.; Zheng, Y.; Jiao, Y.; Qiao, S. Z. C2+ selectivity for CO2 electroreduction on oxidized Cu-based catalysts. J. Am. Chem. Soc. 2023, 145, 14335–14344.

[12]

Zeng, L.; Yang, Q. H.; Wang, J. X.; Wang, X.; Wang, P. J.; Wang, S. C.; Lv, S. D.; Muhammad, S.; Liu, Y. C.; Yi, H. et al. Programmed alternating current optimization of Cu-catalyzed C–H bond transformations. Science 2024, 385, 216–223.

[13]

Zeng, L.; Li, H. R.; Hu, J. C.; Zhang, D. C.; Hu, J. Y.; Peng, P.; Wang, S. C.; Shi, R. Y.; Peng, J. Q.; Pao, C. W. et al. Electrochemical oxidative aminocarbonylation of terminal alkynes. Nat. Catal. 2020, 3, 438–445.

[14]

Li, R.; Xiang, K.; Peng, Z. K.; Zou, Y. Q.; Wang, S. Y. Recent advances on electrolysis for simultaneous generation of valuable chemicals at both anode and cathode. Adv. Energy Mater. 2021, 11, 2102292.

[15]

Fan, L. F.; Ji, Y. X.; Wang, G. X.; Chen, J. X.; Chen, K.; Liu, X.; Wen, Z. H. High entropy alloy electrocatalytic electrode toward alkaline glycerol valorization coupling with acidic hydrogen production. J. Am. Chem. Soc. 2022, 144, 7224–7235.

[16]

Zhao, X.; Du, L. J.; You, B.; Sun, Y. J. Integrated design for electrocatalytic carbon dioxide reduction. Catal. Sci. Technol. 2020, 10, 2711–2720.

[17]

Tang, C.; Zhang, R.; Lu, W. B.; Wang, Z.; Liu, D. N.; Hao, S.; Du, G.; Asiri, A. M.; Sun, X. P. Energy-saving electrolytic hydrogen generation: Ni2P nanoarray as a high-performance non-noble-metal electrocatalyst. Angew. Chem., Int. Ed. 2017, 56, 842–846.

[18]

Zhou, Q. W.; Shen, Z. H.; Zhu, C.; Li, J. C.; Ding, Z. Y.; Wang, P.; Pan, F.; Zhang, Z. Y.; Ma, H. X.; Wang, S. Y. et al. Nitrogen-doped CoP electrocatalysts for coupled hydrogen evolution and sulfur generation with low energy consumption. Adv. Mater. 2018, 30, 1800140.

[19]

Yan, D. F.; Mebrahtu, C.; Wang, S. Y.; Palkovits, R. Innovative electrochemical strategies for hydrogen production: From electricity input to electricity output. Angew. Chem., Int. Ed. 2023, 62, e202214333.

[20]

Deng, C.; Toe, C. Y.; Li, X.; Tan, J. J.; Yang, H. P.; Hu, Q.; He, C. X. Earth-abundant metal-based electrocatalysts promoted anodic reaction in hybrid water electrolysis for efficient hydrogen production: Recent progress and perspectives. Adv. Energy Mater. 2022, 12, 2201047.

[21]

Wang, J. H.; Wang, S. C.; Wei, Z. H.; Wang, P. J.; Cao, Y. W.; Huang, Y.; He, L.; Lei, A. W. Synchronous recognition of amines in oxidative carbonylation toward unsymmetrical ureas. Science 2024, 386, 776–782.

[22]

Bu, F. X.; Deng, Y. Q.; Xu, J.; Yang, D. L.; Li, Y.; Li, W.; Lei, A. W. Electrocatalytic reductive deuteration of arenes and heteroarenes. Nature 2024, 634, 592–599.

[23]

Verma, S.; Lu, S.; Kenis, P. J. A. Co-electrolysis of CO2 and glycerol as a pathway to carbon chemicals with improved technoeconomics due to low electricity consumption. Nat. Energy 2019, 4, 466–474.

[24]

Chen, Z. J.; Dong, J. Y.; Wu, J. J.; Shao, Q. T.; Luo, N.; Xu, M. W.; Sun, Y. M.; Tang, Y. B.; Peng, J.; Cheng, H. M. Acidic enol electrooxidation-coupled hydrogen production with ampere-level current density. Nat. Commun. 2023, 14, 4210.

[25]

Fan, L.; Bai, X. W.; Xia, C.; Zhang, X.; Zhao, X. H.; Xia, Y.; Wu, Z. Y.; Lu, Y. Y.; Liu, Y. Y.; Wang, H. T. CO2/carbonate-mediated electrochemical water oxidation to hydrogen peroxide. Nat. Commun. 2022, 13, 2668.

[26]

Zhu, Y.; Zhang, J. H.; Qian, Q. Z.; Li, Y. P.; Li, Z. Y.; Liu, Y.; Xiao, C.; Zhang, G. Q.; Xie, Y. Dual nanoislands on Ni/C hybrid nanosheet activate superior hydrazine oxidation-assisted high-efficiency H2 production. Angew. Chem., Int. Ed. 2022, 61, e202113082.

[27]

van der Ham, M. P. J. M. ; van Keulen, E.; Koper, M. T. M.; Tashvigh, A. A.; Bitter, J. H. Steering the selectivity of electrocatalytic glucose oxidation by the Pt oxidation state. Angew. Chem., Int. Ed. 2023, 62, e202306701.

[28]

Huang, B.; Ge, Y. Y.; Zhang, A.; Zhu, S. Q.; Chen, B.; Li, G. X.; Yun, Q. B.; Huang, Z. Q.; Shi, Z. Y.; Zhou, X. C. et al. Seeded synthesis of hollow PdSn intermetallic nanomaterials for highly efficient electrocatalytic glycerol oxidation. Adv. Mater. 2023, 35, 2302233.

[29]

Lu, Y. X.; Liu, T. Y.; Dong, C. L.; Yang, C. M.; Zhou, L.; Huang, Y. C.; Li, Y. F.; Zhou, B.; Zou, Y. Q.; Wang, S. Y. Tailoring competitive adsorption sites by oxygen-vacancy on cobalt oxides to enhance the electrooxidation of biomass. Adv. Mater. 2022, 34, 2107185.

[30]

Feng, C.; Lyu, M. Y.; Shao, J. X.; Wu, H. Y.; Zhou, W. L.; Qi, S.; Deng, C.; Chai, X. Y.; Yang, H. P.; Hu, Q. et al. Lattice strain engineering of Ni2P enables efficient catalytic hydrazine oxidation-assisted hydrogen production. Adv. Mater. 2023, 35, 2305598.

[31]

Han, G. Q.; Li, G. D.; Sun, Y. J. Electrocatalytic dual hydrogenation of organic substrates with a Faradaic efficiency approaching 200%. Nat. Catal. 2023, 6, 224–233.

[32]

Li, Y. H.; Ozden, A.; Leow, W. R.; Ou, P. F.; Huang, J. E.; Wang, Y. H.; Bertens, K.; Xu, Y.; Liu, Y.; Roy, C. et al. Redox-mediated electrosynthesis of ethylene oxide from CO2 and water. Nat. Catal. 2022, 5, 185–192.

[33]

Wei, X. F.; Li, Y.; Chen, L. S.; Shi, J. L. Formic acid electro-synthesis by concurrent cathodic CO2 reduction and anodic CH3OH oxidation. Angew. Chem., Int. Ed. 2021, 60, 3148–3155.

[34]

Sun, S. N.; Dong, L. Z.; Li, J. R.; Shi, J. W.; Liu, J.; Wang, Y. R.; Huang, Q.; Lan, Y. Q. Redox-active crystalline coordination catalyst for hybrid electrocatalytic methanol oxidation and CO2 reduction. Angew. Chem., Int. Ed. 2022, 61, e202207282.

[35]

Hao, J.; Liu, J. W.; Wu, D.; Chen, M. X.; Liang, Y.; Wang, Q.; Wang, L.; Fu, X. Z.; Luo, J. L. In situ facile fabrication of Ni(OH)2 nanosheet arrays for electrocatalytic co-production of formate and hydrogen from methanol in alkaline solution. Appl. Catal. B: Environ. 2021, 281, 119510.

[36]

Li, J. S.; Wei, R. L.; Wang, X.; Zuo, Y.; Han, X.; Arbiol, J.; Llorca, J.; Yang, Y. Y.; Cabot, A.; Cui, C. H. Selective methanol-to-formate electrocatalytic conversion on branched nickel carbide. Angew. Chem., Int. Ed. 2020, 59, 20826–20830.

[37]

Ma, Y. B.; Zhou, Y. Y.; Wang, C. L.; Gao, B.; Li, J. L.; Zhu, M.; Wu, H.; Zhang, C.; Qin, Y. Q. Photothermal-magnetic synergistic effects in an electrocatalyst for efficient water splitting under optical-magnetic fields. Adv. Mater. 2023, 35, 2303741.

[38]

Kumaravel, V.; Bartlett, J.; Pillai, S. C. Photoelectrochemical conversion of carbon dioxide (CO2) into fuels and value-added products. ACS Energy Lett. 2020, 5, 486–519.

[39]

Deng, X.; Li, R.; Wu, S. K.; Wang, L.; Hu, J. H.; Ma, J.; Jiang, W. B.; Zhang, N.; Zheng, X. S.; Gao, C. et al. Metal-organic framework coating enhances the performance of Cu2O in photoelectrochemical CO2 reduction. J. Am. Chem. Soc. 2019, 141, 10924–10929.

[40]

Moazzami, N.; Khadempir, S.; Karimi-Maleh, H.; Karimi, F.; Karaman, C. Enhanced methanol electrooxidation by electroactivated Pd/Ni(OH)2/N–rGO catalyst. Int. J. Hydrogen Energy 2023, 48, 6680–6690.

[41]

Dubale, A. A.; Zheng, Y. Y.; Wang, H. L.; Hübner, R.; Li, Y.; Yang, J.; Zhang, J. W.; Sethi, N. K.; He, L. Q.; Zheng, Z. K. et al. High-performance bismuth-doped nickel aerogel electrocatalyst for the methanol oxidation reaction. Angew. Chem., Int. Ed. 2020, 59, 13891–13899.

[42]

Wang, Y. R.; Ding, H. M.; Sun, S. N.; Shi, J. W.; Yang, Y. L.; Li, Q.; Chen, Y. F.; Li, S. L.; Lan, Y. Q. Light, heat and electricity integrated energy conversion system: Photothermal-assisted Co-electrolysis of CO2 and methanol. Angew. Chem., Int. Ed. 2022, 61, e202212162.

[43]

Lu, M.; Zhang, M.; Liu, J.; Chen, Y. F.; Liao, J. P.; Yang, M. Y.; Cai, Y. P.; Li, S. L.; Lan, Y. Q. Covalent organic framework based functional materials: Important catalysts for efficient CO2 utilization. Angew. Chem., Int. Ed. 2022, 61, e202200003.

[44]

Liu, R. Y.; Tan, K. T.; Gong, Y. F.; Chen, Y. Z.; Li, Z. E.; Xie, S. L.; He, T.; Lu, Z.; Yang, H.; Jiang, D. L. Covalent organic frameworks: An ideal platform for designing ordered materials and advanced applications. Chem. Soc. Rev. 2021, 50, 120–242.

[45]

Wang, D. G.; Qiu, T. J.; Guo, W. H.; Liang, Z. B.; Tabassum, H.; Xia, D. G.; Zou, R. Q. Covalent organic framework-based materials for energy applications. Energy Environ. Sci. 2021, 14, 688–728.

[46]

Wang, Y. R.; Ding, H. M.; Ma, X. Y.; Liu, M.; Yang, Y. L.; Chen, Y. F.; Li, S. L.; Lan, Y. Q. Imparting CO2 electroreduction auxiliary for integrated morphology tuning and performance boosting in a porphyrin-based covalent organic framework. Angew. Chem., Int. Ed. 2022, 61, e202114648.

[47]

Zhao, Y. W.; Wang, J. N.; Pei, R. J. Micron-sized ultrathin metal-organic framework sheet. J. Am. Chem. Soc. 2020, 142, 10331–10336.

[48]

Hernan, L.; Morales, J.; Sanchez, L.; Tirado, J. L.; Espinos, J. P.; Gonzalez Elipe, A. R. Diffraction and XPS studies of misfit layer chalcogenides intercalated with cobaltocene. Chem. Mater. 1995, 7, 1576–1582.

[49]

Shen, F. C.; Sun, S. N.; Xin, Z. F.; Li, S. L.; Dong, L. Z.; Huang, Q.; Wang, Y. R.; Liu, J.; Lan, Y. Q. Hierarchically phosphorus doped bimetallic nitrides arrays with unique interfaces for efficient water splitting. Appl. Catal. B: Environ. 2019, 243, 470–480.

[50]

Wang, X. P.; Xi, S. B.; Lee, W. S. V.; Huang, P. R.; Cui, P.; Zhao, L.; Hao, W. C.; Zhao, X. S.; Wang, Z. B.; Wu, H. J. et al. Materializing efficient methanol oxidation via electron delocalization in nickel hydroxide nanoribbon. Nat. Commun. 2020, 11, 4647.

[51]

Yi, J. D.; Xie, R. K.; Xie, Z. L.; Chai, G. L.; Liu, T. F.; Chen, R. P.; Huang, Y. B.; Cao, R. Highly selective CO2 electroreduction to CH4 by in situ generated Cu2O single-type sites on a conductive MOF: Stabilizing key intermediates with hydrogen bonding. Angew. Chem., Int. Ed. 2020, 59, 23641–23648.

[52]

Strmcnik, D.; Uchimura, M.; Wang, C.; Subbaraman, R.; Danilovic, N. ; van der Vliet, D.; Paulikas, A. P.; Stamenkovic, V. R.; Markovic, N. M. Improving the hydrogen oxidation reaction rate by promotion of hydroxyl adsorption. Nat. Chem. 2013, 5, 300–306.

Nano Research Energy
Cite this article:
Wang Y-R, Ding H-M, Yue M, et al. Subtle tuning of micro-environment in COFs nanoribbons actuates low electricity-consumption photo-assisted Co-electrolysis of methanol and CO2. Nano Research Energy, 2024, https://doi.org/10.26599/NRE.2024.9120146

3902

Views

109

Downloads

0

Crossref

0

Scopus

Altmetrics

Received: 22 October 2024
Revised: 25 November 2024
Accepted: 25 November 2024
Published: 09 December 2024
© The Author(s) 2024. Published by Tsinghua University Press.

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return