PDF (40.7 MB)
Collect
Submit Manuscript
Review Article | Open Access

Graphene–MXene van der Waals heterostructures for high-performance supercapacitors

Suraj Kumar1Priyakshi Bora1Parimal Chandra Bhomick2Dinesh Rangappa3()Dipak Sinha1()
Department of Chemistry, Nagaland University, Lumami Campus, Zunheboto, Nagaland-798627, India
Department of Chemistry, St. Joseph University, Chümoukedima, Nagaland-797115, India
Department of Applied Sciences (Nanotechnology), Centre for Post-Graduate Studies, Visvesvaraya Technological University, Muddenahalli, Karnataka-562101, India
Show Author Information

Graphical Abstract

View original image Download original image
This review examines graphene–MXene heterostructures for supercapacitor electrodes, focusing on energy storage potential, fabrication progress, commercial challenges, and future research directions.

Abstract

Research on the exploration of graphene and two-dimensional (2D) materials is thriving and is anticipated to continue leading the forefront of materials science research. This growing interest in 2D nanomaterials is attributed to their distinct characteristics not present in their bulk counterparts. While various 2D nanomaterials have been developed, graphene and MXene, notably, have garnered significant global attention owing to their outstanding properties. Further, the ability to create van der Waals heterostructures has introduced a novel approach to amalgamating the advantageous features of graphene and MXene into a unified entity. These heterostructures not only overcome the inherent limitations of each material but also facilitate the realization of fascinating properties through their synergistic combination. This review discusses the evolution, recent advancements and prospects of these novel 2D materials. Additionally, we also address the challenges that must be overcome to achieve full-scale commercial adoption of this innovative class of layered materials. We also reviewed the application of graphene–MXene heterostructures for developing next-gen supercapacitor devices and outline potential directions for future research.

References

[1]

Theerthagiri, J.; Karuppasamy, K.; Lee, S. J.; Shwetharani, R.; Kim, H. S.; Pasha, S. K. K.; Ashokkumar, M.; Choi, M. Y. Fundamentals and comprehensive insights on pulsed laser synthesis of advanced materials for diverse photo- and electrocatalytic applications. Light. Sci. Appl. 2022, 11, 250.

[2]

Theerthagiri, J.; Murthy, A. P.; Lee, S. J.; Karuppasamy, K.; Arumugam, S. R.; Yu, Y.; Hanafiah, M. M.; Kim, H. S.; Mittal, V.; Choi, M. Y. Recent progress on synthetic strategies and applications of transition metal phosphides in energy storage and conversion. Ceram. Int. 2021, 47, 4404–4425.

[3]

Lee, S. J.; Theerthagiri, J.; Nithyadharseni, P.; Arunachalam, P.; Balaji, D.; Madan Kumar, A.; Madhavan, J.; Mittal, V.; Choi, M. Y. Heteroatom-doped graphene-based materials for sustainable energy applications: A review. Renewable Sustain. Energy Rev. 2021, 143, 110849.

[4]

Narthana, K.; Durai, G.; Kuppusami, P.; Theerthagiri, J.; Sujatha, S.; Lee, S. J.; Choi, M. Y. One-step synthesis of hierarchical structured nickel copper sulfide nanorods with improved electrochemical supercapacitor properties. Int. J. Energy Res. 2021, 45, 9983–9998.

[5]

Theerthagiri, J.; Senthil, R. A.; Nithyadharseni, P.; Lee, S. J.; Durai, G.; Kuppusami, P.; Madhavan, J.; Choi, M. Y. Recent progress and emerging challenges of transition metal sulfides based composite electrodes for electrochemical supercapacitive energy storage. Ceram. Int. 2020, 46, 14317–14345.

[6]

Li, Y.; Zhang, J. W.; Chen, Q. G.; Xia, X. H.; Chen, M. H. Emerging of heterostructure materials in energy storage: A review. Adv. Mater. 2021, 33, 2100855.

[7]

Theerthagiri, J.; Karuppasamy, K.; Justin Raj, C.; Maia, G.; Aruna Kumari, M. L.; John Kennedy, L.; Souza, M. K. R.; Cardoso, E. S. F.; Kheawhom, S.; Kim, H. S. et al. Structural engineering of metal oxyhydroxide for electrochemical energy conversion and storage. Coord. Chem. Rev. 2024, 513, 215880.

[8]

Cai, W. L.; Yan, C.; Yao, Y. X.; Xu, L.; Xu, R.; Jiang, L. L.; Huang, J. Q.; Zhang, Q. Rapid lithium diffusion in order@disorder pathways for fast-charging graphite anodes. Small Struct. 2020, 1, 2000010.

[9]

Pomerantseva, E.; Gogotsi, Y. Two-dimensional heterostructures for energy storage. Nat. Energy 2017, 2, 17089.

[10]

Alferov, Z. I. The history and future of semiconductor heterostructures. Semiconductors 1998, 32, 1–14.

[11]

Peng, Q.; Hu, K. M.; Sa, B.; Zhou, J.; Wu, B.; Hou, X. H.; Sun, Z. M. Unexpected elastic isotropy in a black phosphorene/TiC2 van der Waals heterostructure with flexible Li-ion battery anode applications. Nano Res. 2017, 10, 3136–3150.

[12]

Wang, P. Q.; Jia, C. C.; Huang, Y.; Duan, X. F. van der Waals heterostructures by design: From 1D and 2D to 3D. Matter 2021, 4, 552–581.

[13]

Tung, R. T. Chemical bonding and Fermi level pinning at metal-semiconductor interfaces. Phys. Rev. Lett. 2000, 84, 6078–6081.

[14]

Hussain, I.; Lamiel, C.; Javed, M. S.; Ahmad, M.; Sahoo, S.; Chen, X.; Qin, N.; Iqbal, S.; Gu, S.; Li, Y. X. et al. MXene-based heterostructures: Current trend and development in electrochemical energy storage devices. Prog. Energy Combust. Sci. 2023, 97, 101097.

[15]

Novoselov, K. S.; Mishchenko, A.; Carvalho, A.; Castro Neto, A. H. 2D materials and van der Waals heterostructures. Science 2016, 353, eaac9439.

[16]

Geim, A. K.; Grigorieva, I. V. van der Waals heterostructures. Nature 2013, 499, 419–425.

[17]

Scarano, D.; Cesano, F. Graphene and other 2D layered nanomaterials and hybrid structures: Synthesis, properties and applications. Materials 2021, 14, 7108.

[18]

Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183–191.

[19]

Zheng, Q. F.; Han, B. G.; Cui, X.; Yu, X.; Ou, J. P. Graphene-engineered cementitious composites: Small makes a big impact. Nanomater. Nanotechnol. 2017, 7, 1–21847980417742304.

[20]

Ikram, R.; Jan, B. M.; Ahmad, W. Advances in synthesis of graphene derivatives using industrial wastes precursors; prospects and challenges. J. Mater. Res. Technol. 2020, 9, 15924–15951.

[21]

Song, W.; Li, M. X.; Wang, C.; Lu, X. F. Electronic modulation and interface engineering of electrospun nanomaterials-based electrocatalysts toward water splitting. Carbon Energy 2021, 3, 101–128.

[22]

Guo, Q.; Chen, N.; Qu, L. T. Two-dimensional materials of group-IVA boosting the development of energy storage and conversion. Carbon Energy 2020, 2, 54–71.

[23]

Ye, M. Y.; Yin, Q.; Lin, Y. K.; Jia, H. B. High-performance MXene/aramid nanofibers/graphene film electrodes with superior integration of mechanical and capacitive properties. J. Alloys Compd. 2023, 961, 171038.

[24]

Xue, Y. H.; Xu, T. J.; Wang, C. Y.; Fu, L. Recent advances of two-dimensional materials-based heterostructures for rechargeable batteries. iScience 2024, 27, 110392.

[25]

Yan, J.; Ren, C. E.; Maleski, K.; Hatter, C. B.; Anasori, B.; Urbankowski, P.; Sarycheva, A.; Gogotsi, Y. Flexible MXene/graphene films for ultrafast supercapacitors with outstanding volumetric capacitance. Adv. Funct. Mater. 2017, 27, 1701264.

[26]

Fan, Z. M.; Wang, Y. S.; Xie, Z. M.; Wang, D. L.; Yuan, Y.; Kang, H. J.; Su, B. L.; Cheng, Z. J.; Liu, Y. Y. Modified MXene/holey graphene films for advanced supercapacitor electrodes with superior energy storage. Adv. Sci. 2018, 5, 1800750.

[27]

Sharma, M.; Ajayan, P. M.; Deb, P. Quantum energy storage in 2D heterointerfaces. Adv. Mater. Interfaces 2023, 10, 2202058.

[28]

Zhou, T. Z.; Wu, C.; Wang, Y. L.; Tomsia, A. P.; Li, M. Z.; Saiz, E.; Fang, S. L.; Baughman, R. H.; Jiang, L.; Cheng, Q. F. Super-tough MXene-functionalized graphene sheets. Nat. Commun. 2020, 11, 2077.

[29]

Solís-Fernández, P.; Bissett, M.; Ago, H. Synthesis, structure and applications of graphene-based 2D heterostructures. Chem. Soc. Rev. 2017, 46, 4572–4613.

[30]

Wang, H. F.; Tang, C.; Zhang, Q. A review of graphene-based 3D van der Waals hybrids and their energy applications. Nano Today 2019, 25, 27–37.

[31]

Saha, S.; Samanta, P.; Murmu, N. C.; Kuila, T. A review on the heterostructure nanomaterials for supercapacitor application. J. Energy Storage 2018, 17, 181–202.

[32]

Zhang, Y. J.; Nie, K. K.; Yi, L. X.; Li, B. J.; Yuan, Y. L.; Liu, Z. Q.; Huang, W. Recent advances in engineering of 2D materials-based heterostructures for electrochemical energy conversion. Adv. Sci. 2023, 10, 2302301.

[33]

Wang, J. G.; Ma, F. C.; Sun, M. T. Graphene, hexagonal boron nitride, and their heterostructures: Properties and applications. RSC Adv. 2017, 7, 16801–16822.

[34]

Peierls, R. Quelques propriétés typiques des corps solides. Ann. I. H. Poincaré 1935, 5, 177–222.

[35]
Landau, L. D.; Lifshitz, E. M. Statistical Physics, Part 1; 3rd ed. Butterworth-Heinemann: Oxford, 1980.
[36]

Mermin, N. D. Crystalline order in two dimensions. Phys. Rev. 1968, 176, 250–254.

[37]

Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

[38]

Berger, C.; Song, Z. M.; Li, T. B.; Li, X. B.; Ogbazghi, A. Y.; Feng, R.; Dai, Z. T.; Marchenkov, A. N.; Conrad, E. H.; First, P. N. et al. Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics. J. Phys. Chem. B 2004, 108, 19912–19916.

[39]

Tang, Y. B.; Lee, C. S.; Chen, Z. H.; Yuan, G. D.; Kang, Z. H.; Luo, L. B.; Song, H. S.; Liu, Y.; He, Z. B.; Zhang, W. J. et al. High-quality graphenes via a facile quenching method for field-effect transistors. Nano Lett. 2009, 9, 1374–1377.

[40]

Bolotin, K. I.; Sikes, K. J.; Jiang, Z.; Klima, M.; Fudenberg, G.; Hone, J.; Kim, P.; Stormer, H. L. Ultrahigh electron mobility in suspended graphene. Solid State Commun. 2008, 146, 351–355.

[41]

Kim, K. S.; Zhao, Y.; Jang, H.; Lee, S. Y.; Kim, J. M.; Kim, K. S.; Ahn, J. H.; Kim, P.; Choi, J. Y.; Hong, B. H. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 2009, 457, 706–710.

[42]

Balandin, A. A. Thermal properties of graphene and nanostructured carbon materials. Nat. Mater. 2011, 10, 569–581.

[43]

Skrypnychuk, V.; Boulanger, N.; Nordenström, A.; Talyzin, A. Aqueous activated graphene dispersions for deposition of high-surface area supercapacitor electrodes. J. Phys. Chem. Lett. 2020, 11, 3032–3038.

[44]

Tung, T. T.; Nine, M. J.; Krebsz, M.; Pasinszki, T.; Coghlan, C. J.; Tran, D. N. H.; Losic, D. Recent advances in sensing applications of graphene assemblies and their composites. Adv. Funct. Mater. 2017, 27, 1702891.

[45]

Han, W.; Kawakami, R. K.; Gmitra, M.; Fabian, J. Graphene spintronics. Nat. Nanotechnol. 2014, 9, 794–807.

[46]

Raccichini, R.; Varzi, A.; Passerini, S.; Scrosati, B. The role of graphene for electrochemical energy storage. Nat. Mater. 2015, 14, 271–279.

[47]

Westervelt, R. M. Graphene nanoelectronics. Science 2008, 320, 324–325.

[48]

Bhol, P.; Yadav, S.; Altaee, A.; Saxena, M.; Misra, P. K.; Samal, A. K. Graphene-based membranes for water and wastewater treatment: A review. ACS Appl. Nano Mater. 2021, 4, 3274–3293.

[49]

Balandin, A. A.; Ghosh, S.; Bao, W. Z.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C. N. Superior thermal conductivity of single-layer graphene. Nano Lett. 2008, 8, 902–907.

[50]

Novoselov, K. S.; Jiang, D.; Schedin, F.; Booth, T. J.; Khotkevich, V. V.; Morozov, S. V.; Geim, A. K. Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. USA 2005, 102, 10451–10453.

[51]

Edwards, R. S.; Coleman, K. S. Graphene synthesis: Relationship to applications. Nanoscale 2013, 5, 38–51.

[52]

Van Noorden, R. Production: Beyond sticky tape. Nature 2012, 483, S32–S33.

[53]

Hummers, W. S. Jr.; Offeman, R. E. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958, 80, 1339.

[54]

Brodie, B. C. XXIII.—Researches on the atomic weight of graphite. Q. J. Chem. Soc. 1860, 12, 261–268.

[55]

Staudenmaier, L. Verfahren zur darstellung der graphitsäure. Ber. Dtsch. Chem. Ges. 1898, 31, 1481–1487.

[56]

Marcano, D. C.; Kosynkin, D. V.; Berlin, J. M.; Sinitskii, A.; Sun, Z. Z.; Slesarev, A.; Alemany, L. B.; Lu, W.; Tour, J. M. Improved synthesis of graphene oxide. ACS Nano 2010, 4, 4806–4814.

[57]

Zhang, J. L.; Yang, H. J.; Shen, G. X.; Cheng, P.; Zhang, J. Y.; Guo, S. W. Reduction of graphene oxide via L-ascorbic acid. Chem. Commun. 2010, 46, 1112–1114.

[58]

Larciprete, R.; Fabris, S.; Sun, T.; Lacovig, P.; Baraldi, A.; Lizzit, S. Dual path mechanism in the thermal reduction of graphene oxide. J. Am. Chem. Soc. 2011, 133, 17315–17321.

[59]

Liao, K. H.; Mittal, A.; Bose, S.; Leighton, C.; Mkhoyan, K. A.; Macosko, C. W. Aqueous only route toward graphene from graphite oxide. ACS Nano 2011, 5, 1253–1258.

[60]

Viinikanoja, A.; Wang, Z. J.; Kauppila, J.; Kvarnström, C. Electrochemical reduction of graphene oxide and its in situ spectroelectrochemical characterization. Phys. Chem. Chem. Phys. 2012, 14, 14003–14009.

[61]

Brownson, D. A. C.; Banks, C. E. The electrochemistry of CVD graphene: Progress and prospects. Phys. Chem. Chem. Phys. 2012, 14, 8264–8281.

[62]

Sun, L. Z.; Yuan, G. W.; Gao, L. B.; Yang, J.; Chhowalla, M.; Gharahcheshmeh, M. H.; Gleason, K. K.; Choi, Y. S.; Hong, B. H.; Liu, Z. F. Chemical vapour deposition. Nat. Rev. Methods Primers 2021, 1, 5.

[63]

Xu, S. S.; Zhang, L. P.; Wang, B.; Ruoff, R. S. Chemical vapor deposition of graphene on thin-metal films. Cell Rep. Phys. Sci. 2021, 2, 100372.

[64]

Ghaemi, F.; Abdullah, L. C.; Tahir, P. M.; Yunus, R. Synthesis of different layers of graphene on stainless steel using the CVD method. Nanoscale Res. Lett. 2016, 11, 506.

[65]

An, H.; Lee, W. J.; Jung, J. Graphene synthesis on Fe foil using thermal CVD. Curr. Appl. Phys. 2011, 11, S81–S85.

[66]

Seekaew, Y.; Phokharatkul, D.; Wisitsoraat, A.; Wongchoosuk, C. Highly sensitive and selective room-temperature NO2 gas sensor based on bilayer transferred chemical vapor deposited graphene. Appl. Surf. Sci. 2017, 404, 357–363.

[67]

Yavari, F.; Chen, Z. P.; Thomas, A. V.; Ren, W. C.; Cheng, H. M.; Koratkar, N. High sensitivity gas detection using a macroscopic three-dimensional graphene foam network. Sci. Rep. 2011, 1, 166.

[68]

Somani, P. R.; Somani, S. P.; Umeno, M. Planer nano-graphenes from camphor by CVD. Chem. Phys. Lett. 2006, 430, 56–59.

[69]

Yu, Q. K.; Lian, J.; Siriponglert, S.; Li, H.; Chen, Y. P.; Pei, S. S. Graphene segregated on Ni surfaces and transferred to insulators. Appl. Phys. Lett. 2008, 93, 113103.

[70]

Reina, A.; Jia, X. T.; Ho, J.; Nezich, D.; Son, H.; Bulovic, V.; Dresselhaus, M. S.; Kong, J. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 2009, 9, 30–35.

[71]

Li, X. S.; Cai, W. W.; An, J.; Kim, S.; Nah, J.; Yang, D. X.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E. et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 2009, 324, 1312–1314.

[72]

Varykhalov, A.; Rader, O. Graphene grown on Co(0001) films and islands: Electronic structure and its precise magnetization dependence. Phys. Rev. B 2009, 80, 035437.

[73]

Kang, B. J.; Mun, J. H.; Hwang, C. Y.; Cho, B. J. Monolayer graphene growth on sputtered thin film platinum. J. Appl. Phys. 2009, 106, 104309.

[74]

Kwon, S. Y.; Ciobanu, C. V.; Petrova, V.; Shenoy, V. B.; Bareño, J.; Gambin, V.; Petrov, I.; Kodambaka, S. Growth of semiconducting graphene on palladium. Nano Lett. 2009, 9, 3985–3990.

[75]

Coraux, J.; N’Diaye, A. T.; Busse, C.; Michely, T. Structural coherency of graphene on Ir(111). Nano Lett. 2008, 8, 565–570.

[76]

Pode, R. Potential applications of rice husk ash waste from rice husk biomass power plant. Renewable Sustain. Energy Rev. 2016, 53, 1468–1485.

[77]

Ruan, G. D.; Sun, Z. Z.; Peng, Z. W.; Tour, J. M. Growth of graphene from food, insects, and waste. ACS Nano 2011, 5, 7601–7607.

[78]

Pan, Y.; Zhang, H. G.; Shi, D. X.; Sun, J. T.; Du, S. X.; Liu, F.; Gao, H. J. Highly ordered, millimeter-scale, continuous, single-crystalline graphene monolayer formed on Ru (0001). Adv. Mater. 2009, 21, 2777–2780.

[79]

Juang, Z. Y.; Wu, C. Y.; Lo, C. W.; Chen, W. Y.; Huang, C. F.; Hwang, J. C.; Chen, F. R.; Leou, K. C.; Tsai, C. H. Synthesis of graphene on silicon carbide substrates at low temperature. Carbon 2009, 47, 2026–2031.

[80]

Shams, S. S.; Zhang, L. S.; Hu, R. H.; Zhang, R. Y.; Zhu, J. Synthesis of graphene from biomass: A green chemistry approach. Mater. Lett. 2015, 161, 476–479.

[81]

Beckham, J. L.; Li, J. T.; Stanford, M. G.; Chen, W. Y.; McHugh, E. A.; Advincula, P. A.; Wyss, K. M.; Chyan, Y.; Boldman, W. L.; Rack, P. D. et al. High-resolution laser-induced graphene from photoresist. ACS Nano 2021, 15, 8976–8983.

[82]

Russo, P.; Hu, A. M.; Compagnini, G.; Duley, W. W.; Zhou, N. Y. Femtosecond laser ablation of highly oriented pyrolytic graphite: A green route for large-scale production of porous graphene and graphene quantum dots. Nanoscale 2014, 6, 2381–2389.

[83]

Ye, R. Q.; James, D. K.; Tour, J. M. Laser-induced graphene. Acc. Chem. Res. 2018, 51, 1609–1620.

[84]

Lin, J.; Peng, Z. W.; Liu, Y. Y.; Ruiz-Zepeda, F.; Ye, R. Q.; Samuel, E. L. G.; Yacaman, M. J.; Yakobson, B. I.; Tour, J. M. Laser-induced porous graphene films from commercial polymers. Nat. Commun. 2014, 5, 5714.

[85]

Stanford, M. G.; Zhang, C.; Fowlkes, J. D.; Hoffman, A.; Ivanov, I. N.; Rack, P. D.; Tour, J. M. High-resolution laser-induced graphene. Flexible electronics beyond the visible limit. ACS Appl. Mater. Interfaces 2020, 12, 10902–10907.

[86]

Dato, A.; Radmilovic, V.; Lee, Z.; Phillips, J.; Frenklach, M. Substrate-free gas-phase synthesis of graphene sheets. Nano Lett. 2008, 8, 2012–2016.

[87]

Luong, D. X.; Bets, K. V.; Algozeeb, W. A.; Stanford, M. G.; Kittrell, C.; Chen, W. Y.; Salvatierra, R. V.; Ren, M. Q.; McHugh, E. A.; Advincula, P. A. et al. Gram-scale bottom-up flash graphene synthesis. Nature 2020, 577, 647–651.

[88]

de Heer, W. A.; Berger, C.; Wu, X. S.; First, P. N.; Conrad, E. H.; Li, X. B.; Li, T. B.; Sprinkle, M.; Hass, J.; Sadowski, M. L. et al. Epitaxial graphene. Solid State Commun. 2007, 143, 92–100.

[89]

Berger, C.; Song, Z. M.; Li, X. B.; Wu, X. S.; Brown, N.; Naud, C.; Mayou, D.; Li, T. B.; Hass, J.; Marchenkov, A. N. et al. Electronic confinement and coherence in patterned epitaxial graphene. Science 2006, 312, 1191–1196.

[90]

Rollings, E.; Gweon, G. H.; Zhou, S. Y.; Mun, B. S.; McChesney, J. L.; Hussain, B. S.; Fedorov, A. V.; First, P. N. ; de Heer, W. A.; Lanzara, A. Synthesis and characterization of atomically thin graphite films on a silicon carbide substrate. J. Phys. Chem. Solids 2006, 67, 2172–2177.

[91]

Liu, F.; Wang, C. J.; Sui, X.; Riaz, M. A.; Xu, M. Y.; Wei, L.; Chen, Y. Synthesis of graphene materials by electrochemical exfoliation: Recent progress and future potential. Carbon Energy 2019, 1, 173–199.

[92]

Kakaei, K.; Hasanpour, K. Synthesis of graphene oxide nanosheets by electrochemical exfoliation of graphite in cetyltrimethylammonium bromide and its application for oxygen reduction. J. Mater. Chem. A 2014, 2, 15428–15436.

[93]

Ciesielski, A.; Samorì, P. Graphene via sonication assisted liquid-phase exfoliation. Chem. Soc. Rev. 2014, 43, 381–398.

[94]

Wang, X. Y.; Narita, A.; Müllen, K. Precision synthesis versus bulk-scale fabrication of graphenes. Nat. Rev. Chem. 2017, 2, 0100.

[95]

Hernandez, Y.; Nicolosi, V.; Lotya, M.; Blighe, F. M.; Sun, Z. Y.; De, S.; McGovern, I. T.; Holland, B.; Byrne, M.; Gun’Ko, Y. K. et al. High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotechnol. 2008, 3, 563–568.

[96]

Kosynkin, D. V.; Higginbotham, A. L.; Sinitskii, A.; Lomeda, J. R.; Dimiev, A.; Price, B. K.; Tour, J. M. Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 2009, 458, 872–876.

[97]

Janowska, I.; Ersen, O.; Jacob, T.; Vennégues, P.; Bégin, D.; Ledoux, M. J.; Pham-Huu, C. Catalytic unzipping of carbon nanotubes to few-layer graphene sheets under microwaves irradiation. Appl. Catal. A: Gen. 2009, 371, 22–30.

[98]

Wu, Z. S.; Ren, W. C.; Gao, L. B.; Zhao, J. P.; Chen, Z. P.; Liu, B. L.; Tang, D. M.; Yu, B.; Jiang, C. B.; Cheng, H. M. Synthesis of graphene sheets with high electrical conductivity and good thermal stability by hydrogen arc discharge exfoliation. ACS Nano 2009, 3, 411–417.

[99]

Subrahmanyam, K. S.; Panchakarla, L. S.; Govindaraj, A.; Rao, C. N. R. Simple method of preparing graphene flakes by an arc-discharge method. J. Phys. Chem. C 2009, 113, 4257–4259.

[100]

Edward, K.; Mamun, K.; Narayan, S.; Assaf, M.; Rohindra, D.; Rathnayake, U. State-of-the-art graphene synthesis methods and environmental concerns. Appl. Environ. Soil Sci. 2023, 2023, 8475504.

[101]

Bhuyan, M. S. A.; Uddin, M. N.; Islam, M. M.; Bipasha, F. A.; Hossain, S. S. Synthesis of graphene. Int. Nano Lett. 2016, 6, 65–83.

[102]

Naguib, M.; Kurtoglu, M.; Presser, V.; Lu, J.; Niu, J. J.; Heon, M.; Hultman, L.; Gogotsi, Y.; Barsoum, M. W. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 2011, 23, 4248–4253.

[103]

Gogotsi, Y.; Anasori, B. The rise of MXenes. ACS Nano 2019, 13, 8491–8494.

[104]

Anasori, B.; Lukatskaya, M. R.; Gogotsi, Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2017, 2, 16098.

[105]

Jayakumar, S.; Santhosh, P. C.; Ramakrishna, S.; Radhamani, A. V. 2D (Ti3C2T x ) MXene: A comprehensive review of advancements in synthesis protocols, applications in supercapacitors, sustainability targets and future prospects. J. Energy Storage 2024, 97, 112741.

[106]

Jaffari, Z. H.; Abuabdou, S. M. A.; Ng, D. Q.; Bashir, M. J. K. Insight into two-dimensional MXenes for environmental applications: Recent progress, challenges, and prospects. FlatChem 2021, 28, 100256.

[107]

Azadmanjiri, J.; Reddy, T. N.; Khezri, B.; Děkanovský, L.; Parameswaran, A. K.; Pal, B.; Ashtiani, S.; Wei, S. Y.; Sofer, Z. Prospective advances in MXene inks: Screen printable sediments for flexible micro-supercapacitor applications. J. Mater. Chem. A 2022, 10, 4533–4557.

[108]

Wu, C. W.; Unnikrishnan, B.; Chen, I. W. P.; Harroun, S. G.; Chang, H. T.; Huang, C. C. Excellent oxidation resistive MXene aqueous ink for micro-supercapacitor application. Energy Storage Mater. 2020, 25, 563–571.

[109]

Zhang, C. F.; McKeon, L.; Kremer, M. P.; Park, S. H.; Ronan, O.; Seral-Ascaso, A.; Barwich, S.; Coileáin, C. Ó.; McEvoy, N.; Nerl, H. C. et al. Additive-free MXene inks and direct printing of micro-supercapacitors. Nat. Commun. 2019, 10, 1795.

[110]

Wang, Y. H.; Yuan, Y. X.; Geng, H. Y.; Yang, W. Q.; Chen, X. R. Boosting ion diffusion kinetics of MXene inks with water-in-salt electrolyte for screen-printed micro-supercapacitors. Adv. Funct. Mater. 2024, 34, 2400887.

[111]

Alwarappan, S.; Nesakumar, N.; Sun, D. L.; Hu, T. Y.; Li, C. Z. 2D metal carbides and nitrides (MXenes) for sensors and biosensors. Biosens. Bioelectron. 2022, 205, 113943.

[112]

Gautam, R.; Marriwala, N.; Devi, R. A review: Study of MXene and graphene together. Measur. Sens. 2023, 25, 100592.

[113]

Zhu, M.; Yue, Y.; Cheng, Y. F.; Zhang, Y. N.; Su, J.; Long, F.; Jiang, X. L.; Ma, Y. N.; Gao, Y. H. Hollow MXene sphere/reduced graphene aerogel composites for piezoresistive sensor with ultra-high sensitivity. Adv. Electron. Mater. 2020, 6, 1901064.

[114]

Hu, X. X.; Li, R.; Zhao, S. Y.; Xing, Y. J. Microwave-assisted preparation of flower-like cobalt phosphate and its application as a new heterogeneous Fenton-like catalyst. Appl. Surf. Sci. 2017, 396, 1393–1402.

[115]

Kim, H.; Alshareef, H. N. MXetronics: MXene-enabled electronic and photonic devices. ACS Mater. Lett. 2020, 2, 55–70.

[116]

Li, Z.; Wu, Y. 2D early transition metal carbides (MXenes) for catalysis. Small 2019, 15, 1804736.

[117]

Lingamdinne, L. P.; Kulkarni, R.; Koduru, J. R.; Karri, R. R.; Somala, A. R.; Solangi, N. H.; Mubarak, N. M.; Choi, J. S.; Chang, Y. Y.; Dehghani, M. H. MXenes for advanced energy storage and environmental remediation applications: Synthesis, properties, and challenges. J. Energy Storage 2024, 101, 113806.

[118]

Jatoi, A. S.; Mubarak, N. M.; Hashmi, Z.; Solangi, N. H.; Karri, R. R.; Tan, Y. H.; Mazari, S. A.; Koduru, J. R.; Alfantazi, A. New insights into MXene applications for sustainable environmental remediation. Chemosphere 2023, 313, 137497.

[119]

Anasori, B.; Dahlqvist, M.; Halim, J.; Moon, E. J.; Lu, J.; Hosler, B. C.; Caspi, E. N.; May, S. J.; Hultman, L.; Eklund, P. et al. Experimental and theoretical characterization of ordered MAX phases Mo2TiAlC2 and Mo2Ti2AlC3. J. Appl. Phys. 2015, 118, 094304.

[120]

Eklund, P.; Beckers, M.; Jansson, U.; Högberg, H.; Hultman, L. The M n +1AX n phases: Materials science and thin-film processing. Thin Solid Films 2010, 518, 1851–1878.

[121]

Barsoum, M. W.; Radovic, M. Elastic and mechanical properties of the MAX phases. Annu. Rev. Mater. Res. 2011, 41, 195–227.

[122]

Naguib, M.; Mochalin, V. N.; Barsoum, M. W.; Gogotsi, Y. 25th anniversary article: MXenes: A new family of two-dimensional materials. Adv. Mater. 2014, 26, 992–1005.

[123]

Srivastava, P.; Mishra, A.; Mizuseki, H.; Lee, K. R.; Singh, A. K. Mechanistic insight into the chemical exfoliation and functionalization of Ti3C2 MXene. ACS Appl. Mater. Interfaces 2016, 8, 24256–24264.

[124]

Tang, Q.; Zhou, Z.; Shen, P. W. Are MXenes promising anode materials for li ion batteries? Computational studies on electronic properties and li storage capability of Ti3C2 and Ti3C2X2 (X = F, OH) monolayer. J. Am. Chem. Soc. 2012, 134, 16909–16916.

[125]

Hu, M. M.; Zhang, H.; Hu, T.; Fan, B. B.; Wang, X. H.; Li, Z. J. Emerging 2D MXenes for supercapacitors: Status, challenges and prospects. Chem. Soc. Rev. 2020, 49, 6666–6693.

[126]

Naguib, M.; Mashtalir, O.; Carle, J.; Presser, V.; Lu, J.; Hultman, L.; Gogotsi, Y.; Barsoum, M. W. Two-dimensional transition metal carbides. ACS Nano 2012, 6, 1322–1331.

[127]

Zhou, J.; Zha, X.; Chen, F. Y.; Ye, Q.; Eklund, P.; Du, S. Y.; Huang, Q. A two-dimensional zirconium carbide by selective etching of Al3C3 from nanolaminated Zr3Al3C5. Angew. Chem., Int. Ed. 2016, 55, 5008–5013.

[128]

Jayaseelan, D. D.; Pramana, S.; Grasso, S.; Bai, Y.; Skinner, S.; Reece, M. J.; Lee, W. E. Fabrication and characterisation of single-phase Hf2Al4C5 ceramics. J. Eur. Ceram Soc. 2022, 42, 1292–1301.

[129]

Alhabeb, M.; Maleski, K.; Anasori, B.; Lelyukh, P.; Clark, L.; Sin, S.; Gogotsi, Y. Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2T x MXene). Chem. Mater. 2017, 29, 7633–7644.

[130]

Natu, V.; Pai, R.; Sokol, M.; Carey, M.; Kalra, V.; Barsoum, M. W. 2D Ti3C2T z MXene synthesized by water-free etching of Ti3AlC2 in polar organic solvents. Chem 2020, 6, 616–630.

[131]

Sarfraz, B.; Mehran, M. T.; Baig, M. M.; Naqvi, S. R.; Khoja, A. H.; Shahzad, F. HF free greener Cl-terminated MXene as novel electrocatalyst for overall water splitting in alkaline media. Int. J. Energy Res. 2022, 46, 10942–10954.

[132]

Shuck, C. E.; Ventura-Martinez, K.; Goad, A.; Uzun, S.; Shekhirev, M.; Gogotsi, Y. Safe synthesis of MAX and MXene: Guidelines to reduce risk during synthesis. ACS Chem. Health Saf. 2021, 28, 326–338.

[133]

Jiang, X. T.; Kuklin, A. V.; Baev, A.; Ge, Y. Q.; Ågren, H.; Zhang, H.; Prasad, P. N. Two-dimensional MXenes: From morphological to optical, electric, and magnetic properties and applications. Phys. Rep. 2020, 848, 1–58.

[134]

Liu, F. F.; Zhou, A. G.; Chen, J. F.; Jia, J.; Zhou, W. J.; Wang, L. B.; Hu, Q. K. Preparation of Ti3C2 and Ti2C MXenes by fluoride salts etching and methane adsorptive properties. Appl. Surf. Sci. 2017, 416, 781–789.

[135]

Halim, J.; Lukatskaya, M. R.; Cook, K. M.; Lu, J.; Smith, C. R.; Näslund, L. Å.; May, S. J.; Hultman, L.; Gogotsi, Y.; Eklund, P. et al. Transparent conductive two-dimensional titanium carbide epitaxial thin films. Chem. Mater. 2014, 26, 2374–2381.

[136]
Thakur, N.; Kumar, P.; Sharma, P. Two-dimensional inorganic materials for energy storage applications. In Age of MXenes, Volume 3. Applications in Energy Storage: Batteries and Supercapacitors. Mahapatra, D. M.; Singh, L., Eds.; American Chemical Society: Washington, 2023; pp 1–25.
[137]

Kim, Y. J.; Kim, S. J.; Seo, D.; Chae, Y.; Anayee, M.; Lee, Y.; Gogotsi, Y.; Ahn, C. W.; Jung, H. T. Etching mechanism of monoatomic aluminum layers during MXene synthesis. Chem. Mater. 2021, 33, 6346–6355.

[138]

Thomas, S. A.; Patra, A.; Al-Shehri, B. M.; Selvaraj, M.; Aravind, A.; Rout, C. S. MXene based hybrid materials for supercapacitors: Recent developments and future perspectives. J. Energy Storage 2022, 55, 105765.

[139]

Li, Y. B.; Shao, H.; Lin, Z. F.; Lu, J.; Liu, L. Y.; Duployer, B.; Persson, P. O. Å.; Eklund, P.; Hultman, L.; Li, M. et al. A general Lewis acidic etching route for preparing MXenes with enhanced electrochemical performance in non-aqueous electrolyte. Nat. Mater. 2020, 19, 894–899.

[140]

Kamysbayev, V.; Filatov, A. S.; Hu, H. C.; Rui, X.; Lagunas, F.; Wang, D.; Klie, R. F.; Talapin, D. V. Covalent surface modifications and superconductivity of two-dimensional metal carbide MXenes. Science 2020, 369, 979–983.

[141]

Urbankowski, P.; Anasori, B.; Makaryan, T.; Er, D.; Kota, S.; Walsh, P. L.; Zhao, M. Q.; Shenoy, V. B.; Barsoum, M. W.; Gogotsi, Y. Synthesis of two-dimensional titanium nitride Ti4N3 (MXene). Nanoscale 2016, 8, 11385–11391.

[142]

Li, M.; Lu, J.; Luo, K.; Li, Y. B.; Chang, K. K.; Chen, K.; Zhou, J.; Rosen, J.; Hultman, L.; Eklund, P. et al. Element replacement approach by reaction with Lewis acidic molten salts to synthesize nanolaminated MAX phases and MXenes. J. Am. Chem. Soc. 2019, 141, 4730–4737.

[143]

Arole, K.; Blivin, J. W.; Saha, S.; Holta, D. E.; Zhao, X. F.; Sarmah, A.; Cao, H. X.; Radovic, M.; Lutkenhaus, J. L.; Green, M. J. Water-dispersible Ti3C2T z MXene nanosheets by molten salt etching. iScience 2021, 24, 103403.

[144]

Wang, Y. B.; Zhou, B.; Tang, Q.; Yang, Y.; Pu, B.; Bai, J.; Xu, J.; Feng, Q. G.; Liu, Y.; Yang, W. Q. Ultrafast synthesis of MXenes in minutes via low-temperature molten salt etching. Adv. Mater. 2024, 36, 2410736.

[145]

Chen, N. J.; Duan, Z. Y.; Cai, W. R.; Wang, Y. B.; Pu, B.; Huang, H. C.; Xie, Y. T.; Tang, Q.; Zhang, H. T.; Yang, W. Q. Supercritical etching method for the large-scale manufacturing of MXenes. Nano Energy 2023, 107, 108147.

[146]

Li, T. F.; Yao, L. L.; Liu, Q. L.; Gu, J. J.; Luo, R. C.; Li, J. H.; Yan, X. D.; Wang, W. Q.; Liu, P.; Chen, B. et al. Fluorine-free synthesis of high-purity Ti3C2T x (T = OH, O) via alkali treatment. Angew. Chem., Int. Ed. 2018, 57, 6115–6119.

[147]

Mei, J.; Ayoko, G. A.; Hu, C. F.; Bell, J. M.; Sun, Z. Q. Two-dimensional fluorine-free mesoporous Mo2C MXene via UV-induced selective etching of Mo2Ga2C for energy storage. Sustain. Mater. Technol. 2020, 25, e00156.

[148]

Guo, Y.; Zhu, Q.; Wang, Z. M.; Ye, Y. X.; Hu, J. R.; Shang, J. X.; Li, B.; Du, Z. G.; Yang, S. B. Minutes-fast production of vacancy-enriched MXenes as an efficient platform for single-atom electrocatalysts. Adv. Energy Mater. 2024, 14, 2304149.

[149]

Xue, N.; Li, X. S.; Zhang, M. Q.; Han, L. Y.; Liu, Y. Y.; Tao, X. T. Chemical-combined ball-milling synthesis of fluorine-free porous MXene for high-performance lithium ion batteries. ACS Appl. Energy Mater. 2020, 3, 10234–10241.

[150]

Panda, S.; Deshmukh, K.; Khadheer Pasha, S. K.; Theerthagiri, J.; Manickam, S.; Choi, M. Y. MXene based emerging materials for supercapacitor applications: Recent advances, challenges, and future perspectives. Coord. Chem. Rev. 2022, 462, 214518.

[151]

Aslam, M. K.; Niu, Y.; Xu, M. W. MXenes for non-lithium-ion (Na, K, Ca, Mg, and Al) batteries and supercapacitors. Adv Energy Mater. 2021, 11, 2000681.

[152]

Sun, W.; Shah, S. A.; Chen, Y.; Tan, Z.; Gao, H.; Habib, T.; Radovic, M.; Green, M. J. Electrochemical etching of Ti2AlC to Ti2CT x (MXene) in low-concentration hydrochloric acid solution. J. Mater. Chem. A 2017, 5, 21663–21668.

[153]

Sun, Z. M.; Yuan, M. W.; Lin, L.; Yang, H.; Nan, C. Y.; Li, H. F.; Sun, G. B.; Yang, X. J. Selective lithiation-expansion-microexplosion synthesis of two-dimensional fluoride-free MXene. ACS Mater. Lett. 2019, 1, 628–632.

[154]

Lim, K. R. G.; Shekhirev, M.; Wyatt, B. C.; Anasori, B.; Gogotsi, Y.; Seh, Z. W. Fundamentals of MXene synthesis. Nat. Synth. 2022, 1, 601–614.

[155]

Shi, H. H.; Zhang, P. P.; Liu, Z. C.; Park, S.; Lohe, M. R.; Wu, Y. P.; Shaygan Nia, A.; Yang, S.; Feng, X. L. Ambient-stable two-dimensional titanium carbide (MXene) enabled by iodine etching. Angew. Chem., Int. Ed. 2021, 60, 8689–8693.

[156]

Pham, P. V.; Bodepudi, S. C.; Shehzad, K.; Liu, Y.; Xu, Y.; Yu, B.; Duan, X. F. 2D heterostructures for ubiquitous electronics and optoelectronics: Principles, opportunities, and challenges. Chem. Rev. 2022, 122, 6514–6613.

[157]
Sharma, V.; Ghatak, K.; Datta, D. Two-dimensional materials and its heterostructures for energy storage. In Synthesis, Modeling, and Characterization of 2D Materials, and Their Heterostructures. Yang, E. H.; Datta, D.; Ding, J. J.; Hader, G., Eds.; Elsevier: Amsterdam, 2020; pp 385–401.
[158]

Sierra, J. F.; Fabian, J.; Kawakami, R. K.; Roche, S.; Valenzuela, S. O. van der Waals heterostructures for spintronics and opto-spintronics. Nat. Nanotechnol. 2021, 16, 856–868.

[159]

Zhang, T. S.; Yang, B. X.; Lin, M. X.; Zhuang, Z. Y.; Yu, Y. Toward rational design of ordered heterostructures for energy and environmental sustainability: A review. Adv. Energy Sustain. Res. 2023, 4, 2200204.

[160]

Mei, J.; Liao, T.; Sun, Z. Q. 2D/2D Heterostructures: Rational design for advanced batteries and electrocatalysis. Energy Environ. Mater. 2022, 5, 115–132.

[161]

Yun, J.; Echols, I.; Flouda, P.; Chen, Y. J.; Wang, S. Y.; Zhao, X. F.; Holta, D.; Radovic, M.; Green, M. J.; Naraghi, M. et al. Layer-by-layer assembly of reduced graphene oxide and MXene nanosheets for wire-shaped flexible supercapacitors. ACS Appl. Mater. Interfaces 2021, 13, 14068–14076.

[162]

Obregón, S.; Rodríguez-González, V. Photocatalytic TiO2 thin films and coatings prepared by sol–gel processing: A brief review. J. Sol–Gel. Sci. Technol. 2022, 102, 125–141.

[163]

Zhao, M. Q.; Trainor, N.; Ren, C. E.; Torelli, M.; Anasori, B.; Gogotsi, Y. Scalable manufacturing of large and flexible sheets of MXene/graphene heterostructures. Adv. Mater. Technol. 2019, 4, 1800639.

[164]

Wen, D.; Ying, G. B.; Liu, L.; Li, Y. X.; Sun, C.; Hu, C.; Zhao, Y. L.; Ji, Z. Y.; Zhang, J. F.; Wang, X. Direct inkjet printing of flexible MXene/graphene composite films for supercapacitor electrodes. J. Alloys Compd. 2022, 900, 163436.

[165]

Zhang, Y. Y.; Gong, S. S.; Zhang, Q.; Ming, P.; Wan, S. J.; Peng, J. S.; Jiang, L.; Cheng, Q. F. Graphene-based artificial nacre nanocomposites. Chem. Soc. Rev. 2016, 45, 2378–2395.

[166]

Wegst, U. G. K.; Bai, H.; Saiz, E.; Tomsia, A. P.; Ritchie, R. O. Bioinspired structural materials. Nat. Mater. 2015, 14, 23–36.

[167]

Soler-Crespo, R. A.; Mao, L.; Wen, J. G.; Nguyen, H. T.; Zhang, X.; Wei, X. D.; Huang, J. X.; Nguyen, S. T.; Espinosa, H. D. Atomically thin polymer layer enhances toughness of graphene oxide monolayers. Matter 2019, 1, 369–388.

[168]

He, Q. L.; Liu, H. C.; He, M. Q.; Lai, Y. H.; He, H. T.; Wang, G.; Law, K. T.; Lortz, R.; Wang, J. N.; Sou, I. K. Two-dimensional superconductivity at the interface of a Bi2Te3/FeTe heterostructure. Nat. Commun. 2014, 5, 4247.

[169]

Dean, C. R.; Young, A. F.; Meric, I.; Lee, C.; Wang, L.; Sorgenfrei, S.; Watanabe, K.; Taniguchi, T.; Kim, P.; Shepard, K. L. et al. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 2010, 5, 722–726.

[170]

Liu, Y.; Weiss, N. O.; Duan, X. D.; Cheng, H. C.; Huang, Y.; Duan, X. F. van der Waals heterostructures and devices. Nat. Rev. Mater. 2016, 1, 16042.

[171]

Li, C. L.; Cao, Q.; Wang, F. Z.; Xiao, Y. Q.; Li, Y. B.; Delaunay, J. J.; Zhu, H. W. Engineering graphene and TMDs based van der Waals heterostructures for photovoltaic and photoelectrochemical solar energy conversion. Chem. Soc. Rev. 2018, 47, 4981–5037.

[172]

Duong, D. L.; Yun, S. J.; Lee, Y. H. van der Waals layered materials: Opportunities and challenges. ACS Nano 2017, 11, 11803–11830.

[173]

Chen, L.; Hou, H. L.; Prato, M. Fabrication of covalently bonded MoS2–graphene heterostructures with different organic linkers. Commun. Mater. 2024, 5, 121.

[174]

Dutta, P.; Sikdar, A.; Majumdar, A.; Borah, M.; Padma, N.; Ghosh, S.; Maiti, U. N. Graphene aided gelation of MXene with oxidation protected surface for supercapacitor electrodes with excellent gravimetric performance. Carbon 2020, 169, 225–234.

[175]

Yang, L.; Zheng, W.; Zhang, P.; Chen, J.; Zhang, W.; Tian, W. B.; Sun, Z. M. Freestanding nitrogen-doped d-Ti3C2/reduced graphene oxide hybrid films for high performance supercapacitors. Electrochim. Acta 2019, 300, 349–356.

[176]

Xia, Z.; Chen, X. W.; Ci, H.; Fan, Z. D.; Yi, Y. Y.; Yin, W. J.; Wei, N.; Cai, J. S.; Zhang, Y. F.; Sun, J. Y. Designing N-doped graphene/ReSe2/Ti3C2 MXene heterostructure frameworks as promising anodes for high-rate potassium-ion batteries. J. Energy Chem. 2021, 53, 155–162.

[177]

Kalsin, A. M.; Fialkowski, M.; Paszewski, M.; Smoukov, S. K.; Bishop, K. J. M.; Grzybowski, B. A. Electrostatic self-assembly of binary nanoparticle crystals with a diamond-like lattice. Science 2006, 312, 420–424.

[178]

Prasad, C.; Yang, X. F.; Liu, Q. Q.; Tang, H.; Rammohan, A.; Zulfiqar, S.; Zyryanov, G. V.; Shah, S. Recent advances in MXenes supported semiconductors based photocatalysts: Properties, synthesis and photocatalytic applications. J. Ind. Eng. Chem. 2020, 85, 1–33.

[179]

Liu, F. F.; Jin, S.; Xia, Q. X.; Zhou, A. G.; Fan, L. Z. Research progress on construction and energy storage performance of MXene heterostructures. J. Energy Chem. 2021, 62, 220–242.

[180]

Zhang, T.; Fu, L. Controllable chemical vapor deposition growth of two-dimensional heterostructures. Chem 2018, 4, 671–689.

[181]

Yang, R. X.; Chen, X. Y.; Ke, W.; Wu, X. Recent research progress in the structure, fabrication, and application of MXene-based heterostructures. Nanomaterials 2022, 12, 1907.

[182]

Kil, H. J.; Yun, K.; Yoo, M. E.; Kim, S.; Park, J. W. Solution-processed graphene oxide electrode for supercapacitors fabricated using low temperature thermal reduction. RSC Adv. 2020, 10, 22102–22111.

[183]

Chen, Y.; Zhang, X.; Zhang, D. C.; Yu, P.; Ma, Y. W. High performance supercapacitors based on reduced graphene oxide in aqueous and ionic liquid electrolytes. Carbon 2011, 49, 573–580.

[184]

Jha, P. K.; Singh, S. K.; Kumar, V.; Rana, S.; Kurungot, S.; Ballav, N. High-level supercapacitive performance of chemically reduced graphene oxide. Chem 2017, 3, 846–860.

[185]

Wang, Y. T.; Wang, Y. H. Recent progress in MXene layers materials for supercapacitors: High-performance electrodes. SmartMat 2023, 4, e1130.

[186]

K, P. S. N.; Jeong, S. M.; Rout, C. S. MXene-carbon based hybrid materials for supercapacitor applications. Energy Adv. 2024, 3, 341–365.

[187]

Okubo, M.; Sugahara, A.; Kajiyama, S.; Yamada, A. MXene as a charge storage host. Acc. Chem. Res. 2018, 51, 591–599.

[188]

Shao, Y. L.; El-Kady, M. F.; Sun, J. Y.; Li, Y. G.; Zhang, Q. H.; Zhu, M. F.; Wang, H. Z.; Dunn, B.; Kaner, R. B. Design and mechanisms of asymmetric supercapacitors. Chem. Rev. 2018, 118, 9233–9280.

[189]

Stoller, M. D.; Park, S.; Zhu, Y. W.; An, J.; Ruoff, R. S. Graphene-based ultracapacitors. Nano Lett. 2008, 8, 3498–3502.

[190]

Yang, J.; Gunasekaran, S. Electrochemically reduced graphene oxide sheets for use in high performance supercapacitors. Carbon 2013, 51, 36–44.

[191]

Ma, Z. Y.; Zhou, X. F.; Deng, W.; Lei, D.; Liu, Z. P. 3D porous MXene (Ti3C2)/reduced graphene oxide hybrid films for advanced lithium storage. ACS Appl. Mater. Interfaces 2018, 10, 3634–3643.

[192]

Sun, H. T.; Mei, L.; Liang, J. F.; Zhao, Z. P.; Lee, C.; Fei, H. L.; Ding, M. N.; Lau, J.; Li, M. F.; Wang, C. et al. Three-dimensional holey-graphene/niobia composite architectures for ultrahigh-rate energy storage. Science 2017, 356, 599–604.

[193]

M, H. E.; Rani, D.; Afshan, M.; Pahuja, M.; Chaudhary, N.; Rani, S.; Ahmed Siddiqui, S.; Das, S.; Jyoti; Sharangi, S. et al. Strength in unity: Designing of hybrid heterostructure (NiSe2/rGO/PANI) electrode towards high performance, flexible, asymmetric supercapacitor device for renewable energy storage. Chem. Eng. J. 2024, 498, 155112.

[194]

Ratha, S.; Sahoo, S.; Mane, P.; Polai, B.; Sathpathy, B.; Chakraborty, B.; Nayak, S. K. Experimental and computational investigation on the charge storage performance of a novel Al2O3-reduced graphene oxide hybrid electrode. Sci. Rep. 2023, 13, 5283.

[195]

Li, R.; Sun, W. W.; Zhan, C.; Kent, P. R. C.; Jiang, D. E. Interfacial and electronic properties of heterostructures of MXene and graphene. Phys. Rev. B 2019, 99, 085429.

[196]

Šedajová, V.; Bakandritsos, A.; Błoński, P.; Medveď, M.; Langer, R.; Zaoralová, D.; Ugolotti, J.; Dzíbelová, J.; Jakubec, P.; Kupka, V. et al. Nitrogen doped graphene with diamond-like bonds achieves unprecedented energy density at high power in a symmetric sustainable supercapacitor. Energy Environ. Sci. 2022, 15, 740–748.

[197]

Li, Z. N.; Gadipelli, S.; Li, H. C.; Howard, C. A.; Brett, D. J. L.; Shearing, P. R.; Guo, Z. X.; Parkin, I. P.; Li, F. Tuning the interlayer spacing of graphene laminate films for efficient pore utilization towards compact capacitive energy storage. Nat. Energy 2020, 5, 160–168.

[198]

Yang, X. W.; Cheng, C.; Wang, Y. F.; Qiu, L.; Li, D. Liquid-mediated dense integration of graphene materials for compact capacitive energy storage. Science 2013, 341, 534–537.

[199]

Lei, Y.; Li, Y.; Chen, Y. Z.; Xie, Y. W.; Chen, Y. S.; Wang, S. H.; Wang, J.; Shen, B. G.; Pryds, N.; Hwang, H. Y. et al. Visible-light-enhanced gating effect at the LaAlO3/SrTiO3 interface. Nat. Commun. 2014, 5, 5554.

[200]

Li, H.; Tao, Y.; Zheng, X. Y.; Luo, J. Y.; Kang, F. Y.; Cheng, H. M.; Yang, Q. H. Ultra-thick graphene bulk supercapacitor electrodes for compact energy storage. Energy Environ. Sci. 2016, 9, 3135–3142.

[201]

Navarro-Suárez, A. M.; Maleski, K.; Makaryan, T.; Yan, J.; Anasori, B.; Gogotsi, Y. 2D titanium carbide/reduced graphene oxide heterostructures for supercapacitor applications. Batter. Supercaps 2018, 1, 33–38.

[202]

Li, R.; Zhao, P.; Qin, X. Q.; Li, H. B.; Qu, K. G.; Jiang, D. E. First-principles study of heterostructures of MXene and nitrogen-doped graphene as anode materials for Li-ion batteries. Surf. Interfaces 2020, 21, 100788.

[203]

Pham, T.; Ramnani, P.; Villarreal, C. C.; Lopez, J.; Das, P.; Lee, I.; Neupane, M. R.; Rheem, Y.; Mulchandani, A. MoS2–graphene heterostructures as efficient organic compounds sensing 2D materials. Carbon 2019, 142, 504–512.

[204]

Geng, H. J.; Yuan, D.; Yang, Z.; Tang, Z. J.; Zhang, X. W.; Yang, K.; Su, Y. J. Graphene van der Waals heterostructures for high-performance photodetectors. J. Mater. Chem. C 2019, 7, 11056–11067.

[205]

Yankowitz, M.; Ma, Q.; Jarillo-Herrero, P.; LeRoy, B. J. van der Waals heterostructures combining graphene and hexagonal boron nitride. Nat. Rev. Phys. 2019, 1, 112–125.

[206]

Dean, C.; Young, A. F.; Wang, L.; Meric, I.; Lee, G. H.; Watanabe, K.; Taniguchi, T.; Shepard, K.; Kim, P.; Hone, J. Graphene based heterostructures. Solid State Commun. 2012, 152, 1275–1282.

[207]

Karak, S.; Paul, S.; Negi, D.; Poojitha, B.; Srivastav, S. K.; Das, A.; Saha, S. Hexagonal boron nitride–graphene heterostructures with enhanced interfacial thermal conductance for thermal management applications. ACS Appl. Nano Mater. 2021, 4, 1951–1958.

[208]

Pataniya, P. M.; Sumesh, C. K. WS2 nanosheet/graphene heterostructures for paper-based flexible photodetectors. ACS Appl. Nano Mater. 2020, 3, 6935–6944.

[209]

Zhang, Z.; Lin, P.; Liao, Q. L.; Kang, Z.; Si, H. N.; Zhang, Y. Graphene-based mixed-dimensional van der Waals heterostructures for advanced optoelectronics. Adv. Mater. 2019, 31, 1806411.

[210]

Zhao, C. J.; Wang, Q.; Zhang, H.; Passerini, S.; Qian, X. Z. Two-dimensional titanium carbide/RGO composite for high-performance supercapacitors. ACS Appl. Mater. Interfaces 2016, 8, 15661–15667.

[211]

Li, H. Y.; Hou, Y.; Wang, F. X.; Lohe, M. R.; Zhuang, X. D.; Niu, L.; Feng, X. L. Flexible all-solid-state supercapacitors with high volumetric capacitances boosted by solution processable MXene and electrochemically exfoliated graphene. Adv. Energy Mater. 2017, 7, 1601847.

[212]

Wang, K. L.; Zheng, B. C.; Mackinder, M.; Baule, N.; Garratt, E.; Jin, H.; Schuelke, T.; Fan, Q. H. Efficient electrophoretic deposition of MXene/reduced graphene oxide flexible electrodes for all-solid-state supercapacitors. J. Energy Storage 2021, 33, 102070.

[213]

An, T. C.; Cheng, W. L. Recent progress in stretchable supercapacitors. J. Mater. Chem. A 2018, 6, 15478–15494.

[214]

Song, W. J.; Yoo, S.; Song, G.; Lee, S.; Kong, M.; Rim, J.; Jeong, U.; Park, S. Recent progress in stretchable batteries for wearable electronics. Batter. Supercaps 2019, 2, 181–199.

[215]

Zhou, Y. H.; Maleski, K.; Anasori, B.; Thostenson, J. O.; Pang, Y. K.; Feng, Y. Y.; Zeng, K. X.; Parker, C. B.; Zauscher, S.; Gogotsi, Y. et al. Ti3C2T x MXene-reduced graphene oxide composite electrodes for stretchable supercapacitors. ACS Nano 2020, 14, 3576–3586.

[216]

Xu, S. K.; Wei, G. D.; Li, J. Z.; Han, W.; Gogotsi, Y. Flexible MXene-graphene electrodes with high volumetric capacitance for integrated co-cathode energy conversion/storage devices. J. Mater. Chem. A 2017, 5, 17442–17451.

[217]

Miao, J. W.; Zhu, Q. Z.; Li, K. L.; Zhang, P.; Zhao, Q.; Xu, B. Self-propagating fabrication of 3D porous MXene-rGO film electrode for high-performance supercapacitors. J. Energy Chem. 2021, 52, 243–250.

[218]

Yang, Q. Y.; Xu, Z.; Fang, B.; Huang, T. Q.; Cai, S. Y.; Chen, H.; Liu, Y. J.; Gopalsamy, K.; Gao, W. W.; Gao, C. MXene/graphene hybrid fibers for high performance flexible supercapacitors. J. Mater. Chem. A 2017, 5, 22113–22119.

[219]

Wang, Z.; Chen, Y. Y.; Yao, M. Y.; Dong, J.; Zhang, Q. H.; Zhang, L. L.; Zhao, X. Facile fabrication of flexible rGO/MXene hybrid fiber-like electrode with high volumetric capacitance. J. Power Sources 2020, 448, 227398.

[220]

Zheng, X. H.; Nie, W. Q.; Hu, Q. L.; Wang, X. W.; Wang, Z. Q.; Zou, L. H.; Hong, X. H.; Yang, H. W.; Shen, J. K.; Li, C. L. Multifunctional RGO/Ti3C2T x MXene fabrics for electrochemical energy storage, electromagnetic interference shielding, electrothermal and human motion detection. Mater. Des. 2021, 200, 109442.

[221]

Guo, B. Y.; Tian, J.; Yin, X. L.; Xi, G. Q.; Wang, W.; Shi, X. F.; Wu, W. A binder-free electrode based on Ti3C2T x -rGO aerogel for supercapacitors. Colloids Surf. A: Physicochem. Eng. Asp. 2020, 595, 124683.

[222]

Zhang, L. J.; Or, S. W. Self-assembled three-dimensional macroscopic graphene/MXene-based hydrogel as electrode for supercapacitor. APL Mater. 2020, 8, 091101.

[223]

Ren, F. Y.; Lu, Z. J.; Liu, X. L.; Wang, T.; Huang, X. N.; Dou, J. X.; Wu, D. L.; Yu, J. L.; Chen, X. X. Lewis acid-etched MXene self-assembled with reduced graphene oxide for symmetrical supercapacitors with liquid/solid electrolytes. J. Alloys Compd. 2024, 978, 173480.

[224]

Sikdar, A.; Dutta, P.; Deb, S. K.; Majumdar, A.; Padma, N.; Ghosh, S.; Maiti, U. N. Spontaneous three-dimensional self-assembly of MXene and graphene for impressive energy and rate performance pseudocapacitors. Electrochim. Acta 2021, 391, 138959.

[225]

Shi, C. J.; Liu, Z. J.; Tian, Z.; Li, D.; Chen, Y. J.; Guo, L.; Wang, Y. Z. Fabrication of 3D MXene@graphene hydrogel with high ion accessibility via Al-induced self-assembly and reduction for high-performance supercapacitors. Electrochim. Acta 2023, 464, 142892.

[226]

Zhu, Z. X.; Wang, Z. X.; Ba, Z. H.; Li, X. T.; Dong, J.; Fang, Y. T.; Zhang, Q. H.; Zhao, X. 3D MXene-holey graphene hydrogel for supercapacitor with superior energy storage. J. Energy Storage 2022, 47, 103911.

[227]

Shao, L.; Xu, J. J.; Ma, J. Z.; Zhai, B. Y.; Li, Y.; Xu, R.; Ma, Z. L.; Zhang, G. H.; Wang, C. Y.; Qiu, J. H. MXene/RGO composite aerogels with light and high-strength for supercapacitor electrode materials. Compos. Commun. 2020, 19, 108–113.

[228]

Xu, S. K.; Yan, S. R.; Chen, X.; Huang, H. F.; Liang, X. Q.; Wang, Y. H.; Hu, Q.; Wei, G. D.; Yang, Y. Vertical porous Ti3CNT x /rGO hybrid aerogels with enhanced capacitive performance. Chem. Eng. J. 2023, 459, 141528.

[229]

Wang, K. L.; Zheng, B. C.; Mackinder, M.; Baule, N.; Qiao, H.; Jin, H.; Schuelke, T.; Fan, Q. H. Graphene wrapped MXene via plasma exfoliation for all-solid-state flexible supercapacitors. Energy Storage Mater. 2019, 20, 299–306.

[230]

Yang, X.; Wang, Q.; Zhu, K.; Ye, K.; Wang, G. L.; Cao, D. X.; Yan, J. 3D porous oxidation-resistant MXene/graphene architectures induced by in situ zinc template toward high-performance supercapacitors. Adv. Funct. Mater. 2021, 31, 2101087.

[231]

Yang, X. L.; Zhang, M. Y.; Wang, C. H.; Bi, M.; Xie, J. L.; Bai, W. X.; Zhang, Y.; Pan, S. C.; Liu, M. L.; Pan, X. C. et al. S, N co-doped rGO/fluorine-free Ti3C2T x aerogels for high performance all-solid-state supercapacitors. J. Energy Storage 2023, 71, 108140.

[232]

Liu, X. L.; Lu, Z. J.; Huang, X. N.; Bai, J. F.; Li, C.; Tu, C. J.; Chen, X. X. Self-assembled S, N co-doped reduced graphene oxide/MXene aerogel for both symmetric liquid- and all-solid-state supercapacitors. J. Power Sources 2021, 516, 230682.

[233]

Nasrin, K.; Arunkumar, M.; Koushik Kumar, N.; Sudharshan, V.; Rajasekar, S.; Mukhilan, D.; Arshad, M.; Sathish, M. A rationally designed hetero-assembly of 2D/2D nitrogen-doped MXene/graphene via supercritical fluid processing for high energy durable supercapacitors. Chem. Eng. J. 2023, 474, 145505.

[234]

Shang, T. X.; Lin, Z. F.; Qi, C. S.; Liu, X. C.; Li, P.; Tao, Y.; Wu, Z. T.; Li, D. W.; Simon, P.; Yang, Q. H. 3D macroscopic architectures from self-assembled MXene hydrogels. Adv. Funct. Mater. 2019, 29, 1903960.

[235]

Radha, N.; Kanakaraj, A.; Manohar, H. M.; R, Nidhi, M. R.; Mondal, D.; Nataraj, S. K.; Ghosh, D. Binder free self-standing high performance supercapacitive electrode based on graphene/titanium carbide composite aerogel. Appl. Surf. Sci. 2019, 481, 892–899.

[236]

Wang, Q.; Wang, S. L.; Guo, X. H.; Ruan, L. M.; Wei, N.; Ma, Y.; Li, J. Y.; Wang, M.; Li, W. Q.; Zeng, W. MXene-reduced graphene oxide aerogel for aqueous zinc-ion hybrid supercapacitor with ultralong cycle life. Adv. Electron. Mater. 2019, 5, 1900537.

[237]

Fang, Y. Z.; Yang, B. W.; He, D. T.; Li, H. P.; Zhu, K.; Wu, L.; Ye, K.; Cheng, K.; Yan, J.; Wang, G. L. et al. Porous and free-standing Ti3C2T x -RGO film with ultrahigh gravimetric capacitance for supercapacitors. Chin. Chem. Lett. 2020, 31, 1004–1008.

[238]

Saha, S.; Arole, K.; Radovic, M.; Lutkenhaus, J. L.; Green, M. J. One-step hydrothermal synthesis of porous Ti3C2T z MXene/rGO gels for supercapacitor applications. Nanoscale 2021, 13, 16543–16553.

[239]

Fu, J. J.; Moon Yun, J.; Wu, S. X.; Li, L.; Yu, L. T.; Kim, K. H. Architecturally robust graphene-encapsulated MXene Ti2CT x @polyaniline composite for high-performance pouch-type asymmetric supercapacitor. ACS Appl. Mater. Interfaces 2018, 10, 34212–34221.

[240]

Zhou, X.; Qin, Y.; He, X.; Li, Q.; Sun, J.; Lei, Z.; Liu, Z. H. Ti3C2T x nanosheets/Ti3C2T x quantum dots/RGO (reduced graphene oxide) fibers for an all-solid-state asymmetric supercapacitor with high volume energy density and good flexibility. ACS Appl. Mater. Interfaces 2020, 12, 11833–11842.

[241]

An, N.; Li, W. L.; Shao, Z. H.; Zhou, L.; He, Y. Y.; Sun, D. M.; Dong, X. Y.; Hu, Z. Graphene oxide coated polyaminoanthraquinone@MXene based flexible film electrode for high-performance supercapacitor. J. Energy Storage 2023, 57, 106180.

[242]

Wang, G. X.; Jiang, N. L.; Xu, Y. X.; Zhang, Z. X.; Wang, G. L.; Cheng, K. Solvent-assisted assembly of reduced graphene oxide/MXene-polypyrrole composite film for flexible supercapacitors. J. Colloid Interface Sci. 2023, 630, 817–827.

[243]

Luo, W. L.; Liu, Q. W.; Zhang, B. Z.; Li, J.; Li, R. D.; Li, T. X.; Sun, Z. Q.; Ma, Y. Binder-free flexible Ti3C2T x MXene/reduced graphene oxide/carbon nanotubes film as electrode for asymmetric supercapacitor. Chem. Eng. J. 2023, 474, 145553.

[244]

Liu, Y.; Zhou, H.; Zhou, W. X.; Meng, S.; Qi, C.; Liu, Z.; Kong, T. T. Biocompatible, high-performance, wet-adhesive, stretchable all-hydrogel supercapacitor implant based on PANI@rGO/MXenes electrode and hydrogel electrolyte. Adv. Energy Mater. 2021, 11, 2101329.

[245]

Chen, W. W.; Hao, C. F.; Qiu, Z. H.; Zhang, X.; Xu, H. J.; Yu, B. Z.; Chen, S. W. High-energy-density asymmetric supercapacitor based on free-standing Ti3C2T x @NiO-reduced graphene oxide heterostructured anode and defective reduced graphene oxide hydrogel cathode. ACS Appl. Mater. Interfaces 2022, 14, 19534–19546.

[246]

Xie, W. Y.; Wang, Y. Z.; Zhou, J.; Zhang, M.; Yu, J. L.; Zhu, C. Z.; Xu, J. MOF-derived CoFe2O4 nanorods anchored in MXene nanosheets for all pseudocapacitive flexible supercapacitors with superior energy storage. Appl. Surf. Sci. 2020, 534, 147584.

[247]

Ji, Z. J.; Zhang, L.; Xie, G. X.; Xu, W. H.; Guo, D.; Luo, J. B.; Prakash, B. Mechanical and tribological properties of nanocomposites incorporated with two-dimensional materials. Friction 2020, 8, 813–846.

[248]

Luo, Y. J.; Que, W. X.; Bin, X.; Xia, C. J.; Kong, B. S.; Gao, B. W.; Kong, L. B. Flexible MXene-based composite films: Synthesis, modification, and applications as electrodes of supercapacitors. Small 2022, 18, 2201290.

[249]

Xiao, Y. Y.; Zhang, B. X.; Liao, P.; Qiu, Z. H.; Song, N. N.; Xu, H. J. Few-layered Ti3C2T x coupled with Fe3O4 nanoparticles assembled in a reduced graphene oxide hydrogel as advanced electrodes for high-energy supercapacitors. New J. Chem. 2023, 47, 2575–2584.

[250]

Chen, W. W.; Geng, Z. Y.; Zhu, S. C.; Qiu, Z. H.; Zhang, X.; Xu, H. J. A high-performance supercapacitor based on free-standing V4C3T x @NiO-reduced graphene oxide core–shell hierarchical heterostructured hydrogel electrodes. Sustain. Energy Fuels 2022, 6, 4938–4947.

[251]

Chen, W. W.; Peng, Y.; Qiu, Z. H.; Zhang, X.; Xu, H. J. 3D hierarchical Ti3C2T x @NiO-reduced graphene oxide heterostructure hydrogel as free-standing electrodes for high performance supercapacitor. J. Alloys Compd. 2022, 901, 163614.

[252]

Geng, Z. Y.; Chen, W. W.; Qiu, Z. H.; Xu, H. J.; Pan, D. J.; Chen, S. W. Hierarchical V4C3T x @NiO-reduced graphene oxide heterostructure hydrogels and defective reduced graphene oxide hydrogels as free-standing anodes and cathodes for high-performance asymmetric supercapacitors. Phys. Chem. Chem. Phys. 2023, 25, 9140–9151.

[253]

Chaudhary, K.; Zulfiqar, S.; Somaily, H. H.; Aadil, M.; Warsi, M. F.; Shahid, M. Rationally designed multifunctional Ti3C2 MXene@Graphene composite aerogel integrated with bimetallic selenides for enhanced supercapacitor performance and overall water splitting. Electrochim. Acta 2022, 431, 141103.

[254]

Liao, P.; Zeng, Y.; Qiu, Z. H.; Hao, S. C.; He, J. Q.; Xu, H. J.; Chen, S. W. 3D Ti3C2T x @PANI-reduced graphene oxide hydrogel and defective reduced graphene oxide hydrogel as anode and cathode for high-energy asymmetric supercapacitor. J. Alloys Compd. 2023, 948, 169593.

[255]

Sun, L.; Su, X.; Chen, Y. J.; Zhuo, K. L.; Li, H. H.; Sun, D.; Wang, J. J. Ferric ion-assisted assembly of MXene/TiO2-graphene aerogel for ionic liquid-based supercapacitors. Chem. Eng. J. 2023, 476, 146731.

[256]

Chen, M. L.; Chen, J. K.; Tan, X. X.; Yang, W.; Zou, H. B.; Chen, S. Z. Facile self-assembly of sandwich-like MXene/graphene oxide/nickel-manganese layered double hydroxide nanocomposite for high performance supercapacitor. J. Energy Storage 2021, 44, 103456.

[257]

Li, C. H.; Jiang, G. H.; Liu, T. Q.; Zeng, Z. Y.; Li, P. F.; Wang, R. F.; Zhang, X. Y. NiCoO2 nanosheets interlayer network connected in reduced graphene oxide and MXene for high-performance asymmetric supercapacitors. J. Energy Storage 2022, 49, 104176.

[258]

Sun, Y.; Yuan, Y. D.; Geng, X. W.; Han, C.; Lu, S. K.; Mitrovic, I.; Yang, L.; Song, P. F.; Zhao, C. Z. Biochar-derived material decorated by MXene/reduced graphene oxide using one-step hydrothermal treatment as high-performance supercapacitor electrodes. Carbon 2022, 199, 224–232.

Nano Research Energy
Article number: e9120148
Cite this article:
Kumar S, Bora P, Bhomick PC, et al. Graphene–MXene van der Waals heterostructures for high-performance supercapacitors. Nano Research Energy, 2025, 4: e9120148. https://doi.org/10.26599/NRE.2024.9120148
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return