AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (7.5 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article | Open Access | Online First

Advances in covalent organic frameworks for photocatalytic CO2 reduction: Strategies and future perspectives

Muhammad Kashif Aslam1( )Iftikhar Hussain3Ali H. Al-Marzouqi1( )Maowen Xu2( )
Department of Chemical and Petroleum Engineering, College of Engineering, United Arab Emirates University, Al Ain 15551, Abu Dhabi, United Arab Emirates
Chongqing Key Laboratory of Battery Materials and Technologies, School of Materials and Energy, Southwest University, Chongqing 400715, China
Department of Mechanical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
Show Author Information

Graphical Abstract

Abstract

The rapid depletion of fossil fuels and increasing emissions of greenhouse gases, particularly CO2, have amplified global energy and environmental challenges. Converting CO2 into valuable fuels through photocatalytic processes offers a sustainable solution to these issues, especially by utilizing solar energy to drive CO2 reduction into energy-dense compounds. Covalent organic frameworks (COFs), a unique class of crystalline and porous organic polymers, have emerged as promising photocatalysts due to their structural stability, tunable porosity, and adaptable functionality. These properties enable COFs to support various catalytic sites, both metallic and non-metallic, facilitating selective and efficient CO2 reduction. This review systematically examines the intrinsic properties of COFs, the synthetic methods used to optimize their structures, and the functional modifications that enhance their photocatalytic capabilities. We explore how COFs with metal and non-metal active sites, as well as hybrid COF catalysts, advance photocatalytic CO2 reduction and analyze the driving forces behind CO2 reduction reaction (CO2RR). Finally, we summarize recent breakthroughs and offer perspectives on future research directions in COF material synthesis, functional modifications, and mechanistic studies to further improve CO2 reduction efficiency and sustainability.

References

[1]

Diercks, C. S.; Yaghi, O. M. The atom, the molecule, and the covalent organic framework. Science 2017, 355, eaal1585.

[2]

Feng, X.; Ding, X. S.; Jiang, D. L. Covalent organic frameworks. Chem. Soc. Rev. 2012, 41, 6010–6022.

[3]

Ding, S. Y.; Wang, W. Covalent organic frameworks (COFs): From design to applications. Chem. Soc. Rev. 2013, 42, 548–568.

[4]

Diercks, C. S.; Kalmutzki, M. J.; Yaghi, O. M. Covalent organic frameworks—organic chemistry beyond the molecule. Molecules 2017, 22, 1575.

[5]

Cote, A. P.; Benin, A. I.; Ockwig, N. W.; O’Keeffe, M.; Matzger, A. J.; Yaghi, O. M. Porous, crystalline, covalent organic frameworks. Science 2005, 310, 1166–1170.

[6]

Bisbey, R. P.; Dichtel, W. R. Covalent organic frameworks as a platform for multidimensional polymerization. ACS Cent. Sci. 2017, 3, 533–543.

[7]

Waller, P. J.; Gándara, F.; Yaghi, O. M. Chemistry of covalent organic frameworks. Acc. Chem. Res. 2015, 48, 3053–3063.

[8]

Huang, N.; Zhai, L. P.; Coupry, D. E.; Addicoat, M. A.; Okushita, K.; Nishimura, K.; Heine, T.; Jiang, D. L. Multiple-component covalent organic frameworks. Nat. Commun. 2016, 7, 12325.

[9]

Yaghi, O. M. Reticular chemistry—Construction, properties, and precision reactions of frameworks. J. Am. Chem. Soc. 2016, 138, 15507–15509.

[10]

Nagai, A.; Guo, Z. Q.; Feng, X.; Jin, S. B.; Chen, X.; Ding, X. S.; Jiang, D. L. Pore surface engineering in covalent organic frameworks. Nat. Commun. 2011, 2, 536.

[11]

O’Keeffe, M.; Peskov, M. A.; Ramsden, S. J.; Yaghi, O. M. The reticular chemistry structure resource (RCSR) database of, and symbols for, crystal nets. Acc. Chem. Res. 2008, 41, 1782–1789.

[12]

Côté, A. P.; El-Kaderi, H. M.; Furukawa, H.; Hunt, J. R.; Yaghi, O. M. Reticular synthesis of microporous and mesoporous 2D covalent organic frameworks. J. Am. Chem. Soc. 2007, 129, 12914–12915.

[13]

Segura, J. L.; Mancheño, M. J.; Zamora, F. Covalent organic frameworks based on Schiff-base chemistry: Synthesis, properties and potential applications. Chem. Soc. Rev. 2016, 45, 5635–5671.

[14]

Jin, E. Q.; Asada, M.; Xu, Q.; Dalapati, S.; Addicoat, M. A.; Brady, M. A.; Xu, H.; Nakamura, T.; Heine, T.; Chen, Q. H. et al. Two-dimensional sp2 carbon-conjugated covalent organic frameworks. Science 2017, 357, 673–676.

[15]

El-Kaderi, H. M.; Hunt, J. R.; Mendoza-Cortés, J. L.; Côté, A. P.; Taylor, R. E.; O’Keeffe, M.; Yaghi, O. M. Designed synthesis of 3D covalent organic frameworks. Science 2007, 316, 268–272.

[16]

Fang, Q. R.; Wang, J. H.; Gu, S.; Kaspar, R. B.; Zhuang, Z. B.; Zheng, J.; Guo, H. X.; Qiu, S. L.; Yan, Y. S. 3D porous crystalline polyimide covalent organic frameworks for drug delivery. J. Am. Chem. Soc. 2015, 137, 8352–8355.

[17]

Zhang, Y. Y.; Duan, J. Y.; Ma, D.; Li, P. F.; Li, S. W.; Li, H. W.; Zhou, J. W.; Ma, X. J.; Feng, X.; Wang, B. Three-dimensional anionic cyclodextrin-based covalent organic frameworks. Angew. Chem., Int. Ed. 2017, 56, 16313–16317.

[18]

Lin, G. Q.; Ding, H. M.; Chen, R. F.; Peng, Z. K.; Wang, B. S.; Wang, C. 3D porphyrin-based covalent organic frameworks. J. Am. Chem. Soc. 2017, 139, 8705–8709.

[19]

Yahiaoui, O.; Fitch, A. N.; Hoffmann, F.; Fröba, M.; Thomas, A.; Roeser, J. 3D anionic silicate covalent organic framework with srs topology. J. Am. Chem. Soc. 2018, 140, 5330–5333.

[20]

Furukawa, H.; Yaghi, O. M. Storage of hydrogen, methane, and carbon dioxide in highly porous covalent organic frameworks for clean energy applications. J. Am. Chem. Soc. 2009, 131, 8875–8883.

[21]

Cao, D. P.; Lan, J. H.; Wang, W. C.; Smit, B. Lithium-doped 3D covalent organic frameworks: High-capacity hydrogen storage materials. Angew. Chem., Int. Ed. 2009, 48, 4730–4733.

[22]

Kang, Z. X.; Peng, Y. W.; Qian, Y. H.; Yuan, D. Q.; Addicoat, M. A.; Heine, T.; Hu, Z. G.; Tee, L.; Guo, Z. G.; Zhao, D. Mixed matrix membranes (MMMs) comprising exfoliated 2D covalent organic frameworks (COFs) for efficient CO2 separation. Chem. Mater. 2016, 28, 1277–1285.

[23]

Rogge, S. M. J.; Bavykina, A.; Hajek, J.; Garcia, H.; Olivos-Suarez, A. I.; Sepúlveda-Escribano, A.; Vimont, A.; Clet, G.; Bazin, P.; Kapteijn, F. et al. Metal-organic and covalent organic frameworks as single-site catalysts. Chem. Soc. Rev. 2017, 46, 3134–3184.

[24]

Ding, S. Y.; Gao, J.; Wang, Q.; Zhang, Y.; Song, W. G.; Su, C. Y.; Wang, W. Construction of covalent organic framework for catalysis: Pd/COF-LZU1 in Suzuki-Miyaura coupling reaction. J. Am. Chem. Soc. 2011, 133, 19816–19822.

[25]

Zhang, J.; Han, X.; Wu, X. W.; Liu, Y.; Cui, Y. Multivariate chiral covalent organic frameworks with controlled crystallinity and stability for asymmetric catalysis. J. Am. Chem. Soc. 2017, 139, 8277–8285.

[26]

Peng, Y. W.; Huang, Y.; Zhu, Y. H.; Chen, B.; Wang, L. Y.; Lai, Z. C.; Zhang, Z. C.; Zhao, M. T.; Tan, C. L.; Yang, N. L. et al. Ultrathin two-dimensional covalent organic framework nanosheets: Preparation and application in highly sensitive and selective DNA detection. J. Am. Chem. Soc. 2017, 139, 8698–8704.

[27]

Wang, S.; Wang, Q. Y.; Shao, P. P.; Han, Y. Z.; Gao, X.; Ma, L.; Yuan, S.; Ma, X. J.; Zhou, J. W.; Feng, X. et al. Exfoliation of covalent organic frameworks into few-layer redox-active nanosheets as cathode materials for lithium-ion batteries. J. Am. Chem. Soc. 2017, 139, 4258–4261.

[28]

Wan, S.; Guo, J.; Kim, J.; Ihee, H.; Jiang, D. L. A belt-shaped, blue luminescent, and semiconducting covalent organic framework. Angew. Chem., Int. Ed. 2008, 47, 8826–8830.

[29]

Haldar, S.; Chakraborty, D.; Roy, B.; Banappanavar, G.; Rinku, K.; Mullangi, D.; Hazra, P.; Kabra, D.; Vaidhyanathan, R. Anthracene-resorcinol derived covalent organic framework as flexible white light emitter. J. Am. Chem. Soc. 2018, 140, 13367–13374.

[30]

Bessinger, D.; Ascherl, L.; Auras, F.; Bein, T. Spectrally switchable photodetection with near-infrared-absorbing covalent organic frameworks. J. Am. Chem. Soc. 2017, 139, 12035–12042.

[31]

Lohse, M. S.; Bein, T. Covalent organic frameworks: Structures, synthesis, and applications. Adv. Funct. Mater. 2018, 28, 1705553.

[32]

Vardhan, H.; Rummer, G.; Deng, A.; Ma, S. Q. Large-scale synthesis of covalent organic frameworks: Challenges and opportunities. Membranes 2023, 13, 696.

[33]

Aslam, M. K.; Niu, Y. B.; Xu, M. W. MXenes for non-lithium-ion (Na, K, Ca, Mg, and Al) batteries and supercapacitors. Adv. Energy Mater. 2021, 11, 2000681.

[34]

Aslam, M. K.; Seymour, I. D.; Katyal, N.; Li, S.; Yang, T. T.; Bao, S. J.; Henkelman, G.; Xu, M. W. Metal chalcogenide hollow polar bipyramid prisms as efficient sulfur hosts for Na–S batteries. Nat. Commun. 2020, 11, 5242.

[35]

Aslam, M. K.; Hussain, I.; Khan, A. J.; Hussain, S.; Shah, S. S. A.; Al-Marzouqi, A. H.; Xu, M. W. Unlocking the potential: Innovations and strategies for electrolyte optimization in Zn-ion batteries. Energy Storage Mater. 2024, 73, 103851.

[36]

Aslam, M. K.; Shah, S. S. A.; Najam, T.; Li, S.; Chen, C. G. Decoration of cobalt/iron oxide nanoparticles on N-doped carbon nanosheets: Electrochemical performances for lithium-ion batteries. J. Appl. Electrochem. 2019, 49, 433–442.

[37]

Aslam, M. K.; Wang, H. R.; Chen, S.; Li, Q.; Duan, J. J. Progress and perspectives of metal (Li, Na, Al, Zn and K)-CO2 batteries. Mater. Today Energy 2023, 31, 101196.

[38]

Aslam, M. K.; Wang, H. R.; Nie, Z. H.; Chen, S.; Li, Q.; Duan, J. J. Unlock flow-type reversible aqueous Zn–CO2 batteries. Mater. Horiz. 2024, 11, 2657–2666.

[39]

Du, G. Y.; Tao, M. L.; Liu, D. Y.; Aslam, M. K.; Qi, Y. R.; Jiang, J.; Li, Y. T.; Bao, S. J.; Xu, M. W. Low-operating temperature quasi-solid-state potassium-ion battery based on commercial materials. J. Colloid Interface Sci. 2021, 582, 932–939.

[40]

Luo, Y. S.; Tao, M. L.; Deng, J. H.; Zhan, R. M.; Guo, B. S.; Ma, Q. R.; Aslam, M. K.; Qi, Y. R.; Xu, M. W. Nanocubes composed of FeS2@C nanoparticles as advanced anode materials for K-ion storage. Inorg. Chem. Front. 2020, 7, 394–401.

[41]

Shah, S. S. A.; Hussain, M. I.; Aslam, M. K.; Rivera, G. Natural products; pharmacological importance of family cucurbitaceae: A brief review. Mini-Rev. Med. Chem. 2014, 14, 694–705.

[42]

Xu, J.; Yang, Q. L.; Huang, C. L.; Javed, M. S.; Aslam, M. K.; Chen, C. G. Influence of additives fluoride and phosphate on the electrochemical performance of Mg–MnO2 battery. J. Appl. Electrochem. 2017, 47, 767–775.

[43]

Guo, K.; Zhu, X. L.; Peng, L. L.; Fu, Y. H.; Ma, R.; Lu, X. Q.; Zhang, F. M.; Zhu, W. D.; Fan, M. H. Boosting photocatalytic CO2 reduction over a covalent organic framework decorated with ruthenium nanoparticles. Chem. Eng. J. 2021, 405, 127011.

[44]

Geng, K. Y.; He, T.; Liu, R. Y.; Dalapati, S.; Tan, K. T.; Li, Z. P.; Tao, S. S.; Gong, Y. F.; Jiang, Q. H.; Jiang, D. L. Covalent organic frameworks: Design, synthesis, and functions. Chem. Rev. 2020, 120, 8814–8933.

[45]

Tao, S. S.; Jiang, D. L. Covalent organic frameworks for energy conversions: Current status, challenges, and perspectives. CCS Chem. 2021, 3, 2003–2024.

[46]

Zhao, X. J.; Pachfule, P.; Thomas, A. Covalent organic frameworks (COFs) for electrochemical applications. Chem. Soc. Rev. 2021, 50, 6871–6913.

[47]

Zhao, X. J.; Pachfule, P.; Li, S.; Langenhahn, T.; Ye, M. Y.; Schlesiger, C.; Praetz, S.; Schmidt, J.; Thomas, A. Macro/microporous covalent organic frameworks for efficient electrocatalysis. J. Am. Chem. Soc. 2019, 41, 6623–6630.

[48]

Martínez-Fernández, M.; Gavara, R.; Royuela, S.; Fernández-Ecija, L.; Martínez, J. I.; Zamora, F.; Segura, J. L. Following the light: 3D-printed COF@poly(2-hydroxyethyl methacrylate) dual emissive composite with response to polarity and acidity. J. Mater. Chem. A 2022, 10, 4634–4643.

[49]

Lu, M.; Zhang, M.; Liu, C. G.; Liu, J.; Shang, L. J.; Wang, M.; Chang, J. N.; Li, S. L.; Lan, Y. Q. Stable dioxin-linked metallophthalocyanine covalent organic frameworks (COFs) as photo-coupled electrocatalysts for CO2 reduction. Angew. Chem., Int. Ed. 2021, 60, 4864–4871.

[50]

Chen, Y.; Li, W.; Wang, X. H.; Gao, R. Z.; Tang, A. N.; Kong, D. M. Green synthesis of covalent organic frameworks based on reaction media. Mater. Chem. Front. 2021, 5, 1253–1267.

[51]

Meng, Y.; Luo, Y.; Shi, J. L.; Ding, H. M.; Lang, X. J.; Chen, W.; Zheng, A. M.; Sun, J. L.; Wang, C. 2D and 3D porphyrinic covalent organic frameworks: The influence of dimensionality on functionality. Angew. Chem., Int. Ed. 2020, 59, 3624–3629.

[52]

Bhunia, S.; Deo, K. A.; Gaharwar, A. K. 2D covalent organic frameworks for biomedical applications. Adv. Funct. Mater. 2020, 30, 2002046.

[53]

Uribe-Romo, F. J.; Doonan, C. J.; Furukawa, H.; Oisaki, K.; Yaghi, O. M. Crystalline covalent organic frameworks with hydrazone linkages. J. Am. Chem. Soc. 2011, 133, 11478–11481.

[54]

Chen, R. F.; Shi, J. L.; Ma, Y.; Lin, G. Q.; Lang, X. J.; Wang, C. Designed synthesis of a 2D porphyrin-based sp2 carbon-conjugated covalent organic framework for heterogeneous photocatalysis. Angew. Chem., Int. Ed. 2019, 58, 6430–6434.

[55]

Chen, X. Y.; Geng, K. Y.; Liu, R. Y.; Tan, K. T.; Gong, Y. F.; Li, Z. P.; Tao, S. S.; Jiang, Q. H.; Jiang, D. L. Kovalente organische Gerüstverbindungen: Chemische Ansätze für designerstrukturen und integrierte funktionen. Angew. Chem., Int. Ed. 2020, 132, 5086–5129.

[56]

Liu, W. B.; Li, X. K.; Wang, C. M.; Pan, H. H.; Liu, W. P.; Wang, K.; Zeng, Q. D.; Wang, R. M.; Jiang, J. Z. A scalable general synthetic approach toward ultrathin imine-linked two-dimensional covalent organic framework nanosheets for photocatalytic CO2 reduction. J. Am. Chem. Soc. 2019, 141, 17431–17440.

[57]

Stegbauer, L.; Schwinghammer, K.; Lotsch, B. V. A hydrazone-based covalent organic framework for photocatalytic hydrogen production. Chem. Sci. 2014, 5, 2789–2793.

[58]

Liu, Y. T.; Wu, H.; Wu, S. Q.; Song, S. Q.; Guo, Z. Y.; Ren, Y. X.; Zhao, R.; Yang, L. X.; Wu, Y. Z.; Jiang, Z. Y. Multifunctional covalent organic framework (COF)-based mixed matrix membranes for enhanced CO2 separation. J. Memb. Sci. 2021, 618, 118693.

[59]

Zeng, Y. F.; Zou, R. Q.; Zhao, Y. L. Covalent organic frameworks for CO2 capture. Adv. Mater. 2016, 28, 2855–2873.

[60]

Lin, S.; Diercks, C. S.; Zhang, Y. B.; Kornienko, N.; Nichols, E. M.; Zhao, Y. B.; Paris, A. R.; Kim, D.; Yang, P. D.; Yaghi, O. M. et al. Covalent organic frameworks comprising cobalt porphyrins for catalytic CO2 reduction in water. Science 2015, 349, 1208–1213.

[61]

Diercks, C. S.; Lin, S.; Kornienko, N.; Kapustin, E. A.; Nichols, E. M.; Zhu, C. H.; Zhao, Y. B.; Chang, C. J.; Yaghi, O. M. Reticular electronic tuning of porphyrin active sites in covalent organic frameworks for electrocatalytic carbon dioxide reduction. J. Am. Chem. Soc. 2018, 140, 1116–1122.

[62]

Zhang, H. W.; Zhu, Q. Q.; Yuan, R. R.; He, H. M. Crystal engineering of MOF@COF core–shell composites for ultra-sensitively electrochemical detection. Sens. Actuators B: Chem. 2021, 329, 129144.

[63]

Ge, L.; Qiao, C. Y.; Tang, Y. K.; Zhang, X. K.; Jiang, X. Q. Light-activated hypoxia-sensitive covalent organic framework for tandem-responsive drug delivery. Nano Lett. 2021, 21, 3218–3224.

[64]

Peng, Y. W.; Zhao, M. T.; Chen, B.; Zhang, Z. C.; Huang, Y.; Dai, F. N.; Lai, Z. C.; Cui, X. Y.; Tan, C. L.; Zhang, H. Hybridization of MOFs and COFs: A new strategy for construction of MOF@COF core–shell hybrid materials. Adv. Mater. 2018, 30, 1705454.

[65]

Zhou, Y. S.; Wang, Z. T.; Huang, L.; Zaman, S.; Lei, K.; Yue, T.; Li, Z. A.; You, B.; Xia, B. Y. Engineering 2D photocatalysts toward carbon dioxide reduction. Adv. Energy Mater. 2021, 11, 2003159.

[66]

Ran, J. R.; Jaroniec, M.; Qiao, S. Z. Cocatalysts in semiconductor-based photocatalytic CO2 reduction: Achievements, challenges, and opportunities. Adv. Mater. 2018, 30, 1704649.

[67]

Yang, S. Z.; Hu, W. H.; Zhang, X.; He, P. L.; Pattengale, B.; Liu, C. M.; Cendejas, M.; Hermans, I.; Zhang, X. Y.; Zhang, J. et al. 2D covalent organic frameworks as intrinsic photocatalysts for visible light-driven CO2 reduction. J. Am. Chem. Soc. 2018, 140, 14614–14618.

[68]

Lu, M.; Zhang, M.; Liu, J.; Chen, Y. F.; Liao, J. P.; Yang, M. Y.; Cai, Y. P.; Li, S. L.; Lan, Y. Q. Covalent organic framework based functional materials: Important catalysts for efficient CO2 utilization. Angew. Chem., Int. Ed. 2022, 61, e202200003.

[69]

Takeda, H.; Koike, K.; Inoue, H.; Ishitani, O. Development of an efficient photocatalytic system for CO2 reduction using rhenium(I) complexes based on mechanistic studies. J. Am. Chem. Soc. 2008, 130, 2023–2031.

[70]

Morimoto, T.; Nakajima, T.; Sawa, S.; Nakanishi, R.; Imori, D.; Ishitani, O. CO2 capture by a rhenium(I) complex with the aid of triethanolamine. J. Am. Chem. Soc. 2013, 135, 16825–16828.

[71]

Kou, Y.; Nabetani, Y.; Masui, D.; Shimada, T.; Takagi, S.; Tachibana, H.; Inoue, H. Direct detection of key reaction intermediates in photochemical CO2 reduction sensitized by a rhenium bipyridine complex. J. Am. Chem. Soc. 2014, 136, 6021–6030.

[72]

Xu, R.; Wang, X. S.; Zhao, H.; Lin, H.; Huang, Y. B.; Cao, R. Rhenium-modified porous covalent triazine framework for highly efficient photocatalytic carbon dioxide reduction in a solid–gas system. Catal. Sci. Technol. 2018, 8, 2224–2230.

[73]

Zhong, W. F.; Sa, R.; Li, L. Y.; He, Y. J.; Li, L. Y.; Bi, J. H.; Zhuang, Z. Y.; Yu, Y.; Zou, Z. G. A covalent organic framework bearing single Ni sites as a synergistic photocatalyst for selective photoreduction of CO2 to CO. J. Am. Chem. Soc. 2019, 141, 7615–7621.

[74]

Lu, M.; Li, Q.; Liu, J.; Zhang, F. M.; Zhang, L.; Wang, J. L.; Kang, Z. H.; Lan, Y. Q. Installing earth-abundant metal active centers to covalent organic frameworks for efficient heterogeneous photocatalytic CO2 reduction. Appl. Catal. B: Environ. 2019, 254, 624–633.

[75]

Lu, M.; Liu, J.; Li, Q.; Zhang, M.; Liu, M.; Wang, J. L.; Yuan, D. Q.; Lan, Y. Q. Rational design of crystalline covalent organic frameworks for efficient CO2 photoreduction with H2O. Angew. Chem., Int. Ed. 2019, 58, 12392–12397.

[76]

Bi, J. H.; Xu, B.; Sun, L.; Huang, H. M.; Fang, S. Q.; Li, L. Y.; Wu, L. A cobalt-modified covalent triazine-based framework as an efficient cocatalyst for visible-light-driven photocatalytic CO2 reduction. ChemPlusChem 2019, 84, 1149–1154.

[77]

Lv, H. W.; Sa, R. J.; Li, P. Y.; Yuan, D. Q.; Wang, X. C.; Wang, R. H. Metalloporphyrin-based covalent organic frameworks composed of the electron donor–acceptor dyads for visible-light-driven selective CO2 reduction. Sci. China Chem. 2020, 63, 1289–1294.

[78]

Zhang, M.; Lu, M.; Lang, Z. L.; Liu, J.; Liu, M.; Chang, J. N.; Li, L. Y.; Shang, L. J.; Wang, M.; Li, S. L. et al. Semiconductor/covalent-organic-framework Z-scheme heterojunctions for artificial photosynthesis. Angew. Chem., Int. Ed. 2020, 59, 6500–6506.

[79]

Lu, M.; Zhang, M.; Liu, J.; Yu, T. Y.; Chang, J. N.; Shang, L. J.; Li, S. L.; Lan, Y. Q. Confining and highly dispersing single polyoxometalate clusters in covalent organic frameworks by covalent linkages for CO2 photoreduction. J. Am. Chem. Soc. 2022, 144, 1861–1871.

[80]

Wang, X. Y.; Fu, Z. W.; Zheng, L. R.; Zhao, C. X.; Wang, X.; Chong, S. Y.; McBride, F.; Raval, R.; Bilton, M.; Liu, L. J. et al. Covalent organic framework nanosheets embedding single cobalt sites for photocatalytic reduction of carbon dioxide. Chem. Mater. 2020, 32, 9107–9114.

[81]

Fu, Z. W.; Wang, X. Y.; Gardner, A. M.; Wang, X.; Chong, S. Y.; Neri, G.; Cowan, A. J.; Liu, L. J.; Li, X. B.; Vogel, A. et al. A stable covalent organic framework for photocatalytic carbon dioxide reduction. Chem. Sci. 2020, 11, 543–550.

[82]

Gong, Y. N.; Zhong, W. H.; Li, Y.; Qiu, Y. Z.; Zheng, L. R.; Jiang, J.; Jiang, H. L. Regulating photocatalysis by spin-state manipulation of cobalt in covalent organic frameworks. J. Am. Chem. Soc. 2020, 142, 16723–16731.

[83]

Fu, Y. H.; Zhu, X. L.; Huang, L.; Zhang, X. C.; Zhang, F. M.; Zhu, W. D. Azine-based covalent organic frameworks as metal-free visible light photocatalysts for CO2 reduction with H2O. Appl. Catal. B: Environ. 2018, 239, 46–51.

[84]

Lei, K.; Wang, D.; Ye, L. Q.; Kou, M. P.; Deng, Y.; Ma, Z. Y.; Wang, L.; Kong, Y. A metal-free donor–acceptor covalent organic framework photocatalyst for visible-light-driven reduction of CO2 with H2O. ChemSusChem 2020, 13, 1725–1729.

[85]

Zhang, M.; Chang, J. N.; Chen, Y.F.; Lu, M.; Yu, T. Y.; Jiang, C.; Li, S. L.; Cai, Y. P.; Lan, Y. Q. Controllable synthesis of COFs-based multicomponent nanocomposites from core–shell to yolk–shell and hollow-sphere structure for artificial photosynthesis. Adv. Mater. 2021, 33, 2105002.

[86]

Huang, Y. M.; Du, P. Y.; Shi, W. X.; Wang, Y.; Yao, S.; Zhang, Z. M.; Lu, T. B.; Lu, X. Q. Filling COFs with bimetallic nanoclusters for CO2-to-alcohols conversion with H2O oxidation. Appl. Catal. B: Environ. 2021, 288, 120001.

[87]

Liu, Z. L.; Huang, Y. Q.; Chang, S. Q.; Zhu, X. L.; Fu, Y. H.; Ma, R.; Lu, X. Q.; Zhang, F. M.; Zhu, W. D.; Fan, M. H. Highly dispersed Ru nanoparticles on a bipyridine-linked covalent organic framework for efficient photocatalytic CO2 reduction. Sustainable Energy Fuels 2021, 5, 2871–2876.

[88]

Wang, L.; Huang, G. F.; Zhang, L.; Lian, R.; Huang, J. W.; She, H. D.; Liu, C. L.; Wang, Q. Z. Construction of TiO2-covalent organic framework Z-scheme hybrid through coordination bond for photocatalytic CO2 conversion. J. Energy Chem 2022, 64, 85–92.

[89]

Zhong, H.; Sa, R.; Lv, H. W.; Yang, S. L.; Yuan, D. Q.; Wang, X. C.; Wang, R. H. Covalent organic framework hosting metalloporphyrin-based carbon dots for visible-light-driven selective CO2 reduction. Adv. Funct. Mater. 2020, 30, 2002654.

[90]

Sarkar, P.; Riyajuddin, S.; Das, A.; Hazra Chowdhury, A.; Ghosh, K.; Islam, S. M. Mesoporous covalent organic framework: An active photo-catalyst for formic acid synthesis through carbon dioxide reduction under visible light. Mol. Catal. 2020, 484, 110730.

[91]

Wang, L.; Liu, Y. F.; Chen, Y.; Gou, W. L.; Cui, S.; Yu, Y.; Xiao, X.; Yu, Y.; Zhang, X. L. Generation of reconfigurable linearly chirped microwave waveforms based on fourier domain mode-locked optoelectronic oscillator. J. Lightwave Technol. 2022, 40, 85–92.

[92]

Li, J.; Liu, P.; Huang, H. L.; Li, Y.; Tang, Y. Z.; Mei, D. H.; Zhong, C. L. Metal-free 2D/2D black phosphorus and covalent triazine framework heterostructure for CO2 photoreduction. ACS Sustainable Chem. Eng. 2020, 8, 5175–5183.

[93]

Yadav, R. K.; Kumar, A.; Park, N. J.; Kong, K. J.; Baeg, J. O. A highly efficient covalent organic framework film photocatalyst for selective solar fuel production from CO2. J. Mater. Chem. A 2016, 4, 9413–9418.

[94]

Cui, J. X.; Wang, L. J.; Feng, L.; Meng, B.; Zhou, Z. Y.; Su, Z. M.; Wang, K.; Liu, S. M. A metal-free covalent organic framework as a photocatalyst for CO2 reduction at low CO2 concentration in a gas–solid system. J. Mater. Chem. A 2021, 9, 24895–24902.

[95]

Peng, L. L.; Chang, S. Q.; Liu, Z. L.; Fu, Y. H.; Ma, R.; Lu, X. Q.; Zhang, F. M.; Zhu, W. D.; Kong, L. C.; Fan, M. H. Visible-light-driven photocatalytic CO2 reduction over ketoenamine-based covalent organic frameworks: Role of the host functional groups. Catal. Sci. Technol. 2021, 11, 1717–1724.

[96]

Wang, D. N.; Streater, D.; Peng, Y.; Huang, J. E. 2D covalent organic frameworks with an incorporated manganese complex for light driven carbon dioxide reduction. ChemPhotoChem 2021, 5, 1119–1123.

[97]

Li, S. Y.; Meng, S.; Zou, X. Q.; El-Roz, M.; Telegeev, I.; Thili, O.; Liu, T. X.; Zhu, G. S. Rhenium-functionalized covalent organic framework photocatalyst for efficient CO2 reduction under visible light. Microporous Mesoporous Mater. 2019, 285, 195–201.

[98]

Yang, S. L.; Sa, R.; Zhong, H.; Lv, H. W.; Yuan, D. Q.; Wang, R. H. Microenvironments enabled by covalent organic framework linkages for modulating active metal species in photocatalytic CO2 reduction. Adv. Funct. Mater. 2022, 32, 2110694.

[99]

Skorjanc, T.; Shetty, D.; Mahmoud, M. E.; Gándara, F.; Martinez, J. I.; Mohammed, A. K.; Boutros, S.; Merhi, A.; Shehayeb, E. O.; Sharabati, C. A. et al. Metallated isoindigo-porphyrin covalent organic framework photocatalyst with a narrow band gap for efficient CO2 conversion. ACS Appl. Mater. Interfaces 2022, 14, 2015–2022.

[100]

Zhao, Z. F.; Zheng, D.; Guo, M. L.; Yu, J. Y.; Zhang, S. N.; Zhang, Z. J.; Chen, Y. Engineering olefin-linked covalent organic frameworks for photoenzymatic reduction of CO2. Angew. Chem., Int. Ed. 2022, 61, e202200261.

Nano Research Energy
Cite this article:
Aslam MK, Hussain I, Al-Marzouqi AH, et al. Advances in covalent organic frameworks for photocatalytic CO2 reduction: Strategies and future perspectives. Nano Research Energy, 2024, https://doi.org/10.26599/NRE.2024.9120149

288

Views

83

Downloads

0

Crossref

0

Scopus

Altmetrics

Received: 11 November 2024
Revised: 28 November 2024
Accepted: 02 December 2024
Published: 31 December 2024
© The Author(s) 2024. Published by Tsinghua University Press.

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return