MXenes are fast-growing two-dimensional (2D) carbides, nitrides, and carbonitrides nanomaterials exhibiting combined special features of high electronic conductivity, optoelectronic properties, and electrochemical properties with hydrophilicity character. The plasmonic characteristics of MXenes with optical nonlinearities associated with ultrafast dynamics empower it as one of the strongest candidates for transparent optoelectronic applications in the field of energy storage, conversion, photodetectors, quantum dot light-emitting diodes, smart windows, environmentally. It is timely to introduce and summarize a review article dedicated to the transparent MXene-based multifunctional applications that provide well-designed future roadmaps for these significant MXene smart materials. This review comprehensively discusses the transparent MXenes towards transparent electrodes for supercapacitors and beyond. The importance of MXene optoelectronic properties and tunability via composite materials incorporated with different polymers, oxides, sulfides, and carbonaceous nanomaterials are also thoroughly reviewed.
Anasori, B.; Lukatskaya, M. R.; Gogotsi, Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2017, 2, 16098.
Naguib, M.; Mochalin, V. N.; Barsoum, M. W.; Gogotsi, Y. 25th anniversary article: MXenes: A new family of two-dimensional materials. Adv. Mater. 2014, 26, 992–1005.
Zhang, J. Z.; Uzun, S.; Seyedin, S.; Lynch, P. A.; Akuzum, B.; Wang, Z. Y.; Qin, S.; Alhabeb, M.; Shuck, C. E.; Lei, W. W. et al. Additive-free MXene liquid crystals and fibers. ACS Cent. Sci. 2020, 6, 254–265.
Wei, Y.; Zhang, P.; Soomro, R. A.; Zhu, Q. Z.; Xu, B. Advances in the synthesis of 2D MXenes. Adv. Mater. 2021, 33, 2103148.
Naguib, M.; Kurtoglu, M.; Presser, V.; Lu, J.; Niu, J. J.; Heon, M.; Hultman, L.; Gogotsi, Y.; Barsoum, M. W. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 2011, 23, 4248–4253.
Sang, X. H.; Xie, Y.; Lin, M. W.; Alhabeb, M.; Van Aken, K. L.; Gogotsi, Y.; Kent, P. R. C.; Xiao, K.; Unocic, R. R. Atomic defects in monolayer titanium carbide (Ti3C2T x ) MXene. ACS Nano 2016, 10, 9193–9200.
Zhang, X. F.; Javed, M. S.; Ali, S.; Ahmad, A.; Shah, S. S. A.; Hussain, I.; Choi, D.; Tighezza, A. M.; Tag-Eldin, E.; Xia, C. L. et al. Band engineering in Ti2N/Ti3C2T x -MXene interface to enhance the performance of aqueous NH4+-ion hybrid supercapacitors. Nano Energy 2023, 120, 109108.
Ling, Z.; Ren, C. E.; Zhao, M. Q.; Yang, J.; Giammarco, J. M.; Qiu, J. S.; Barsoum, M. W.; Gogotsi, Y. Flexible and conductive MXene films and nanocomposites with high capacitance. Proc. Natl. Acad. Sci. USA 2014, 111, 16676–16681.
Mohapatra, D.; Kang, H. J.; Lee, S.; Son, Y.; Ansari, M. Z.; Kang, Y.; Lee, J. W.; Kim, S. H. Ultrahigh sensitivity for thermographic human–machine interface via precious metals atomic layer deposition on V-MXene: Computational and experimental exploration. Small 2024, 20, 2402003.
Mohapatra, D.; Shin, Y.; Ansari, M. Z.; Kim, Y. H.; Park, Y. J.; Cheon, T.; Kim, H.; Lee, J. W.; Kim, S. H. Process controlled ruthenium on 2D engineered V-MXene via atomic layer deposition for human healthcare monitoring. Adv. Sci. 2023, 10, 2206355.
Qin, R. Z.; Nong, J.; Wang, K. Q.; Liu, Y. S.; Zhou, S. B.; Hu, M. J.; Zhao, H. B.; Shan, G. C. Recent advances in flexible pressure sensors based on MXene materials. Adv. Mater. 2024, 36, 2312761.
Mohapatra, D.; Byun, J. E.; Ansari, M. Z.; Kim, H.; Cheon, T.; Jang, J.; Cho, Y. R.; Lee, J. W.; Kim, S. H. Layer engineered MXene empowered wearable pressure sensors for non-invasive vital human–machine interfacing healthcare monitoring. Adv. Mater. Technol. 2023, 8, 2301175.
Naguib, M.; Come, J.; Dyatkin, B.; Presser, V.; Taberna, P. L.; Simon, P.; Barsoum, M. W.; Gogotsi, Y. MXene: A promising transition metal carbide anode for lithium-ion batteries. Electrochem. Commun. 2012, 16, 61–64.
Björk, J.; Rosen, J. Functionalizing MXenes by tailoring surface terminations in different chemical environments. Chem. Mater. 2021, 33, 9108–9118.
Neelamana, H. V.; Rekha, S. M.; Bhat, S. V. Ti3C2T x MXene: A new promising 2D material for optoelectronics. Chem. Mater. 2023, 35, 7386–7405.
Liu, X. H.; Zhang, W. R.; Zhang, X.; Zhou, Z. G.; Wang, C. F.; Pan, Y. M.; Hu, B.; Liu, C. T.; Pan, C. F.; Shen, C. Y. Transparent ultrahigh-molecular-weight polyethylene/MXene films with efficient UV-absorption for thermal management. Nat. Commun. 2024, 15, 3076.
Pan, X. L.; Shen, L. H.; Schenning, A. P. H. J.; Bastiaansen, C. W. M. Transparent, high-thermal-conductivity ultradrawn polyethylene/graphene nanocomposite films. Adv. Mater. 2019, 31, 1904348.
Liu, Z. X.; Alshareef, H. N. MXenes for optoelectronic devices. Adv. Electron. Mater. 2021, 7, 2100295.
Huang, K.; Li, Z. J.; Lin, J.; Han, G.; Huang, P. Two-dimensional transition metal carbides and nitrides (MXenes) for biomedical applications. Chem. Soc. Rev. 2018, 47, 5109–5124.
Khazaei, M.; Ranjbar, A.; Arai, M.; Sasaki, T.; Yunoki, S. Electronic properties and applications of MXenes: A theoretical review. J. Mater. Chem. C 2017, 5, 2488–2503.
Naguib, M.; Gogotsi, Y. Synthesis of two-dimensional materials by selective extraction. Acc. Chem. Res. 2015, 48, 128–135.
Okubo, M.; Sugahara, A.; Kajiyama, S.; Yamada, A. MXene as a charge storage host. Acc. Chem. Res. 2018, 51, 591–599.
Wang, H.; Wu, Y.; Yuan, X. Z.; Zeng, G. M.; Zhou, J.; Wang, X.; Chew, J. W. Clay-inspired MXene-based electrochemical devices and photo-electrocatalyst: State-of-the-art progresses and challenges. Adv. Mater. 2018, 30, 1704561.
Yan, J.; Wang, Q.; Wei, T.; Fan, Z. J. Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities. Adv. Energy Mater. 2014, 4, 1300816.
Yuksel, R.; Sarioba, Z.; Cirpan, A.; Hiralal, P.; Unalan, H. E. Transparent and flexible supercapacitors with single walled carbon nanotube thin film electrodes. ACS Appl. Mater. Interfaces 2014, 6, 15434–15439.
Chen, F. H.; Wan, P. B.; Xu, H. J.; Sun, X. M. Flexible transparent supercapacitors based on hierarchical nanocomposite films. ACS Appl. Mater. Interfaces 2017, 9, 17865–17871.
Lu, X. H.; Yu, M. H.; Wang, G. M.; Tong, Y. X.; Li, Y. Flexible solid-state supercapacitors: Design, fabrication and applications. Energy Environ. Sci. 2014, 7, 2160–2181.
Lee, J. G.; Lee, J. H.; An, S.; Kim, D. Y.; Kim, T. G.; Al-Deyab, S. S.; Yarin, A. L.; Yoon, S. S. Highly flexible, stretchable, wearable, patternable and transparent heaters on complex 3D surfaces formed from supersonically sprayed silver nanowires. J. Mater. Chem. A 2017, 5, 6677–6685.
Zhang, Y.; Guo, J. N.; Xu, D.; Sun, Y.; Yan, F. One-pot synthesis and purification of ultralong silver nanowires for flexible transparent conductive electrodes. ACS Appl. Mater. Interfaces 2017, 9, 25465–25473.
Vosgueritchian, M.; Lipomi, D. J.; Bao, Z. N. Highly conductive and transparent PEDOT: PSS films with a fluorosurfactant for stretchable and flexible transparent electrodes. Adv. Funct. Mater. 2012, 22, 421–428.
Zhu, Y.; Sun, Z. Z.; Yan, Z.; Jin, Z.; Tour, J. M. Rational design of hybrid graphene films for high-performance transparent electrodes. ACS Nano 2011, 5, 6472–6479.
Dubal, D. P.; Chodankar, N. R.; Kim, D. H.; Gomez-Romero, P. Towards flexible solid-state supercapacitors for smart and wearable electronics. Chem. Soc. Rev. 2018, 47, 2065–2129.
Liang, X.; Long, G. H.; Fu, C. W.; Pang, M. J.; Xi, Y. L.; Li, J. Z.; Han, W.; Wei, G. D.; Ji, Y. High performance all-solid-state flexible supercapacitor for wearable storage device application. Chem. Eng. J. 2018, 345, 186–195.
Yang, Y. R.; Zhu, T.; Shen, L. N.; Liu, Y. H.; Zhang, D.; Zheng, B. W.; Gong, K.; Zheng, J.; Gong, X. Recent progress in the all-solid-state flexible supercapacitors. SmartMat 2022, 3, 349–383.
Yu, M. H.; Feng, X. L. Thin-film electrode-based supercapacitors. Joule 2019, 3, 338–360.
Zhao, Z. F.; Wang, S.; Wan, F.; Tie, Z.; Niu, Z. Q. Scalable 3D self-assembly of MXene films for flexible sandwich and microsized supercapacitors. Adv. Funct. Mater. 2021, 31, 2101302.
Zhao, Z. F.; Wang, X. J.; Yao, M. J.; Liu, L. L.; Niu, Z. Q.; Chen, J. Activated carbon felts with exfoliated graphene nanosheets for flexible all-solid-state supercapacitors. Chin. Chem. Lett. 2019, 30, 915–918.
Chen, C.; Cao, J.; Wang, X. Y.; Lu, Q. Q.; Han, M. M.; Wang, Q. R.; Dai, H. T.; Niu, Z. Q.; Chen, J.; Xie, S. S. Highly stretchable integrated system for micro-supercapacitor with AC line filtering and UV detector. Nano Energy 2017, 42, 187–194.
Qi, D. P.; Liu, Z. Y.; Liu, Y.; Leow, W. R.; Zhu, B. W.; Yang, H.; Yu, J. C.; Wang, W.; Wang, H.; Yin, S. Y. et al. Suspended wavy graphene microribbons for highly stretchable microsupercapacitors. Adv. Mater. 2015, 27, 5559–5566.
Hussain, I.; Sahoo, S.; Mohapatra, D.; Ahmad, M.; Iqbal, S.; Javed, M. S.; Gu, S.; Qin, N.; Lamiel, C.; Zhang, K. L. Recent progress in trimetallic/ternary-metal oxides nanostructures: Misinterpretation/misconception of electrochemical data and devices. Appl. Mater. Today 2022, 26, 101297.
Cai, G. F.; Darmawan, P.; Cui, M. Q.; Wang, J. X.; Chen, J. W.; Magdassi, S.; Lee, P. S. Highly stable transparent conductive silver grid/PEDOT: PSS electrodes for integrated bifunctional flexible electrochromic supercapacitors. Adv. Energy Mater. 2016, 6, 1501882.
Hasan, M. M.; Hossain, M. M. Nanomaterials-patterned flexible electrodes for wearable health monitoring: A review. J. Mater. Sci. 2021, 56, 14900–14942.
An, T.; Cheng, W. L. Recent progress in stretchable supercapacitors. J. Mater. Chem. A 2018, 6, 15478–15494.
De, S.; Lyons, P. E.; Sorel, S.; Doherty, E. M.; King, P. J.; Blau, W. J.; Nirmalraj, P. N.; Boland, J. J.; Scardaci, V.; Joimel, J. et al. Transparent, flexible, and highly conductive thin films based on polymer-nanotube composites. ACS Nano 2009, 3, 714–720.
King, P. J.; Higgins, T. M.; De, S.; Nicoloso, N.; Coleman, J. N. Percolation effects in supercapacitors with thin, transparent carbon nanotube electrodes. ACS Nano 2012, 6, 1732–1741.
Qi, D. P.; Liu, Y.; Liu, Z. Y.; Zhang, L.; Chen, X. D. Design of architectures and materials in in-plane micro-supercapacitors: Current status and future challenges. Adv. Mater. 2017, 29, 1602802.
Amara, U.; Hussain, I.; Ahmad, M.; Mahmood, K.; Zhang, K. L. 2D MXene-based biosensing: A review. Small 2022, 2205249.
Du, Z. G.; Wu, C.; Chen, Y. C.; Cao, Z. J.; Hu, R. M.; Zhang, Y. Z.; Gu, J. N.; Cui, Y. L. S.; Chen, H.; Shi, Y. Z. et al. High-entropy atomic layers of transition-metal carbides (MXenes). Adv. Mater. 2021, 33, 2101473.
Li, T. F.; Yao, L. L.; Liu, Q. L.; Gu, J. J.; Luo, R. C.; Li, J. H.; Yan, X. D.; Wang, W. Q.; Liu, P.; Chen, B. et al. Fluorine-free synthesis of high-purity Ti3C2T x (T = OH, O) via alkali treatment. Angew. Chem., Int. Ed. 2018, 57, 6115–6119.
Natu, V.; Sokol, M.; Verger, L.; Barsoum, M. W. Effect of edge charges on stability and aggregation of Ti3C2T z MXene colloidal suspensions. J. Phys. Chem. C 2018, 122, 27745–27753.
Shuck, C. E.; Han, M. K.; Maleski, K.; Hantanasirisakul, K.; Kim, S. J.; Choi, J.; Reil, W. E. B.; Gogotsi, Y. Effect of Ti3AlC2 MAX phase on structure and properties of resultant Ti3C2T x MXene. ACS Appl. Nano Mater. 2019, 2, 3368–3376.
Lukatskaya, M. R.; Kota, S.; Lin, Z. F.; Zhao, M. Q.; Shpigel, N.; Levi, M. D.; Halim, J.; Taberna, P. L.; Barsoum, M. W.; Simon, P. et al. Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides. Nat. Energy 2017, 2, 17105.
Zhan, C.; Naguib, M.; Lukatskaya, M.; Kent, P. R. C.; Gogotsi, Y.; Jiang, D. E. Understanding the MXene pseudocapacitance. J. Phys. Chem. Lett. 2018, 9, 1223–1228.
Halim, J.; Lukatskaya, M. R.; Cook, K. M.; Lu, J.; Smith, C. R.; Näslund, L. Å.; May, S. J.; Hultman, L.; Gogotsi, Y.; Eklund, P. et al. Transparent conductive two-dimensional titanium carbide epitaxial thin films. Chem. Mater. 2014, 26, 2374–2381.
Ren, S.; Pan, X. Y.; Zhang, Y. Y.; Xu, J. L.; Liu, Z. F.; Zhang, X. Y.; Li, X.; Gao, X.; Zhong, Y. N.; Chen, S. et al. Conductive MXene/polymer composites for transparent flexible supercapacitors. Small 2024, 20, 2401346.
Guo, T. Z.; Zhou, D.; Deng, S. G.; Jafarpour, M.; Avaro, J.; Neels, A.; Heier, J.; Zhang, C. F. Rational design of Ti3C2T x MXene inks for conductive, transparent films. ACS Nano 2023, 17, 3737–3749.
Nguyen, T. T.; Murali, G.; Nissimagoudar, A. S.; Bhatnagar, P.; Lee, S.; Patel, M.; Lee, S. C.; In, I.; Wong, C. P.; Kim, J. Flexible and transparent MXene-platformed ultrafast photodetector for encrypted signal communication in self-powered operation. Nano Energy 2023, 109, 108331.
Jung, M. Y.; Lee, C.; Park, J.; Son, J. W.; Yun, Y. J.; Jun, Y. Transparent supercapacitors with networked MXene on NiCo-layered double hydroxide. Chem. Eng. J. 2024, 490, 151556.
Yuan, Y. J.; Jiang, L.; Li, X.; Zuo, P.; Zhang, X. Q.; Lian, Y. L.; Ma, Y. L.; Liang, M. S.; Zhao, Y.; Qu, L. T. Ultrafast shaped laser induced synthesis of MXene quantum dots/graphene for transparent supercapacitors. Adv. Mater. 2022, 34, 2110013.
Couly, C.; Alhabeb, M.; Van Aken, K. L.; Kurra, N.; Gomes, L.; Navarro-Suárez, A. M.; Anasori, B.; Alshareef, H. N.; Gogotsi, Y. Asymmetric flexible MXene-reduced graphene oxide micro-supercapacitor. Adv. Electron. Mater. 2018, 4, 1700339.
Zhang, C. F.; Anasori, B.; Seral-Ascaso, A.; Park, S. H.; McEvoy, N.; Shmeliov, A.; Duesberg, G. S.; Coleman, J. N.; Gogotsi, Y.; Nicolosi, V. Transparent, flexible, and conductive 2D titanium carbide (MXene) films with high volumetric capacitance. Adv. Mater. 2017, 29, 1702678.
Wen, D.; Wang, X.; Liu, L.; Hu, C.; Sun, C.; Wu, Y. R.; Zhao, Y. L.; Zhang, J. X.; Liu, X. D.; Ying, G. B. Inkjet printing transparent and conductive MXene (Ti3C2T x ) films: A strategy for flexible energy storage devices. ACS Appl. Mater. Interfaces 2021, 13, 17766–17780.
Singh, S. B.; Kshetri, T.; Singh, T. I.; Kim, N. H.; Lee, J. H. Embedded PEDOT: PSS/AgNFs network flexible transparent electrode for solid-state supercapacitor. Chem. Eng. J. 2019, 359, 197–207.
Huang, L. S.; Lin, Y.; Zeng, W.; Xu, C.; Chen, Z. L.; Wang, Q.; Zhou, H. W.; Yu, Q. T.; Zhao, B. T.; Ruan, L. M. et al. Highly transparent and flexible Zn-Ti3C2T x MXene hybrid capacitors. Langmuir 2022, 38, 5968–5976.
Wang, L. B.; Hu, X. L. Transparent electrodes for energy storage devices. Batter. Supercaps 2020, 3, 1275–1286.
Ebrahimi, M.; Mei, C. T. Optoelectronic properties of Ti3C2T x MXene transparent conductive electrodes: Microwave synthesis of parent MAX phase. Ceram. Int. 2020, 46, 28114–28119.
Ying, G. B.; Kota, S.; Dillon, A. D.; Fafarman, A. T.; Barsoum, M. W. Conductive transparent V2CT x (MXene) films. FlatChem 2018, 8, 25–30.
Lee, S.; Kim, E. H.; Yu, S.; Kim, H.; Park, C.; Lee, S. W.; Han, H.; Jin, W.; Lee, K.; Lee, C. E. et al. Polymer-laminated Ti3C2T x MXene electrodes for transparent and flexible field-driven electronics. ACS Nano 2021, 15, 8940–8952.
Liu, J.; Zhang, L.; Wang, N.; Li, C. Z. Highly stretchable and transparent triboelectric nanogenerator based on multilayer structured stable electrode for self-powered wearable sensor. Nano Energy 2020, 78, 105385.
Tang, H. H.; Feng, H. R.; Wang, H. K.; Wan, X. J.; Liang, J. J.; Chen, Y. S. Highly conducting MXene-silver nanowire transparent electrodes for flexible organic solar cells. ACS Appl. Mater. Interfaces 2019, 11, 25330–25337.
Kumar, S.; Kang, D.; Nguyen, V. H.; Nasir, N.; Hong, H.; Kim, M.; Nguyen, D. C.; Lee, Y. J.; Lee, N.; Seo, Y. Application of titanium-carbide MXene-based transparent conducting electrodes in flexible smart windows. ACS Appl. Mater. Interfaces 2021, 13, 40976–40985.
Ahn, S.; Han, T. H.; Maleski, K.; Song, J.; Kim, Y. H.; Park, M. H.; Zhou, H. Y.; Yoo, S.; Gogotsi, Y.; Lee, T. W. A 2D titanium carbide MXene flexible electrode for high-efficiency light-emitting diodes. Adv. Mater. 2020, 32, 2000919.
Jiang, W.; Lee, S.; Zhao, K. Y.; Lee, K.; Han, H.; Oh, J.; Lee, H.; Kim, H.; Koo, C. M.; Park, C. Flexible and transparent electrode of hybrid Ti3C2T x MXene-silver nanowires for high-performance quantum dot light-emitting diodes. ACS Nano 2022, 16, 9203–9213.
Chen, J. X.; Li, Z. L.; Ni, F. L.; Ouyang, W. X.; Fang, X. S. Bio-inspired transparent MXene electrodes for flexible UV photodetectors. Mater. Horiz. 2020, 7, 1828–1833.