PDF (6.5 MB)
Collect
Submit Manuscript
Research Article | Open Access | Online First

Fe foam supported FeVO4 nanoparticles for electrochemical nitrogen fixation at ambient conditions

Abdulmalik Aminu1,2Bilal Masood Pirzada2,3Shamraiz Hussain Talib2Janah Shaya1,2Ibrahim Yildiz1Sharmarke Mohamed1,2Ahsanulhaq Qurashi1,2()
Department of Chemistry, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates
Center for Catalysis and Separations, Khalifa University of Science and Technology, Abu Dhabi, P.O. Box 127788, United Arab Emirates
Department of Mechanical and Nuclear Engineering, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates
Show Author Information

Graphical Abstract

View original image Download original image

Abstract

As global energy demand continues to rise with fossil fuels dwindling at a faster rate, posing energy and environmental concerns, there is a growing interest in exploring alternative, green, and renewable energy sources. Ammonia is a key hydrogen energy carrier and precursor to many value-added products, and the efforts for its generation at commercial scale using greener methods are intensifying to mitigate the reliance on the energy-intensive Haber-Bosch process. The electrochemical nitrogen reduction reaction (e-NRR) is a highly promising way of synthesizing ammonia under energy-efficient, green, and ambient conditions. Despite its attractive potential, the activity and efficiency of conventional e-NRR catalysts are still a major concern due to low selectivity and poor ammonia yields. Inspired by the FeFe and FeV cofactors present in nitrogenases, this study reports the synthesis and electrocatalytic evaluation of FeVO4 catalyst for N2 reduction. The FeVO4 nanoparticles anchored on Fe foam (FF) could serve as an efficient electrocatalyst for the electrochemical nitrogen fixation, achieving a significant performance with highest NH3 yield of 22.5 µg·h–1·mg–1 and Faradaic efficiency (FE) of 20.74% at –0.2 VRHE in 0.1 M Na2SO4. The FeVO4 electrocatalyst exhibited robust electrochemical stability for 24 h of operation at –0.2 VRHE. The high catalytic performance originated from the synergistic interactions between Fe and V which serve as dual electron donation centers for effective e-NRR. Furthermore, the coupling interaction between FeVO4 and FF support exposed abundant intrinsic active sites and facilitated beneficial charge transfer further inducing superior e-NRR activity. Density functional theory (DFT) computations disclosed that surface Fe atoms are the main active centers for e-NRR which proceed via the alternating pathway.

Electronic Supplementary Material

Download File(s)
0161_ESM.pdf (1.2 MB)

References

[1]

Cao, N.; Zheng, G. F. Aqueous electrocatalytic N2 reduction under ambient conditions. Nano Res. 2018, 11, 2992–3008.

[2]

Chen, A. L.; Xia, B. Y. Ambient dinitrogen electrocatalytic reduction for ammonia synthesis. J. Mater. Chem. A 2019, 7, 23416–23431.

[3]

Qing, G.; Ghazfar, R.; Jackowski, S. T.; Habibzadeh, F.; Ashtiani, M. M.; Chen, C. P.; Smith, M. R.; Hamann, T. W. Recent advances and challenges of electrocatalytic N2 reduction to ammonia. Chem. Rev. 2020, 120, 5437–5516.

[4]

Cui, X. Y.; Tang, C.; Zhang, Q. A Review of electrocatalytic reduction of dinitrogen to ammonia under ambient conditions. Adv. Energy Mater. 2018, 8, 1800369.

[5]

Bhunia, K.; Sharma, S. K.; Satpathy, B. K.; Pradhan, D. Recent progress in the development of electrocatalysts for the electrochemical N2 reduction reaction. Mater. Adv. 2022, 3, 888–917.

[6]

Elishav, O.; Mosevitzky Lis, B.; Miller, E. M.; Arent, D. J.; Valera-Medina, A.; Grinberg Dana, A.; Shter, G. E.; Grader, G. S. Progress and prospective of nitrogen-based alternative fuels. Chem. Rev. 2020, 120, 5352–5436.

[7]

Kim, D.; Surendran, S.; Janani, G.; Lim, Y.; Choi, H.; Han, M. K.; Yuvaraj, S.; Kim, T. H.; Kim, J. K.; Sim, U. Nitrogen-impregnated carbon-coated TiO2 nanoparticles for N2 reduction to ammonia under ambient conditions. Mater. Lett. 2022, 314, 131808.

[8]

Wu, B.; Lin, Y. C.; Wang, X. Z.; Chen, L. Recent advances on electrocatalytic fixation of nitrogen under ambient conditions. Mater. Chem. Front. 2021, 5, 5516–5533.

[9]

Zhao, X.; Hu, G. Z.; Chen, G. F.; Zhang, H. B.; Zhang, S. S.; Wang, H. H. Comprehensive understanding of the thriving ambient electrochemical nitrogen reduction reaction. Adv. Mater. 2021, 33, e2007650.

[10]

Barthelemy, H.; Weber, M.; Barbier, F. Hydrogen storage: Recent improvements and industrial perspectives. Int. J. Hydrogen Energy 2017, 42, 7254–7262.

[11]

Guo, X. X.; Du, H. T.; Qu, F. L.; Li, J. H. Recent progress in electrocatalytic nitrogen reduction. J. Mater. Chem. A 2019, 7, 3531–3543.

[12]

Kim, D.; Alam, K.; Han, M. K.; Surendran, S.; Lim, J.; Young Kim, J.; Jun Moon, D.; Jeong, G.; Gon Kim, M.; Kwon, G. et al. Manipulating wettability of catalytic surface for improving ammonia production from electrochemical nitrogen reduction. J. Colloid Interface Sci. 2023, 633, 53–59.

[13]

Yang, M. S.; Wei, T. R.; Zeng, C. H.; Zhang, J. W.; Liu, Y. F.; Luo, J.; Hu, G. Z.; Liu, X. J. CoNiOOH nanosheets array enables highly effective value-added chemicals production via nitrite and sulfide electrolysis. Chem. Eng. J. 2024, 498, 155799.

[14]

Li, G.; Ma, Z. R.; Zhao, J.; Zhou, J. L.; Peng, S. P.; Li, Y. L.; Wang, B. D. Research progress in green synthesis of ammonia as hydrogen-storage carrier under ‘hydrogen 2.0 economy’. Clean Energy 2023, 7, 116–131.

[15]

Hou, J. B.; Yang, M.; Zhang, J. L. Recent advances in catalysts, electrolytes and electrode engineering for the nitrogen reduction reaction under ambient conditions. Nanoscale 2020, 12, 6900–6920.

[16]

Zhao, X. H.; Zhang, X.; Xue, Z. M.; Chen, W. J.; Zhou, Z.; Mu, T. C. Fe nanodot-decorated MoS2 nanosheets on carbon cloth: An efficient and flexible electrode for ambient ammonia synthesis. J. Mater. Chem. A 2019, 7, 27417–27422.

[17]

Zhu, H. D.; Ren, X. F.; Yang, X. X.; Liang, X. Y.; Liu, A. M.; Wu, G. Fe-based catalysts for nitrogen reduction toward ammonia electrosynthesis under ambient conditions. SusMat 2022, 2, 214–242.

[18]

Ren, Y. W.; Yu, C.; Tan, X. Y.; Huang, H. L.; Wei, Q. B.; Qiu, J. S. Strategies to suppress hydrogen evolution for highly selective electrocatalytic nitrogen reduction: Challenges and perspectives. Energy Environ. Sci. 2021, 14, 1176–1193.

[19]

Abghoui, Y.; Skúlason, E. Onset potentials for different reaction mechanisms of nitrogen activation to ammonia on transition metal nitride electro-catalysts. Catal. Today 2017, 286, 69–77.

[20]

Kim, D.; Surendran, S.; Lim, Y.; Choi, H.; Lim, J.; Kim, J. Y.; Han, M. K.; Sim, U. Spinel-type Ni2GeO4 electrocatalyst for electrochemical ammonia synthesis via nitrogen reduction reaction under ambient conditions. Int. J. Energy Res. 2021, 46, 4119.

[21]

Qi, Y. C.; Hou, X. H.; He, Z. Y.; He, F.; Wei, T. R.; Meng, G.; Hu, H. H.; Liu, Q.; Hu, G. Z.; Liu, X. J. Phosphorus-doped Ti3C2Tx MXene nanosheets enabling ambient NH3 synthesis with high current densities. Chem. Commun. 2024, 60, 8728–8731.

[22]

Chen, C.; Liu, Y.; Yao, Y. Ammonia synthesis via electrochemical nitrogen reduction reaction on iron molybdate under ambient conditions. Eur. J. Inorg. Chem. 2020, 2020, 3236–3241.

[23]

Peng, M.; Qiao, Y. J.; Luo, M.; Wang, M. J.; Chu, S. F.; Zhao, Y.; Liu, P.; Liu, J.; Tan, Y. W. Bioinspired Fe3C@C as highly efficient electrocatalyst for nitrogen reduction reaction under ambient conditions. ACS Appl. Mater. Interfaces 2019, 11, 40062–40068.

[24]

Hu, L.; Khaniya, A.; Wang, J.; Chen, G.; Kaden, W. E.; Feng, X. F. Ambient electrochemical ammonia synthesis with high selectivity on Fe/Fe oxide catalyst. ACS Catal. 2018, 8, 9312–9319.

[25]

Chu, K.; Li, Q. Q.; Cheng, Y. H.; Liu, Y. P. Efficient electrocatalytic nitrogen fixation on FeMoO4 nanorods. ACS Appl. Mater. Interfaces 2020, 12, 11789–11796.

[26]

Lu, K.; Xia, F.; Li, B. M.; Liu, Y. Z.; Abdul Razak, I. B.; Gao, S. Y.; Kaelin, J.; Brown, D. E.; Cheng, Y. W. Synergistic multisites Fe2Mo6S8 electrocatalysts for ambient nitrogen conversion to ammonia. ACS Nano 2021, 15, 16887–16895.

[27]

Li, C.; Fu, Y. S.; Wu, Z.; Xia, J. W.; Wang, X. Sandwich-like reduced graphene oxide/yolk-shell-structured Fe@Fe3O4/carbonized paper as an efficient freestanding electrode for electrochemical synthesis of ammonia directly from H2O and nitrogen. Nanoscale 2019, 11, 12997–13006.

[28]

Wu, J.; Wang, Z. W.; Li, S. W.; Niu, S. Q.; Zhang, Y. Y.; Hu, J.; Zhao, J. X.; Xu, P. FeMoO4 nanorods for efficient ambient electrochemical nitrogen reduction. Chem. Commun. 2020, 56, 6834–6837.

[29]

Liu, H. M.; Wei, L.; Liu, F.; Pei, Z. X.; Shi, J.; Wang, Z. J.; He, D. H.; Chen, Y. Homogeneous, heterogeneous, and biological catalysts for electrochemical N2 reduction toward NH3 under ambient conditions. ACS Catal. 2019, 9, 5245–5267.

[30]

Ma, B. Y.; Zhao, H. T.; Li, T. S.; Liu, Q.; Luo, Y. S.; Li, C. B.; Lu, S. Y.; Asiri, A. M.; Ma, D. W.; Sun, X. P. Iron-group electrocatalysts for ambient nitrogen reduction reaction in aqueous media. Nano Res. 2021, 14, 555–569.

[31]

Yang, M. L.; Jin, Z. X.; Wang, C. L.; Cao, X. X.; Wang, X. M.; Ma, H. Y.; Pang, H. J.; Tan, L. C.; Yang, G. X. Fe foam-supported FeS2–MoS2 electrocatalyst for N2 reduction under ambient conditions. ACS Appl. Mater. Interfaces 2021, 13, 55040–55050.

[32]

Wang, W.; Zhang, Y. J.; Huang, X. J.; Bi, Y. P. Engineering the surface atomic structure of FeVO4 nanocrystals for use as highly active and stable electrocatalysts for oxygen evolution. J. Mater. Chem. A 2019, 7, 10949–10953.

[33]

Li, J. D.; Zheng, M.; Wei, F.; Dong, C. C.; Xiu, Z.; Mu, W.; Zhou, X.; Ding, Y. N.; Han, X. J. Fe doped InVO4 nanosheets with rich surface oxygen vacancies for enhanced electrochemical nitrogen fixation. Chem. Eng. J. 2022, 431, 133383.

[34]

Yousuf, M. F.; Mahmud, M. S. Review on detection methods of nitrogen species in air, soil and water. Nitrogen 2022, 3, 101–117.

[35]

An, T. Y.; Surendran, S.; Jesudass, S. C.; Lee, H.; Moon, D. J.; Kim, J. K.; Sim, U. Promoting electrochemical ammonia synthesis by synergized performances of Mo2C–Mo2N heterostructure. Front. Chem. 2023, 11, 1122150.

[36]

Thaba, K. P.; Mphahlele-Makgwane, M. M.; Kyesmen, P. I.; Diale, M.; Baker, P. G. L.; Makgwane, P. R. Composition-dependent structure evolution of FeVO4 nano-oxide and its visible-light photocatalytic activity for degradation of methylene blue. Colloids Surf. A: Physicochem. Eng. Aspects 2022, 633, 127856.

[37]

Shen, P.; Liu, Y. P.; Li, Q. Q.; Chu, K. FeVO4 porous nanorods for electrochemical nitrogen reduction: Contribution of the Fe2c–V2c dimer as a dual electron-donation center. Chem. Commun. 2020, 56, 10505–10508.

[38]

Yang, M. S.; Wei, T. R.; He, J.; Liu, Q.; Feng, L. G.; Li, H. Y.; Luo, J.; Liu, X. J. Au nanoclusters anchored on TiO2 nanosheets for high-efficiency electroreduction of nitrate to ammonia. Nano Res. 2024, 17, 1209–1216.

[39]

Wang, M.; Li, F. F.; Liu, J. Glycerine-based synthesis of a highly efficient Fe2O3 electrocatalyst for N2 fixation. RSC Adv. 2020, 10, 29575–29579.

[40]

Ilyas, T.; Raziq, F.; Ilyas, N.; Yang, L. X.; Ali, S.; Zada, A.; Bakhtiar, S. H.; Wang, Y.; Shen, H. H.; Qiao, L. FeNi@CNS nanocomposite as an efficient electrochemical catalyst for N2-to-NH3 conversion under ambient conditions. J. Mater. Sci. Technol. 2022, 103, 59–66.

[41]

Zhang, J.; Ji, Y. J.; Wang, P. T.; Shao, Q. X.; Li, Y. Y.; Huang, X. Q. Adsorbing and activating N2 on heterogeneous Au–Fe3O4 nanoparticles for N2 fixation. Adv. Funct. Mater. 2020, 30, 1906579.

[42]

Chen, J. Y.; Kang, Y. K.; Zhang, W.; Zhang, Z. H.; Chen, Y.; Yang, Y.; Duan, L. L.; Li, Y. F.; Li, W. Lattice-confined single-atom Fe1Sx on mesoporous TiO2 for boosting ambient electrocatalytic N2 reduction reaction. Angew. Chem., Int. Ed. 2022, 61, e202203022.

[43]

Cheng, H.; Ding, L. X.; Chen, G. F.; Zhang, L. L.; Xue, J.; Wang, H. H. Molybdenum carbide nanodots enable efficient electrocatalytic nitrogen fixation under ambient conditions. Adv. Mater. 2018, 30, 1803694.

[44]

Xia, J. J.; Guo, H. R.; Yu, G. S.; Chen, Q. R.; Liu, Y. L.; Liu, Q.; Luo, Y. L.; Li, T. S.; Traversa, E. 2D vanadium carbide (MXene) for electrochemical synthesis of ammonia under ambient conditions. Catal. Lett. 2021, 151, 3516–3522.

[45]

Liu, G. H.; Niu, L. J.; Ma, Z. X.; An, L.; Qu, D.; Wang, D. D.; Wang, X. Y.; Sun, Z. C. Fe2Mo3O8/XC-72 electrocatalyst for enhanced electrocatalytic nitrogen reduction reaction under ambient conditions. Nano Res. 2022, 15, 5940–5945.

[46]

Jiang, K.; Li, K.; Li, S. R.; Li, Y.; Li, T.; Liu, Y. Q.; Wang, D.; Ye, Y. Y. FeMo–N nanosheet arrays supported on nickel foam for efficient electrocatalytic N2 reduction to NH3 under ambient conditions. New J. Chem. 2022, 46, 16743–16751.

[47]

Ahmed, M. I.; Chen, S.; Ren, W. H.; Chen, X. J.; Zhao, C. Synergistic bimetallic CoFe2O4 clusters supported on graphene for ambient electrocatalytic reduction of nitrogen to ammonia. Chem. Commun. 2019, 55, 12184–12187.

[48]

Chen, S. L.; Jang, H.; Wang, J.; Qin, Q.; Liu, X. E.; Cho, J. Bimetallic metal-organic framework-derived MoFe-PC microspheres for electrocatalytic ammonia synthesis under ambient conditions. J. Mater. Chem. A 2020, 8, 2099–2104.

Nano Research Energy
Cite this article:
Aminu A, Pirzada BM, Talib SH, et al. Fe foam supported FeVO4 nanoparticles for electrochemical nitrogen fixation at ambient conditions. Nano Research Energy, 2025, https://doi.org/10.26599/NRE.2025.9120161
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return