PDF (7.6 MB)
Collect
Submit Manuscript
Research Article | Open Access | Online First

Surficial reconstruction in bimetallic oxide SrCoOx through Ce-doping for improved corrosion resistance during electrocatalytic oxygen evolution reaction in simulated alkaline saline water

Mohammed Misbah Uddin1,3,§Bilal Masood Pirzada1,3,§()Faisal Rasool1Dalaver Anjum2Gareth Price1Ahsanulhaq Qurashi1,3()
Department of Chemistry, Khalifa University of Science and Technology, P.O. box 127788, Abu Dhabi, United Arab Emirates
Department of Physics, Khalifa University of Science and Technology, P.O. box 127788, Abu Dhabi, United Arab Emirates
Center for Catalysis and Separations, Khalifa University of Science and Technology, Abu Dhabi, P.O. Box 127788, United Arab Emirates

§ Mohammed Misbah Uddin and Bilal Masood Pirzada contributed equally to this work.

Show Author Information

Graphical Abstract

View original image Download original image

Abstract

Transition metal based bimetallic oxides are good candidates for electrocatalytic oxygen evolution owing to their variable oxidation states, synergistic effects, good conductivity, convincing electrochemical stability, and low cost. However, these materials are highly susceptible to corrosion during saline seawater electrolysis. This work, for the first time, highlights the role of cerium (Ce) doping in bimetallic strontium cobalt oxide (SrCoOx) electrocatalyst for electrochemically stable and corrosion-resistant oxygen evolution reaction (OER) in simulated saline water. The experimental results reveal that 0.5% Ce-doped 5% SrCoOx has the best corrosion resistant ability with respect to the undoped SrCoOx and various other Ce-doped samples. The growth of CeO2 nanoparticles and the generation of CeOx passivation layer through Ce doping were supposed to block the corrosive ions on the surface, thereby hindering chlorine evolution reaction (CER). The Ce3+ ions doped inside the SrCoOx lattice created multiple defects and vacancies which sacrificially facilitate the OER while mitigating the CER. The suppression of corrosive reactions was indicated through low corrosion current (−1.10 μA·cm−2) and high corrosion potential (0.90 V vs. RHE) values suggesting slowest corrosion rate and least tendency towards CER in 0.5% Ce-doped 5% SrCoOx. Consequently, it demonstrated the least Tafel slope of 81.7 mV·dec−1 in saline OER electrolysis with respect to the 121.0 mV·dec−1 was obtained for undoped 5% SrCoOx. Moreover, the electrochemical stability demonstrated in chronoamperometric OER for 45 h and the cyclic voltammetry (500 cycles) confirmed that 0.5% Ce-doped SrCoOx electrocatalyst possesses enhanced anticorrosive properties, which was further supported by post-use linear sweep voltammetry, cyclic voltammetry, and X-ray diffraction analyses. Linear polarization resistance study was also employed on the seawater sample, collected locally, to assess the validity of the present work in real marine systems. In view of the observed results, this work can open an alternate pathway to investigate various transition metal oxide systems as potential corrosion resistant electrocatalysts for seawater.

Electronic Supplementary Material

Download File(s)
0162_ESM.pdf (4.5 MB)

References

[1]

Tan, H.; Li, J. L.; He, M.; Li, J. Y.; Zhi, D.; Qin, F. Z.; Zhang, C. Global evolution of research on green energy and environmental technologies: A bibliometric study. J. Environ. Manage. 2021, 297, 113382.

[2]

Zhu, J.; Hu, L. S.; Zhao, P. X.; Lee, L. Y. S.; Wong, K. Y. Recent advances in electrocatalytic hydrogen evolution using nanoparticles. Chem. Rev. 2020, 120, 851–918.

[3]

Jiang, W. J.; Tang, T.; Zhang, Y.; Hu, J. S. Synergistic modulation of non-precious-metal electrocatalysts for advanced water splitting. Acc. Chem. Res. 2020, 53, 1111–1123.

[4]

Rasool, F.; Pirzada, B. M.; Misbah Uddin, M.; Mohideen, M. I. H.; Yildiz, I.; Elkadi, M.; Qurashi, A. Interfacial engineering of ZnS–ZnO decorated MoS2 supported on 2D Ti3C2Tx MXene sheets for enhanced hydrogen evolution reaction. Int. J. Hydrogen Energy 2024, 59, 63–73.

[5]

Dresp, S.; Dionigi, F.; Klingenhof, M.; Strasser, P. Direct electrolytic splitting of seawater: Opportunities and challenges. ACS Energy Lett. 2019, 4, 933–942.

[6]

Liu, S. J.; Ren, S. J.; Gao, R. T.; Liu, X. H.; Wang, L. Atomically embedded Ag on transition metal hydroxides triggers the lattice oxygen towards sustained seawater electrolysis. Nano Energy 2022, 98, 107212.

[7]

Ning, M. H.; Zhang, F. H.; Wu, L. B.; Xing, X. X.; Wang, D. Z.; Song, S. W.; Zhou, Q. C.; Yu, L.; Bao, J. M.; Chen, S. et al. Boosting efficient alkaline fresh water and seawater electrolysis via electrochemical reconstruction. Energy Environ. Sci. 2022, 15, 3945–3957.

[8]

Wang, S. R.; Wang, M. M.; Liu, Z.; Liu, S. J.; Chen, Y. J.; Li, M.; Zhang, H.; Wu, Q. K.; Guo, J. H.; Feng, X. Q. et al. Synergetic function of the single-atom Ru–N4 site and Ru nanoparticles for hydrogen production in a wide pH range and seawater electrolysis. ACS Appl. Mater. Interfaces 2022, 14, 15250–15258.

[9]

Gao, T. Q.; Zhou, Y. Q.; Zhao, X. J.; Liu, Z. H.; Chen, Y. Borate anion-intercalated NiV-LDH nanoflakes/NiCoP nanowires heterostructures for enhanced oxygen evolution selectivity in seawater splitting. Adv. Funct. Mater. 2024, 34, 2315949.

[10]

He, Z. M.; Zhang, C. X.; Guo, S. Q.; Xu, P.; Ji, P.; Luo, S. W.; Qi, X.; Liu, Y. D.; Cheng, N. Y.; Dou, S. X. et al. Mo-doping heterojunction: Interfacial engineering in an efficient electrocatalyst for superior simulated seawater hydrogen evolution. Chem. Sci. 2024, 15, 1123–1131.

[11]

Liu, R. T.; Xu, Z. L.; Li, F. M.; Chen, F. Y.; Yu, J. Y.; Yan, Y.; Chen, Y.; Xia, B. Y. Recent advances in proton exchange membrane water electrolysis. Chem. Soc. Rev. 2023, 52, 5652–5683.

[12]

Liu, X. L.; Jiang, Y. C.; Huang, J. T.; Zhong, W.; He, B.; Jin, P. J.; Chen, Y. Bifunctional PdPt bimetallenes for formate oxidation-boosted water electrolysis. Carbon Energy 2023, 5, e367.

[13]

Tong, W. M.; Forster, M.; Dionigi, F.; Dresp, S.; Erami, R. S.; Strasser, P.; Cowan, A. J.; Farràs, P. Electrolysis of low-grade and saline surface water. Nat. Energy 2020, 5, 367–377.

[14]

Karlsson, R. K. B.; Cornell, A. Selectivity between oxygen and chlorine evolution in the chlor-alkali and chlorate processes. Chem. Rev. 2016, 116, 2982–3028.

[15]

Abe, H.; Murakami, A.; Tsunekawa, S.; Okada, T.; Wakabayashi, T.; Yoshida, M.; Nakayama, M. Selective catalyst for oxygen evolution in neutral brine electrolysis: An oxygen-deficient manganese oxide film. ACS Catal. 2021, 11, 6390–6397.

[16]

Zhang, F. H.; Yu, L.; Wu, L. B.; Luo, D.; Ren, Z. F. Rational design of oxygen evolution reaction catalysts for seawater electrolysis. Trends Chem. 2021, 3, 485–498.

[17]

Kuang, Y.; Kenney, M. J.; Meng, Y. T.; Hung, W. H.; Liu, Y. J.; Huang, J. E.; Prasanna, R.; Li, P. S.; Li, Y. P.; Wang, L. et al. Solar-driven, highly sustained splitting of seawater into hydrogen and oxygen fuels. Proc. Natl. Acad. Sci. USA 2019, 116, 6624–6629.

[18]

Tahir, M.; Pan, L.; Idrees, F.; Zhang, X. W.; Wang, L.; Zou, J. J.; Wang, Z. L. Electrocatalytic oxygen evolution reaction for energy conversion and storage: A comprehensive review. Nano Energy 2017, 37, 136–157.

[19]

Peng, X.; Jin, X.; Gao, B.; Liu, Z. T.; Chu, P. K. Strategies to improve cobalt-based electrocatalysts for electrochemical water splitting. J. Catal. 2021, 398, 54–66.

[20]

Chen, J. L.; Liu, J.; Xu, S. J.; Wu, Y.; Ye, Y. N.; Qian, J. J. Bimetallic ZnCo-MOF derived porous Ir-doped cobalt oxides for water oxidation with improved activity and stability. Inorg. Chem. Front. 2024, 11, 4876–4885.

[21]

Chen, D. D.; Sun, Q. H.; Han, C.; Guo, Y. Y.; Huang, Q.; Goddard III, W. A.; Qian, J. J. Enhanced oxygen evolution catalyzed by in situ formed Fe-doped Ni oxyhydroxides in carbon nanotubes. J. Mater. Chem. A 2022, 10, 16007–16015.

[22]

Jaiswal, S. K.; Kumar, J. On the sol-gel synthesis and structure, optical, magnetic and impedance behaviour of strontium cobaltite powder. J. Alloys Compd. 2011, 509, 3859–3865.

[23]

Sivakumar, P.; Subramanian, P.; Maiyalagan, T.; Gedanken, A.; Schechter, A. Ternary nickel cobalt manganese spinel oxide nanoparticles as heterogeneous electrocatalysts for oxygen evolution and oxygen reduction reaction. Mater. Chem. Phys. 2019, 229, 190–196.

[24]

Ishihara, T.; Yokoe, K.; Miyano, T.; Kusaba, H. Mesoporous MnCo2O4 spinel oxide for a highly active and stable air electrode for Zn-air rechargeable battery. Electrochim. Acta 2019, 300, 455–460.

[25]

Wu, S. D.; Liu, J. M.; Cui, B. B.; Li, Y. L.; Liu, Y. K.; Hu, B.; He, L. H.; Wang, M. H.; Zhang, Z. H.; Tian, K. et al. Fluorine-doped nickel cobalt oxide spinel as efficiently bifunctional catalyst for overall water splitting. Electrochim. Acta 2019, 299, 231–244.

[26]

Fujimura, K.; Matsui, T.; Habazaki, H.; Kawashima, A.; Kumagai, N.; Hashimoto, K. The durability of manganese-molybdenum oxide anodes for oxygen evolution in seawater electrolysis. Electrochim. Acta 2000, 45, 2297–2303.

[27]

Wu, L. B.; Yu, L.; Zhu, Q. C.; Mcelhenny, B.; Zhang, F. H.; Wu, C. Z.; Xing, X. X.; Bao, J. M.; Chen, S.; Ren, Z. F. Boron-modified cobalt iron layered double hydroxides for high efficiency seawater oxidation. Nano Energy 2021, 83, 105838.

[28]

Jin, H. Y.; Song, T.; Paik, U.; Qiao, S. Z. Metastable two-dimensional materials for electrocatalytic energy conversions. Acc. Mater. Res. 2021, 2, 559–573.

[29]

Bhat, A.; Anwer, S.; Bhat, K. S.; Mohideen, M. I. H.; Liao, K.; Qurashi, A. Prospects challenges and stability of 2D MXenes for clean energy conversion and storage applications. npj 2D Mater. Appl. 2021, 5, 61.

[30]

Haq, T. U.; Haik, Y. Strategies of anode design for seawater electrolysis: Recent development and future perspective. Small Sci. 2022, 2, 2200030.

[31]

Gao, W.; Ma, F. Y.; Wang, C.; Wen, D. Ce dopant significantly promotes the catalytic activity of Ni foam-supported Ni3S2 electrocatalyst for alkaline oxygen evolution reaction. J. Power Sources 2020, 450, 227654.

[32]

Park, Y. S.; Lee, J.; Jang, M. J.; Yang, J.; Jeong, J.; Park, J.; Kim, Y.; Seo, M. H.; Chen, Z. W.; Choi, S. M. High-performance anion exchange membrane alkaline seawater electrolysis. J. Mater. Chem. A 2021, 9, 9586–9592.

[33]

Obata, K.; Takanabe, K. A permselective CeOx coating to improve the stability of oxygen evolution electrocatalysts. Angew. Chem., Int. Ed. 2018, 57, 1616–1620.

[34]

Fabbri, E.; Habereder, A.; Waltar, K.; Kötz, R.; Schmidt, T. J. Developments and perspectives of oxide-based catalysts for the oxygen evolution reaction. Catal. Sci. Technol. 2014, 4, 3800–3821.

[35]

Czioska, S.; Boubnov, A.; Escalera-López, D.; Geppert, J.; Zagalskaya, A.; Röse, P.; Saraçi, E.; Alexandrov, V.; Krewer, U.; Cherevko, S. et al. Increased Ir–Ir interaction in iridium oxide during the oxygen evolution reaction at high potentials probed by operando spectroscopy. ACS Catal. 2021, 11, 10043–10057.

[36]

Bello, I. T.; Yu, N.; Zhai, S.; Song, Y. F.; Zhao, S. Y.; Cheng, C.; Zhang, Z. B.; Ni, M. Effect of engineered lattice contraction and expansion on the performance and CO2 tolerance of Ba0.5Sr0.5Co0.7Fe0.3O3–δ functional material for intermediate temperature solid oxide fuel cells. Ceram. Int. 2022, 48, 21416–21427.

[37]

Wang, Z. L.; Quan, Z. W.; Lin, J. Remarkable changes in the optical properties of CeO2 nanocrystals induced by lanthanide ions doping. Inorg. Chem. 2007, 46, 5237–5242.

[38]

Duan, T. G.; Chen, Y.; Wen, Q.; Duan, Y. Different mechanisms and electrocatalytic activities of Ce ion or CeO2 modified Ti/Sb–SnO2 electrodes fabricated by one-step pulse electro-codeposition. RSC Adv. 2015, 5, 19601–19612.

[39]

Matějová, L.; Kočí, K.; Reli, M.; Čapek, L.; Hospodková, A.; Peikertová, P.; Matěj, Z.; Obalová, L.; Wach, A.; Kuśtrowski, P. et al. Preparation, characterization and photocatalytic properties of cerium doped TiO2: On the effect of Ce loading on the photocatalytic reduction of carbon dioxide. Appl. Catal. B: Environ. 2014, 152–153, 172–183.

[40]

Cavallaro, A.; Wilson, G. E.; Kerherve, G.; Cali, E. ; van den Bosch, C. A. M.; Boldrin, P.; Payne, D.; Skinner, S. J.; Aguadero, A. Analysis of H2O-induced surface degradation in SrCoO3-derivatives and its impact on redox kinetics. J. Mater. Chem. A 2021, 9, 24528–24538.

[41]

Li, X. C.; She, F. S.; Shen, D.; Liu, C. P.; Chen, L. H.; Li, Y.; Deng, Z.; Chen, Z.H.; Wang, H. E. Coherent nanoscale cobalt/cobalt oxide heterostructures embedded in porous carbon for the oxygen reduction reaction. RSC Adv. 2018, 8, 28625–28631.

[42]

Baek, J. Y.; Duy, L. T.; Lee, S. Y.; Seo, H. Aluminum doping for optimization of ultrathin and high-k dielectric layer based on SrTiO3. J. Mater. Sci. Technol. 2020, 42, 28–37.

[43]

Wang, X. Y.; Huang, K. K.; Qian, J. Y.; Cong, Y. G.; Ge, C. D.; Feng, S. H. Enhanced CO catalytic oxidation by Sr reconstruction on the surface of LaxSr1–xCoO3–δ. Sci. Bull. 2017, 62, 658–664.

[44]

Maslakov, K. I.; Teterin, Y. A.; Popel, A. J.; Teterin, A. Y.; Ivanov, K. E.; Kalmykov, S. N.; Petrov, V. G.; Petrov, P. K.; Farnan, I. XPS study of ion irradiated and unirradiated CeO2 bulk and thin film samples. Appl. Surf. Sci. 2018, 448, 154–162.

[45]

Channei, D.; Inceesungvorn, B.; Wetchakun, N.; Ukritnukun, S.; Nattestad, A.; Chen, J.; Phanichphant, S. Photocatalytic degradation of methyl orange by CeO2 and Fe-doped CeO2 films under visible light irradiation. Sci. Rep. 2014, 4, 5757.

[46]

Somacescu, S.; Parvulescu, V.; Calderon-Moreno, J. M.; Suh, S. H.; Osiceanu, P.; Su, B. L. Uniform nanoparticles building Ce1–xPrxO2–δ mesoarchitectures: Structure, morphology, surface chemistry, and catalytic performance. J. Nanopart. Res. 2012, 14, 885.

[47]

Zou, H. T.; Yao, Q. L.; Huang, M. L.; Zhu, M. H.; Zhang, F.; Lu, Z. H. Noble-metal-free NiFe nanoparticles immobilized on nano CeZrO2 solid solutions for highly efficient hydrogen production from hydrous hydrazine. Sustainable Energy Fuels 2019, 3, 3071–3077.

[48]

Bai, X.; Guan, J. Q. Promotion of oxygen evolution activity of Co-based nanocomposites by introducing Fe3+ ions. Top. Catal. 2024, 67, 1306–1315.

[49]

Fu, L. J.; Yang, H. M.; Hu, Y. H.; Wu, D.; Navrotsky, A. Tailoring mesoporous γ-Al2O3 properties by transition metal doping: A combined experimental and computational study. Chem. Mater. 2017, 29, 1338–1349.

[50]

Grdeń, M.; Alsabet, M.; Jerkiewicz, G. Surface science and electrochemical analysis of nickel foams. ACS Appl. Mater. Interfaces 2012, 4, 3012–3021.

[51]

Wang, X. H.; Ling, Y.; Wu, B.; Li, B. L.; Li, X. L.; Lei, J. L.; Li, N. B.; Luo, H. Q. Doping modification, defects construction, and surface engineering: Design of cost-effective high-performance electrocatalysts and their application in alkaline seawater splitting. Nano Energy 2021, 87, 106160.

[52]

McCrory, C. C. L.; Jung, S.; Peters, J. C.; Jaramillo, T. F. Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction. J. Am. Chem. Soc. 2013, 135, 16977–16987.

[53]
Sha, Q.; Wang, S.; Yan, L.; Feng, Y.; Zhang, Z.; Li, S.; Guo, X.; Li, T.; Li, H.; Zhuang, Z.; et al. 10,000-h-stable intermittent alkaline seawater electrolysis. Nature 2025, 639, 360–367.
[54]

Haq, T. U.; Haik, Y. S doped Cu2O–CuO nanoneedles array: Free standing oxygen evolution electrode with high efficiency and corrosion resistance for seawater splitting. Catal. Today 2022, 400–401, 14–25.

[55]

Xu, S. C.; Lv, C. C.; He, T.; Huang, Z. P.; Zhang, C. Amorphous film of cerium doped cobalt oxide as a highly efficient electrocatalyst for oxygen evolution reaction. J. Mater. Chem. A 2019, 7, 7526–7532.

[56]

Dehghani, A.; Bahlakeh, G.; Ramezanzadeh, B.; Hossein Mostafatabar, A.; Ramezanzadeh, M. Estimating the synergistic corrosion inhibition potency of (2-(3,4-)-3,5,7-trihydroxy-4H-chromen-4-one) and trivalent-cerium ions on mild steel in NaCl solution. Constr. Build. Mater. 2020, 261, 119923.

[57]

Zeng, R. C.; Hu, Y.; Zhang, F.; Huang, Y. D.; Wang, Z. L.; Li, S. Q.; Han, E. H. Corrosion resistance of cerium-doped zinc calcium phosphate chemical conversion coatings on AZ31 magnesium alloy. Trans. Nonferrous Met. Soc. China 2016, 26, 472–483.

[58]

Haddadi, S. A.; Najmi, P.; Keshmiri, N.; Tanguy, N.; Van Der kuur, C.; Yan, N.; Mekonnen, T.; Arjmand, M. Cerium-doped tannic acid-reduced graphene oxide nanoplatform/epoxy nanocomposite coatings with enhanced mechanical and Bi-functional corrosion protection properties. Compos. Part B: Eng. 2022, 239, 109969.

[59]

Abellan, P.; Moser, T. H.; Lucas, I. T.; Grate, J. W.; Evans, J. E.; Browning, N. D. The formation of cerium(iii) hydroxide nanoparticles by a radiation mediated increase in local pH. RSC Adv. 2017, 7, 3831–3837.

[60]

Gao, L. K.; Cui, X.; Sewell, C. D.; Li, J.; Lin, Z. Q. Recent advances in activating surface reconstruction for the high-efficiency oxygen evolution reaction. Chem. Soc. Rev. 2021, 50, 8428–8469.

[61]

Kim, B. J.; Abbott, D. F.; Cheng, X.; Fabbri, E.; Nachtegaal, M.; Bozza, F.; Castelli, I. E.; Lebedev, D.; Schäublin, R.; Copéret, C. et al. Unraveling thermodynamics, stability, and oxygen evolution activity of strontium ruthenium perovskite oxide. ACS Catal. 2017, 7, 3245–3256.

[62]

Garcia, E. M.; Santos, J. S.; Pereira, E. C.; Freitas, M. B. J. G. Electrodeposition of cobalt from spent Li-ion battery cathodes by the electrochemistry quartz crystal microbalance technique. J. Power Sources 2008, 185, 549–553.

[63]

Buabthong, P.; Evans, J. M.; Rinaldi, K. Z.; Kennedy, K. M.; Fu, H. J.; Ifkovits, Z. P.; Kuo, T. J.; Brunschwig, B. S.; Lewis, N. S. GaAs microisland anodes protected by amorphous TiO2 films mitigate corrosion spreading during water oxidation in alkaline electrolytes. ACS Energy Lett. 2021, 6, 3709–3714.

[64]

Vos, J. G.; Wezendonk, T. A.; Jeremiasse, A. W.; Koper, M. T. M. MnOx/IrOx as selective oxygen evolution electrocatalyst in acidic chloride solution. J. Am. Chem. Soc. 2018, 140, 10270–10281.

[65]

Liu, W. X.; Que, W. B.; Yin, R. L.; Dai, J. L.; Zheng, D.; Feng, J. X.; Xu, X. L.; Wu, F. F.; Shi, W. H.; Liu, X. J. et al. Ferrum-molybdenum dual incorporated cobalt oxides as efficient bifunctional anti-corrosion electrocatalyst for seawater splitting. Appl. Catal. B: Environ. 2023, 328, 122488.

Nano Research Energy
Cite this article:
Uddin MM, Pirzada BM, Rasool F, et al. Surficial reconstruction in bimetallic oxide SrCoOx through Ce-doping for improved corrosion resistance during electrocatalytic oxygen evolution reaction in simulated alkaline saline water. Nano Research Energy, 2025, https://doi.org/10.26599/NRE.2025.9120162
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return