AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.3 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Highlight | Open Access

On nano-solutions to overcome cancer hypoxia and resistance

Department of Physics, The University of Texas at Arlington, Arlington, Texas 76019-0059, USA
Show Author Information

Abstract

Cancer is a leading cause of death globally, and current cancer therapies often fall short in reducing death and improving quality of life. Early detection of cancer cells and targeted drug application is crucial to optimal treatment. Nanotechnology shows promise in improving cancer diagnosis and treatment by reducing toxicity and refractory disease. In this essay, we focus on how nanotechnology can overcome resistance and hypoxic issues in cancer treatment.

References

[1]

Bamrungsap, S.; Zhao, Z. L.; Chen, T.; Wang, L.; Li, C. M.; Fu, T.; Tan, W. H. Nanotechnology in therapeutics: A focus on nanoparticles as a drug delivery system. Nanomedicine 2012, 7, 1253–1271.

[2]

Bar-Zeev, M.; Livney, Y. D.; Assaraf, Y. G. Targeted nanomedicine for cancer therapeutics: Towards precision medicine overcoming drug resistance. Drug Resist. Updates 2017, 31, 15–30.

[3]
Chen, W.; Li, Y. B. Nanoparticles for use in tumor diagnosis and therapy. U.S. Patent 8,999,294 B2, April 7, 2015.
[4]

Chen, W. Nanoparticle fluorescence based technology for biological applications. J. Nanosci. Nanotechnol. 2008, 8, 1019–1051.

[5]

Barker, H. E.; Paget, J. T. E.; Khan, A. A.; Harrington, K. J. The tumour microenvironment after radiotherapy: Mechanisms of resistance and recurrence. Nat. Rev. Cancer 2015, 15, 409–425.

[6]

Muz, B.; de la Puente, P.; Azab, F.; Azab, A. K. The role of hypoxia in cancer progression, angiogenesis, metastasis, and resistance to therapy. Hypoxia 2015, 3, 83–92.

[7]

Moody, A. S.; Dayton, P. A.; Zamboni, W. C. Imaging methods to evaluate tumor microenvironment factors affecting nanoparticle drug delivery and antitumor response. Cancer Drug Resist. 2021, 4, 382–413.

[8]

Chudal, L.; Pandey, N. K.; Phan, J.; Johnson, O.; Li, X. Y.; Chen, W. Investigation of PPIX-Lipo-MnO2 to enhance photodynamic therapy by improving tumor hypoxia. Mater. Sci. Eng. C 2019, 104, 109979.

[9]

Höckel, M.; Vaupel, P. Tumor hypoxia: Definitions and current clinical, biologic, and molecular aspects. J. Natl. Cancer Inst. 2001, 93, 266–276.

[10]

Wilson, W. R.; Hay, M. P. Targeting hypoxia in cancer therapy. Nat. Rev. Cancer 2011, 11, 393–410.

[11]

Li, B. Y.; Li, N.; Wang, N. N.; Li, C. Q.; Liu, X. N.; Cao, Z. S.; Xing, C. F.; Wang, S. Targeting ROS-sensitive TRP ion channels for relieving oxidative stress-related diseases based on nanomaterials. Mater. Today Adv. 2023, 17, 100335.

[12]

Menon, I.; Zaroudi, M.; Zhang, Y. Z.; Aisenbrey, E.; Hui, L. W. Fabrication of active targeting lipid nanoparticles: Challenges and perspectives. Mater. Today Adv. 2022, 16, 100299.

[13]

Qin, Y. R.; Wang, Z. J.; Wang, X. Y.; Zhang, T. Y.; Hu, Y. X.; Wang, D. N.; Sun, H.; Zhang, L. F.; Zhu, Y. Q. Therapeutic effect of multifunctional celastrol nanoparticles with mitochondrial alkaline drug release in breast cancer. Mater. Today Adv. 2023, 17, 100328.

[14]

Chudal, L.; Pandey, N. K.; Phan, J.; Johnson, O.; Lin, L. W.; Yu, H. M.; Shu, Y.; Huang, Z. Z.; Xing, M. Y.; Liu, J. P. et al. Copper-cysteamine nanoparticles as a heterogeneous Fenton-like catalyst for highly selective cancer treatment. ACS Appl. Bio Mater. 2020, 3, 1804–1814.

[15]

Hao, Y. N.; Qu, C. C.; Shu, Y.; Wang, J. H.; Chen, W. Construction of novel nanocomposites (Cu-MOF/GOD@HA) for chemodynamic therapy. Nanomaterials 2021, 11, 1843.

[16]

Liu, Y.; Wu, J. D.; Jin, Y. H.; Zhen, W. Y.; Wang, Y. H.; Liu, J. H.; Jin, L. H.; Zhang, S. T.; Zhao, Y.; Song, S. Y. et al. Copper(Ⅰ) phosphide nanocrystals for in situ self-generation magnetic resonance imaging-guided photothermal-enhanced chemodynamic synergetic therapy resisting deep-seated tumor. Adv. Funct. Mater. 2019, 29, 1904678.

[17]

Liu, Z. X.; Macharia, D. K.; Chen, W.; Yu, N.; Yang, C.; Hu, J. Q.; Chen, Z. G. The recent progress in photothermal agents for cancer therapy. Rev. Nanosci. Nanotechnol. 2016, 5, 93–118.

[18]

Li, L. H.; Rashidi, L. H.; Yao, M. Y.; Ma, L.; Chen, L. L.; Zhang, J. Y.; Zhang, Y.; Chen, W. CuS nanoagents for photodynamic and photothermal therapies: Phenomena and possible mechanisms. Photodiagn. Photodyn. Ther. 2017, 19, 5–14.

[19]

Li, Y. B.; Lu, W.; Huang, Q.; Huang, M.; Li, C.; Chen, W. Copper sulfide nanoparticles for photothermal ablation of tumor cells. Nanomedicine 2010, 5, 1161–1171.

[20]

Bui, B.; Liu, L.; Chen, W. Latex carrier for Improving Protoporphryin Ⅸ properties for photodynamic therapy. Photodiagn. Photodyn. Ther. 2016, 14, 159–165.

[21]

Homayoni, H.; Jiang, K.; Zou, X. J.; Hossu, M.; Rashidi, L. H.; Chen, W. Enhancement of protoporphyrin Ⅸ performance in aqueous solutions for photodynamic therapy. Photodiagn. Photodyn. Ther. 2015, 12, 258–266.

[22]

Homayoni, H.; Rashidi, L. H.; Chen, W. Combination of photodynamic therapy and nanotechnology: Non-invasive weapon against cancer. Rev. Nanosci. Nanotechnol. 2014, 3, 107–132.

[23]

Shrestha, S.; Wu, J.; Sah, B.; Vanasse, A.; Cooper, L. N.; Ma, L.; Li, G.; Zheng, H. B.; Chen, W.; Antosh, M. P. X-ray induced photodynamic therapy with copper-cysteamine nanoparticles in mice tumors. Proc. Natl. Acad. Sci. USA 2019, 116, 16823–16828.

[24]

Chen, W.; Zhang, J. Using nanoparticles to enable simultaneous radiation and photodynamic therapies for cancer treatment. J. Nanosci. Nanotechnol. 2006, 6, 1159–1166.

[25]

Chen, W. Nanoparticle self-lighting photodynamic therapy for cancer treatment. J. Biomed. Nanotechnol. 2008, 4, 369–276.

[26]

Chu, X.; Li, K.; Guo, H. Y.; Zheng, H. B.; Shuda, S.; Wang, X. L.; Zhang, J. Y.; Chen, W.; Zhang, Y. Exploration of graphitic–C3N4 quantum dots for microwave-induced photodynamic therapy. ACS Biomater. Sci. Eng. 2017, 3, 1836–1844.

[27]

Yao, M. Y.; Ma, L.; Li, L. H.; Zhang, J. Y.; Lim, R. X.; Chen, W.; Zhang, Y. A new modality for cancer treatment-nanoparticle mediated microwave induced photodynamic therapy. J. Biomed. Nanotechnol. 2016, 12, 1835–1851.

[28]

Pandey, N. K.; Xiong, W.; Wang, L. Y.; Chen, W.; Bui, B.; Yang, J.; Amador, E.; Chen, M. L.; Xing, C.; Athavale, A. A. et al. Aggregation-induced emission luminogens for highly effective microwave dynamic therapy. Bioact. Mater. 2022, 7, 112–125.

[29]

Liu, Z. P.; Xiong, L.; Ouyang, G. Q.; Ma, L.; Sahi, S.; Wang, K. P.; Lin, L. W.; Huang, H.; Miao, X. Y.; Chen, W. et al. Investigation of copper cysteamine nanoparticles as a new type of radiosensitiers for colorectal carcinoma treatment. Sci. Rep. 2017, 7, 9290.

[30]

Ma, L.; Chen, W.; Schatte, G.; Wang, W.; Joly, A. G.; Huang, Y. N.; Sammynaiken, R.; Hossu, M. A new Cu-cysteamine complex: Structure and optical properties. J. Mater. Chem. C 2014, 2, 4239–4246.

[31]

Wang, P.; Wang, X.; Ma, L.; Sahi, S.; Li, L.; Wang, X. B.; Wang, Q. Q.; Chen, Y. J.; Chen, W.; Liu, Q. L. Nanosonosensitization by using copper-cysteamine nanoparticles augmented sonodynamic cancer treatment. Part. Part. Syst. Charact. 2018, 35, 1700378.

Nano TransMed
Article number: e9130020
Cite this article:
Chen W. On nano-solutions to overcome cancer hypoxia and resistance. Nano TransMed, 2023, 2(1): e9130020. https://doi.org/10.26599/NTM.2023.9130020

855

Views

140

Downloads

4

Crossref

Altmetrics

Received: 26 March 2023
Accepted: 29 March 2023
Published: 03 April 2023
© The Author(s) 2023. Nano TransMed published by Tsinghua University Press.

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return