AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.5 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Original Article | Open Access

Preparation and Characterization of Nanocrystalline Cellulose/Poly (lactic acid) Composite Membranes

MeiChun Ding1ChenWei Li2FuShan Chen1( )
College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, State Key Laboratory Base of Eco-chemical Engineering, Qingdao, Shandong Province, 266042, China
College of Materials Science and Engineering, Laboratory of Fiber Materials and Modern Textile, Qingdao University, Qingdao, Shandong Province, 266071, China
Show Author Information

Abstract

Nanocrystalline cellulose (NCC)/poly (lactic acid) (PLLA) composite membranes were prepared by the solution casting method. Physical and chemical modifications were performed to improve the compatibility of NCC and PLLA. The results indicated that the NCC dispersibility of the composite membranes with chemical modification were superior to that of the composite membranes with physical modification. Moreover, the chemical modification NCC not only had a large effect on the nucleation and growth of the crystals, but also affected the crystal forms of PLLA. This was because chemical reactions took place between the silicone of silane coupling agent (KH-570) and the hydroxyl groups of NCC during blending. The chemical modification NCC could be dispersed stably in the PLLA matrix, and it played the role of a nucleating agent.

References

[1]

Bogaert J C, Coszach P. Poly(lactic acids): A potential solution to plastic waste dilemma[J]. Macromol Symp, 2000, 153: 287-303.

[2]

Drumright R E, Gruber P R, Henton D E. Polylactic acid technology[J]. Adv Mater, 2000, 12: 1841-1846.

[3]

Garlotta D. A literature review of poly(lactic acid)[J]. Journal of Polymers and the Environment, 2001, 9: 63-84.

[4]

Nair L S, Laurencin C T. Biodegradable polymers as biomaterials[J]. Progress in Polymer Science, 2007, 32(8/9): 762-798.

[5]

Auras R, Harte B, Selke S. An overview of polylactides as packaging materials[J]. Macromol Biosci, 2004, 4(9): 835-864.

[6]

Suryanegara L, Nakagaito A N, Yano H. The effect of crystallization of PLA on the thermal and mechanical properties of microfibrillated cellulose-reinforced PLA composites[J]. Compos Sci Technol, 2009, 69(7/8): 1187-1192.

[7]

Sarasua J R, Arraiza A L, Balerdi P, et al. Crystallinity and mechanical properties of optically pure polylactides and their blends[J]. Polym Eng Sci, 2005, 45(5): 745-753.

[8]

Vasanthakumari R, Pennings A J. Crystallization Kinetics of Poly(L-Lactic Acid)[J]. Polymer, 1983, 24(2): 175-178.

[9]

Miyata T, Masuko T. Crystallization behaviour of poly(L-lactide)[J]. Polymer, 1998, 39(22): 5515-5521.

[10]

Kawai T, Rahman N, Matsuba G, et al. Crystallization and melting behavior of poly(L-lactic acid)[J]. Macromolecules, 2007, 40(26): 9463-9469.

[11]

Tsuji H, Ikada Y. Properties and Morphologies of Poly(L-Lactide). 1. Annealing Condition Effects on Properties and Morphologies of Poly(L-Lactide)[J]. Polymer, 1995, 36(14): 2709-2716.

[12]

Pan P, Inoue Y. Polymorphism and isomorphism in biodegradable polyesters[J]. Progress in Polymer Science, 2009, 34(7): 605-640.

[13]

Pan P, Kai W, Zhu B, et al. Polymorphous crystallization and multiple melting behavior of poly(L-lactide): Molecular weight dependence[J]. Macromolecules, 2007, 40(19): 6898-6905.

[14]

Pan P, Liang Z, Zhu B, et al. Blending Effects on Polymorphic Crystallization of Poly(L-lactide)[J]. Macromolecules, 2009, 42(9): 3374-3380.

[15]

Sasaki S, Asakura T. Helix distortion and crystal structure of the alpha-form of poly(L-lactide)[J]. Macromolecules, 2003, 36(22): 8385-8390.

[16]

Zhang J M, Duan Y X, Sato H, et al. Crystal modifications and thermal behavior of poly(L-lactic acid) revealed by infrared spectroscopy[J]. Macromolecules, 2005, 38(19): 8012-8021.

[17]

Yasuniwa M, Sakamo K, Ono Y, et al. Melting behavior of poly(L-lactic acid): X-ray and DSC analyses of the melting process[J]. Polymer, 2008, 49(7): 1943-1951.

[18]

Zhang J, Tashiro K, Tsuji H, et al. Disorder-to-order phase transition and multiple melting behavior of poly(L-lactide) investigated by simultaneous measurements of WAXD and DSC[J]. Macromolecules, 2008, 41(4): 1352-1357.

[19]

Tsuji H, Kawashima Y, Takikawa H. Poly(L-lactide)/C-60 nanocomposites: Effect of C-60 on crystallization of poly(L-lactide)[J]. J Polym Sci Pol Phys, 2007, 45: 2167-2176.

[20]

Zhao Y Y, Qiu Z B, Yan S K, et al. Crystallization Behavior of Biodegradable Poly(L-lactide)/Multiwalled Carbon Nanotubes Nanocomposites from the Amorphous State[J]. Polym Eng Sci, 2011, 51: 1564-1573.

[21]

Goffin A L, Raquez J M, Duquesne E, et al. From Interfacial Ring-Opening Polymerization to Melt Processing of Cellulose Nanowhisker-Filled Polylactide-Based Nanocomposites[J]. Biomacromolecules, 2011, 12: 2456-2465.

[22]

Mishra S, Misra M, Tripathy S S, et al. The influence of chemical surface modification on the performance of sisal-polyester biocomposites[J]. Polymer Composites, 2002, 23: 164-170.

[23]

Grunert M, Winter W T. Nanocomposites of cellulose acetate butyrate reinforced with cellulose nanocrystals[J]. Journal of Polymers and the Environment, 2002, 10: 27-30.

[24]

Espinosa S C, Kuhnt T, Foster E J, et al. Isolation of Thermally Stable Cellulose Nanocrystals by Phosphoric Acid Hydrolysis[J]. Biomacromolecules, 2013, 14: 1223-1230.

[25]

Tan C J, Peng J, Lin W H, et al. Role of surface modification and mechanical orientation on property enhancement of cellulose nanocrystalsipolymer nanocomposites[J]. Eur Polym J, 2015, 62: 186-197.

[26]

Du R B, Mcdermott M T. Surface modification of nanocrystalline cellulose (NCC) with diazonium salts[J]. Abstr Pap Am Chem S, 2013, 246.

[27]

van de Ven T G, Sheikhi A. Hairy cellulose nanocrystalloids: a novel class of nanocellulose[J]. Nanoscale, 2016, 8: 15101-15114.

[28]

Feng Q, Hou D Y, Zhao Y, et al. Electrospun Regenerated Cellulose Nanofibrous Membranes Surface-Grafted with Polymer Chains/Brushes via the Atom Transfer Radical Polymerization Method for Catalase Immobilization[J]. Acs Appl Mater Inter, 2014, 6: 20958-20967.

[29]

Sun J R, Yu H Y, Zhuang X L, et al. Crystallization Behavior of Asymmetric PLLA/PDLA Blends[J]. J Phys Chem B, 2011, 115: 2864-2869.

[30]

Wu N J, Ding M C, Li C W, et al. Lamellar Orientation and Crystallization Dynamics of Poly(L-Lactic Acid) Thin Films Investigated by In-Situ Reflection Absorption Infrared Spectroscopy[J]. J Phys Chem B, 2011, 115: 11548-11553.

[31]

Cai Y H, Tang Y, Zhao L S. Poly(l-lactic acid) with the organic nucleating agent N, N, N-tris(1H-benzotriazole) trimesinic acid acethydrazide: Crystallization and melting behavior[J]. J Appl Polym Sci, 2015, 132: 42402-42408.

[32]

Cai Y H, Zhang Y H. The Crystallization, Melting Behavior, and Thermal Stability of Poly(L-lactic acid) Induced by N,N,N'-Tris(benzoyl) Trimesic Acid Hydrazide as an Organic Nucleating Agent[J]. Adv Mater Sci Eng, 2014, 2014: 843564-843571.

Paper and Biomaterials
Pages 28-34
Cite this article:
Ding M, Li C, Chen F. Preparation and Characterization of Nanocrystalline Cellulose/Poly (lactic acid) Composite Membranes. Paper and Biomaterials, 2017, 2(3): 28-34. https://doi.org/10.26599/PBM.2017.9260018

375

Views

10

Downloads

1

Crossref

0

Scopus

Altmetrics

Received: 11 April 2017
Accepted: 04 May 2017
Published: 25 July 2017
© 2017 Paper and Biomaterials Editorial Board

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Return