AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.6 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Original Article | Open Access

Surface Chemical Modification of Cellulose Nanocrystals and Its Application in Biomaterials

XiaoZhou Ma1YanJie Zhang2Jin Huang1,2( )
School of Chemistry and Chemical Engineering, Joint International Research Laboratory of Biomass-Based Macromolecular Chemistry and Materials, Southwest University, Chongqing, 400715, China
School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan, Hubei Province, 430070, China
Show Author Information

Abstract

Cellulose nanocrystals (CNCs) have been widely applied in biomaterials and show great biocompatibility and mechanical strength. In this review, the chemical reactions applied in CNC surface modification and their application in CNC based biomaterials are introduced. Furthermore, the conjugation of different functional molecules and nanostructures to the surface of CNCs are discussed, with focus on the binding modes, reaction conditions, and reaction mechanisms. With this introduction, we hope to provide a clear view of the strategies for surface modification of CNCs and their application in biomaterials, thus providing an overall picture of promising CNC-based biomaterials and their production.

References

[1]

Armelao L, Barreca D, Bottaro G, et al. Recent trends on nanocomposites based on Cu, Ag and Au clusters: A closer look[J]. Coordination Chemistry Reviews, 2006, 250 (11/12): 1294-1314.

[2]

Belov A N, Bulyarsky S V, Gromov D G, et al. Study of silver cluster formation from thin films on inert surface[J]. Calphad-computer Coupling of Phase Diagrams and Thermochemistry, 2014, 44: 138-141.

[3]

Choi W I, Sahu A, Kim Y H, et al. Photothermal Cancer Therapy and Imaging Based on Gold Nanorods[J]. Annals of Biomedical Engineering, 2012, 40 (2): 534-546.

[4]

Sunasee R, Hemraz U D, Ckless K. Cellulose nanocrystals: a versatilenano platform for emerging biomedical applications[J]. Expert Opinion on Drug Delivery, 2016, 13 (9): 1243-1256.

[5]

Pachuau L S. A Mini Review on Plant-based Nanocellulose: Production, Sources, Modifications and Its Potential in Drug Delivery Applications[J]. Mini-Rev Med Chem, 2015, 15 (7): 543-552.

[6]

Zarina S, Ahmad I. Biodegradable Composite Films based on Kappa-carrageenan Reinforced by Cellulose Nanocrystal from Kenaf Fibers[J]. Bioresources, 2015, 10 (1): 256-271.

[7]

Davis V A. Liquid crystalline assembly of nanocylinders[J]. J Mater Res, 2011, 26 (2): 140-153.

[8]

Trache D, Hussin M H, Haafiz M K M, et al. Recent progress incellulosenanocry stals: sources and production[J]. Nanoscale, 2017, 9 (5): 1763-1786.

[9]

Ooi S Y, Ahmad I, Amin M C I M. Cellulose nanocrystals extracted from rice husks as a reinforcing material in gelatin hydrogels for use in controlled drug delivery systems[J]. Industrial Crops and Products, 2016, 93: 227-234.

[10]

Eyley S, Thielemans W. Surface modification of cellulose nanocrystals[J]. Nanoscale, 2014, 6 (14): 7764-7779.

[11]

Vatansever A, Dogan H, Inan T, et al. Properties of Na-Montmorillonite and Cellulose Nanocrystal Reinforced Poly (butyl acrylate-co-methyl methacrylate) Nanocomposites[J]. Polym Eng Sci, 2015, 55 (12): 2922-2928.

[12]

Alam M M, Mandal D. Native Cellulose Microfiber-Based Hybrid Piezoelectric Generator for Mechanical Energy Harvesting Utility[J]. ACS Applied Materials & Interfaces, 2016, 8 (3): 1555-1558.

[13]

Ditzel F I, Prestes E, Carvalho B M, et al. Nanocrystalline cellulose extracted from pine wood and corncob[J]. Carbohydr Polym, 2017, 157: 1577-1585.

[14]

Zhang Y F, Maimaiti H, Zhang B. Preparation of cellulose-based fluorescent carbon nanoparticles and their application in trace detection of Pb (Ⅱ)[J]. RSC Advances, 2017, 7 (5): 2842-2850.

[15]

Ruiz-Palomero C, Laura Soriano M, Valcarcel M. Nanocellulose as analyte and analytical tool: Opportunities and challenges[J]. Tr AC Trends in Analytical Chemistry, 2017, 87: 1-18.

[16]

Camarero Espinosa S, Kuhnt T, Foster E J. Isolation of thermally stable cellulose nanocrystals by phosphoric acid hydrolysis[J]. Biomacromolecules, 2013, 14 (4): 1223-1230.

[17]

Roman M, Winter W T. Effect of sulfate groups from sulfuric acid hydrolysis on the thermal degradation behavior of bacterial cellulose[J]. Biomacromolecules, 2004, 5 (5): 1671-1677.

[18]

Dong X M, Revol J F, Gray D G. Effect of microcrystallite preparation conditions on the formation of colloid crystals of cellulose[J]. Cellu, 1998, 5 (1): 19-32.

[19]

Abitbol T, Kloser E, Gray D G. Estimation of the surface sulfur content of cellulose nanocrystals prepared by sulfuric acid hydrolysis[J]. Cellu, 2013, 20 (2): 785-794.

[20]

Lemke C H, Dong R Y, Michal C A, et al. New insights into nano-crystalline cellulose structure and morphology based on solid-state NMR[J]. Cellu, 2012, 19 (5): 1619-1629.

[21]

Cao S, Xu P, Ma Y, et al. Recent advances in immobilized enzymes on nanocarriers[J]. Chinese Journal of Catalysis, 2016, 37 (11): 1814-1823.

[22]

Domingues R M A, Gomes M E, Reis R L. The Potential of Cellulose Nanocrystalsin Tissue Engineering Strategies[J]. Biomacromolecules, 2014, 15 (7): 2327-2346.

[23]

Lam E, Male K B, Chong J H, et al. Applications of functionalized and nanoparticle-modified nanocrystalline cellulose[J]. Trends Biotechnol, 2012, 30 (5): 283-290.

[24]

Indarti E, Roslan R, Husin M, et al. Polylactic Acid Bionanocomposites Filled with Nanocrystalline Cellulose from TEMPO-Oxidized Oil Palm Lignocellulosic Biomass[J]. Bioresources, 2016, 11 (4): 8615-8626.

[25]

Lai C, Zhang S, Sheng L, et al. TEMPO-mediated oxidation of bacterial cellulose in a bromide-free system[J]. Colloid Polym Sci, 2013, 291 (12): 2985-2992.

[26]

Yang H, Tejado A, Alam N, et al. Films Prepared from Electrosterically Stabilized Nanocrystalline Cellulose[J]. Langmuir, 2012, 28 (20): 7834-7842.

[27]

Jausovec D, Vogrincic R, Kokol V. Introduction of aldehyde vs. carboxylic groups to cellulose nanofibers using laccase/TEMPO mediated oxidation[J]. Carbohydr Polym, 2015, 116: 74-85.

[28]

Masruchin N, Park B-D, Causin V, et al. Characteristics of TEMPO-oxidized cellulose fibril-based hydrogels induced by cationic ions and their properties[J]. Cellu, 2015, 22 (3), 1993-2010.

[29]

Rohaizu R, Wanrosli W D. Sono-assisted TEMPOoxidation of oil palm lignocellulosic biomass for isolation of nanocrystalline cellulose[J]. Ultrason Sonochem, 2017, 34: 631-639.

[30]

Montanari S, Rountani M, Heux L, et al. Topochemistry of carboxylated cellulose nanocrystals resulting from TEMPO-mediated oxidation[J]. Macromolecules, 2005, 38 (5): 1665-1671.

[31]

Leung A C W, Hrapovic S, Lam E, et al. Characteristics and Properties of Carboxylated Cellulose Nanocrystals Prepared from a Novel One-Step Procedure[J]. Small, 2011, 7 (3): 302-305.

[32]

Garcia-Astrain C, Gonzalez K, Gurrea T, et al. Maleimidegrafted cellulose nanocrystals as cross-linkers for bionanocomposite hydrogels[J]. Carbohydr Polym, 2016, 149: 94-101.

[33]

Kim H J, Park S, Kim S H, et al. Biocompatible cellulose nanocrystals as supports to immobilize lipase[J]. Journal of Molecular Catalysis B Enzymatic, 2015, 122: 170-178.

[34]

Cao S-L, Li X-H, Lou W-Y, et al. Preparation of a novel magnetic cellulose nanocrystal and its efficient use for enzyme immobilization[J]. Journal of Materials Chemistry B, 2014, 2 (34): 5522-5530.

[35]

Spinella S, Maiorana A, Qian Q, et al. Concurrent Cellulose Hydrolysis and Esterification to Prepare a Surface-Modified Cellulose Nanocrystal Decorated with Carboxylic Acid Moieties[J]. ACS Sustainable Chemistry & Engineering, 2016, 4 (3): 1538-1550.

[36]

Fumagalli M, Sanchez F, Boisseau S M, et al. Gas-phase esterification of cellulose nanocrystal aerogels for colloidal dispersion in apolar solvents[J]. Soft Matter, 2013, 9 (47): 11309-11317.

[37]

Lin N, Chen G, Huang J, et al. Effects of Polymer-Grafted Natural Nanocrystals on the Structure and Mechanical Properties of Poly (lactic acid): A Case of Cellulose Whisker-graft-Polycaprolactone[J]. J Appl Polym Sci, 2009, 113 (5): 3417-3425.

[38]

Shang W, Huang J, Luo H, et al. Hydrophobic modification of cellulose nanocrystal via covalently grafting of castor oil[J]. Cellu, 2013, 20 (1): 179-190.

[39]

Chen G, Dufresne A, Huang J et al. A Novel Thermoformable Bionanocomposite Based on Cellulose Nanocrystal-graft-Poly (epsilon-caprolactone)[J]. Macromolecular Materials and Engineering, 2009, 294 (1): 59-67.

[40]

Lin S, Huang J, Chang P R, et al. Structure and mechanical properties of new biomass-based nanocomposite: Castor oil-based polyurethane reinforced with acetylated cellulose nanocrystal[J]. Carbohydr Polym, 2013, 95 (1): 91-99.

[41]

Lin N, Huang J, Chang P R, et al. Surface acetylation of cellulose nanocrystal and its reinforcing function in poly (lactic acid)[J]. Carbohydr Polym, 2011, 83 (4): 1834-1842.

[42]

Mesquita J P de, Donnici C L, Teixeira I F, et al. Biobased nanocomposites obtained through covalent linkage between chitosan and cellulose nanocrystals[J]. Carbohydr Polym, 2012, 90 (1): 210-217.

[43]

Zhao L, Li W, Plog A, et al. Multi-responsive cellulose nanocrystal-rhodamine conjugates: an advanced structure study by solid-state dynamic nuclear polarization (DNP) NMR[J]. Phys Chem Chem Phys, 2014, 16 (47): 26322-26329.

[44]

Zhang X, Ma P, Zhang Y. Structure and properties of surface-acetylated cellulose nanocrystal/poly (butylene adipate-co-terephthalate) composites[J]. Polym Bull, 2016, 73 (7): 2073-2085.

[45]

Hu F, Lin N, Chang P R, et al. Reinforcement and nucleation of acetylated cellulose nanocrystals in foamed polyester composites[J]. Carbohydr Polym, 2015, 129: 208-215.

[46]

Biyani M V, Foster E J, Weder C. Light-Healable Supramolecular Nanocomposites Based on Modified Cellulose Nanocrystals[J]. ACS Macro Letters, 2013, 2 (3): 236-240.

[47]

Palomo J. Click reactions in protein chemistry: from the preparation of semisynthetic enzymes to new click enzymes[J]. Organic & Biomolecular Chemistry, 2012, 10 (47): 9309-9318.

[48]

Presolski S I, Mamidyala S K, Manzenrieder F, et al. Resin-supported catalysts for Cu AAC click reactions in aqueous or organic solvents[J]. ACS Combinatorial Science, 2012, 14 (10): 527-530.

[49]

Liang L, Astruc D. The copper(Ⅰ)-catalyzed alkyneazide cycloaddition (Cu AAC) "click" reaction and its applications. An overview[J]. Coord Chem Rev, 2011, 255 (23/24): 2933-2945.

[50]

Hoyle C E, Bowman C N. Thiol-Ene Click Chemistry[J]. Angewandte Chemie-International Edition, 2010, 49 (9): 1540-1573.

[51]

Grim J C, Marozas I A, Anseth K S. Thiol-ene and photo-cleavage chemistry for controlled presentation of biomolecules in hydrogels[J]. Journal of Controlled Release, 2015, 219: 95-106.

[52]

Worrell B T, Malik J A, Fokin V V. Direct Evidence of a Dinuclear Copper Intermediate in Cu(Ⅰ)-Catalyzed AzideAlkyne Cycloadditions[J]. Sci, 2013, 340 (6131): 457-460.

[53]

Lowe A B. Thiol-ene"click"reactions and recent applications in polymer and materials synthesis[J]. Polymer Chemistry, 2010, 1 (1): 17-36.

[54]

Owens E A, Lee S, Choi J, et al. NIR fluorescent small molecules for intraoperative imaging[J]. Wiley Interdisciplinary Reviews-Nanomedicine and Nanobiotechnology, 2015, 7 (6): 828-838.

[55]

Ma F, Li Y, Tang B, et al. Fluorescent Biosensors Based on Single-Molecule Counting[J]. Acc Chem Res, 2016, 49 (9): 1722-1730.

[56]

Huang S-H, Juang R-S. Biochemical and biomedical applications of multifunctional magnetic nanoparticles: a review[J]. Journal of Nanoparticle Research, 2011, 13 (10): 4411-4430.

[57]

Shubayev V I, Pisanic T R, Jin S. Magnetic nanoparticles for theragnostics[J]. Advanced Drug Delivery Reviews, 2009, 61 (6): 467-477.

[58]

Dong S, Roman M. Fluorescently labeled cellulose nanocrystals for bioimaging applications[J]. Journal of the American Chemical Society, 2007, 129 (45): 13810-13811.

[59]

Nielsen L J, Eyley S, Thielemans W, et al. Dual fluorescent labelling of cellulose nanocrystals for p H sensing[J]. Chem Commun, 2010, 46 (47): 8929-8931.

[60]

Sirbu E, Eyley S, Thielemans W. Coumarin and carbazole fluorescently modified cellulose nanocrystals using a onestep esterification procedure[J]. Can J Chem Eng, 2016, 94 (11): 2186-2194.

[61]

Zhang L, Li Q, Zhou J, et al. Synthesis and Photophysical Behavior of Pyrene-Bearing Cellulose Nanocrystals for Fe3+Sensing[J]. Macromol Chem Phys, 2012, 213 (15): 1612-1617.

[62]

Abitbol T, Palermo A, Moran-Mirabal J M, et al. Fluorescent Labeling and Characterization of Cellulose Nanocrystals with Varying Charge Contents[J]. Biomacromolecules, 2013, 14 (9): 3278-3284.

[63]

Zhang L, Zhou J, Zhang L. Synthesis and Fluorescent Properties of Carbazole-Substituted Hydroxyethylcelluloses[J]. Macromol Chem Phys, 2012, 213 (1): 57-63.

[64]

Tang L, Li T, Zhuang S, et al. Synthesis of p H-Sensitive Fluorescein Grafted Cellulose Nanocrystals with an Amino Acid Spacer[J]. ACS Sustainable Chemistry & Engineering, 2016, 4 (9): 4842-4849.

[65]

Huang J L, Li C J, Gray D G. Cellulose Nanocrystals Incorporating Fluorescent Methylcoumarin Groups[J]. ACS Sustainable Chemistry & Engineering, 2013, 1 (9): 1160-1164.

[66]

Colombo L, Zoia L, Violatto M B, et al. Organ Distribution and Bone Tropism of Cellulose Nanocrystals in Living Mice[J]. Biomacromolecules, 2015, 16 (9): 2862-2871.

[67]

Yu H Y, Qin Z Y, Yan C F, et al. Green Nanocomposites Based on Functionalized Cellulose Nanocrystals: A Study on the Relationship between Interfacial Interaction and Property Enhancement[J]. ACS Sustainable Chemistry & Engineering, 2014, 2 (4): 875-886.

[68]

Tan C, Peng J, Lin W, et al. Role of surface modification and mechanical orientation on property enhancement of cellulose nanocrystalsipolymer nanocomposites[J]. Eur Polym J, 2015, 62: 186-197.

[69]

Iyer K A, Schueneman G T, Torkelson J M. Cellulose nanocrystal/polyolefin biocomposites prepared by solidstate shear pulverization: Superior dispersion leading to synergistic property enhancements[J]. Polymer, 2015, 56: 464-475.

[70]

Yang J, Han C R, Duan J F, et al. Mechanical and Viscoelastic Properties of Cellulose Nanocrystals Reinforced Poly (ethylene glycol) Nanocomposite Hydrogels[J]. ACS Applied Materials & Interfaces, 2013, 5 (8): 3199-3207.

[71]

Tian M, Zhen X, Wang Z, et al. Bioderived RubberCellulose Nanocrystal Composites with Tunable WaterResponsive Adaptive Mechanical Behavior[J]. ACSApplied Materials & Interfaces, 2017, 9 (7): 6482-6487.

[72]

Zhou Y, Fan M, Chen L, et al. Lignocellulosit fibre mediated rubber composites: An overview[J]. Composites Part B Engineering, 2015, 76: 180-191.

[73]

Tang J, Lee M F X, Zhang W, et al. Dual Responsive Pickering Emulsion Stabilized by Poly 2-(dimethylamino) ethyl methacrylate Grafted Cellulose Nanocrystals[J]. Biomacromolecules, 2014, 15 (8): 3052-3060.

[74]

Orelma H, Vuoriluoto M, Johansson L-S, et al. Preparation of photoreactive nanocellulosic materials via benzophenone grafting[J]. RSC Advances, 2016, 6 (88): 85100-85106.

[75]

Benkaddour A, Jradi K, Robert S, et al. Grafting of Polycaprolactone on Oxidized Nanocelluloses by Click Chemistry[J]. Nanomaterials, 2013, 3 (1): 141-157.

[76]

Lin N, Huang J, Dufresne A. Preparation, properties and applications of polysaccharide nanocrystals in advanced functional nanomaterials: a review[J]. Nanoscale, 2012, 4 (11): 3274-3294.

[77]

Wu W, Huang F, Pan S, et al. Thermo-responsive and fluorescent cellulose nanocrystals grafted with polymer brushes[J]. Journal of Materials Chemistry A, 2015, 3 (5): 1995-2005.

[78]

Gupta A, Simmons W, Schueneman G T, et al. Rheological and Thermo-Mechanical Properties of Poly (lactic acid)/Lignin-Coated Cellulose Nanocrystal Composites[J]. ACSSustainable Chemistry & Engineering, 2017, 5 (2): 1711-1720.

[79]

Azzam F, Siqueira E, Fort S, et al. Tunable Aggregation and Gelation of Thermoresponsive Suspensions of Polymer-Grafted Cellulose Nanocrystals[J]. Biomacromolecules, 2016, 17 (6), 2112-2119.

[80]

Lin N, Dufresne A. Supramolecular Hydrogels from In Situ Host-Guest Inclusion between Chemically Modified Cellulose Nanocrystals and Cyclodextrin[J]. Biomacromolecules, 2013, 14 (3): 871-880.

[81]

Yu H-Y, Qin Z-Y. Surface grafting of cellulose nanocrstal swith poly (3-hydroxy but yrate-co-3-hydroxyvalerate)[J]. Carbohydr Polym, 2014, 101: 471-478.

[82]

Hemraz U D, Lu A, Sunasee R, et al. Structure of poly (N-isopropylacrylamide) brushes and steric stability of their grafted cellulose nanocrystal dispersions[J]. J Colloid Interface Sci, 2014, 430: 157-165.

[83]

Yang J, Han C R, Duan J F, et al. Synthesis and characterization of mechanically flexible and tough cellulose nanocrystals-polyacrylamide nanocomposite hydrogels[J]. Cellu, 2013, 20 (1): 227-237.

[84]

Waldron K J, Rutherford J C, Ford D, et al. Metalloproteins and metal sensing[J]. Nature, 2009, 460 (7257): 823-830.

[85]

Kim D, Daniel W, Mirkin C. Microarray-based multiplexed scanometric immunoassay for protein cancer markers using gold nanoparticle probes[J]. Anal Chem, 2009, 81 (21): 9183-9187.

[86]

Edwards J V, Fontenot K R, Haldane D, et al. Human neutrophil elastase peptide sensors conjugated to cellulosic and nanocellulosic materials: part Ⅰ, synthesis and characterization of fluorescent analogs[J]. Cellu, 2016, 23 (2): 1283-1295.

[87]

Edwards J V, Prevost N, Sethumadhavan K, et al. Peptide conjugated cellulose nanocrystals with sensitive human neutrophil elastase sensor activity[J]. Cellu, 2013, 20 (3): 1223-1235.

[88]

Mahmoud K A, Male K B, Hrapovic S, et al. Cellulose Nanocrystal/Gold Nanoparticle Composite as a Matrix for Enzyme Immobilization[J]. ACS Applied Materials & Interfaces, 2009, 1 (7): 1383-1386.

[89]

Mahmoud K A, Lam E, Hrapovic S, et al. Preparation of Well-Dispersed Gold/Magnetite Nanoparticles Embedded on Cellulose Nanocrystals for Efficient Immobilization of Papain Enzyme[J]. ACS Applied Materials & Interfaces, 2013, 5 (11): 4978-4985.

[90]

Meirovitch S, Shtein Z, Ben-Shalom T, et al. Spider SilkCBD-Cellulose Nanocrystal Composites: Mechanism of Assembly[J]. Int J Mol Sci, 2016, DOI:10.3390/ijms17091573.

[91]

Lee J Y, Kwak H W, Yun H, et al. Methyl cellulose nanofibrous mat for lipase immobilization via cross-linked enzyme aggregates[J]. Macromolecular Research, 2016, 24 (3): 218-225.

[92]

Chen P-C, Huang X-J, Huang F, et al. Immobilization of lipase onto cellulose ultrafine fiber membrane for oil hydrolysis in high performance bioreactor[J]. Cellu, 2011, 18 (6): 1563-1571.

[93]

Edwards J V, Prevost N T, Condon B, et al. Immobilization of lysozyme-cellulose amide-linked conjugates on cellulose Ⅰ and Ⅱ cotton nanocrystalline preparations[J]. Cellu, 2012, 19 (2): 495-506.

[94]

Guo J, Filpponen I, Johansson L-S, et al. Complexes of Magnetic Nanoparticles with Cellulose Nanocrystals as Regenerable, Highly Efficient, and Selective Platform for Protein Separation[J]. Biomacromolecules, 2017, 18 (3): 898-905.

[95]

Zhang S, Xia C, Dong Y, et al. Soy protein isolatebased films reinforced by surface modified cellulose nanocrystal[J]. Industrial Crops and Products, 2016, 80: 207-213.

[96]

Yang F, Jin E-S, Zhu Y, et al. A Mini-review on the Applications of Cellulose-Binding Domains in Lignocellulosic Material Utilizations[J]. Bioresources, 2015, 10 (3): 6081-6094.

[97]

Levy I, Shoseyov O. Cellulose-binding domains biotechnological applications[J]. Biotechnol Adv, 2002, 20 (3/4): 191-213.

[98]

Dumas B, Bottin A, Gaulin E, et al. Cellulose-binding domains: cellulose associated-defensivesensing partners[J]. Trends Plant Sci, 2008, 13 (4): 160-164.

[99]

Brun E, Johnson P E, Creagh A L, et al. Structure and binding specificity of the second N-terminal cellulosebinding domain from Cellulomonas fimi endoglucanase C[J]. Biochemistry, 2000, 39 (10): 2445-2458.

[100]

Karaaslan M A, Gao G, Kadla J F. Nanocrystalline cellulose/beta-casein conjugated nanoparticles prepared by click chemistry[J]. Cellu, 2013, 20 (6): 2655-2665.

[101]

Liu H, Wang D, Song Z, et al. Preparation of silver nanopartic lesoncellu losenanocry stalsand the application in electrochemical detection of DNAhybridization[J]. Cellu, 2011, 18 (1): 67-74.

[102]

Ma X Z, Wang M, Chen C, et al. Improving the sensitivity for DNA sensing based on double-anchored DNA modified gold nanoparticles[J]. Sci China-Chem, 2016, 59 (6): 765-769.

[103]

Ghosh P, Han G, De M, et al. Gold nanoparticles in delivery applications[J]. Adv Drug Deliver Rev, 2008, 60 (11): 1307-1315.

[104]

Thaxton C S, Georganopoulou D G, Mirkin C A. Gold nanoparticle probes for the detection of nucleic acid targets[J]. Clin Chim Acta, 2006, 363 (1/2): 120-126.

[105]

Zhu X, Li J, He H, et al. Application of nanomaterials in the bioanalytical detection of disease-related genes[J]. Biosens Bioelectron, 2015, 74: 113-133.

[106]

Chartuprayoon N, Zhang M, Bosze W, et al. Onedimensional nanostructures based bio-detection[J]. Biosens Bioelectron, 2015, 63: 432-443.

[107]

Yan W, Chen C, Wang L, et al. Facile and green synthesis of cellulose nanocrystal-supported gold nanoparticles with superior catalytic activity[J]. Carbohydr Polym, 2016, 140: 66-73.

[108]

Wu X, Lu C, Zhou Z, et al. Green synthesis and formation mechanism of cellulose nanocrystal-supported gold nanoparticles with enhanced catalytic performance[J]. Environmental Science-Nano, 2014, 1 (1): 71-79.

[109]

Huang J L, Gray D G, Li C J. A (3) -Coupling catalyzed by robust Au nanoparticles covalently bonded to HS-functionalized cellulose nanocrystalline films[J]. Beilstein J Org Chem, 2013, 9: 1388-1396.

[110]

Chen L, Cao W J, Quinlan P J, et al. Sustainable Catalysts from Gold-Loaded Polyamidoamine Dendrimer Cellulose Nanocrystals[J]. ACS Sustainable Chemistry & Engineering, 2015, 3 (5): 978-985.

[111]

Drogat N, Granet R, Sol V, et al. Antimicrobial silver nanoparticles generated on cellulose nanocrystals[J]. JNanopart Res, 2011, 13 (4): 1557-1562.

[112]

Lokanathan A R, Uddin K M A, Rojas O J, et al. Cellulose Nanocrystal-Mediated Synthesis of Silver Nanoparticles: Role of Sulfate Groups in Nucleation Phenomena[J]. Biomacromolecules, 2014, 15 (1): 373-379.

[113]

Wang S, Sun J, Jia Y, et al. Nanocrystalline CelluloseAssisted Generation of Silver Nanoparticles for Nonenzymatic Glucose Detection and Antibacterial Agent[J]. Biomacromolecules, 2016, 17 (7): 2472-2478.

[114]

Chen L, Berry R M, Tam K C. Synthesis of β-Cyclodextrin-Modified Cellulose Nanocrystals (CNCs)@Fe3O4@SiO2 Superparamagnetic Nanorods[J]. ACS Sustainable Chemistry & Engineering, 2014, 2 (4): 951-958.

[115]

Ren S, Zhang X, Dong L, et al. Cellulose nanocrystal supported superparamagnetic nanorods with aminated silica shell: synthesis and properties[J]. J Mat S, 2017, 52 (11): 6432-6441.

[116]

Abitbol T, Marway H S, Kedzior S A, et al. Hybrid fluorescent nanoparticles from quantum dots coupled to cellulose nanocrystals[J]. Cellu, 2017, 24 (3): 1287-1293.

[117]

Mansur A A P, de Carvalho F G, Mansur R L, et al. Carboxymethylcellulose/Zn Cd S fluorescent quantum dot nanoconjugates for cancer cell bioimaging[J]. Int J Biol Macromol, 2017, 96: 675-686.

[118]

Zhou Y, Ding E Y, Li W D. Synthesis of Ti O2 nanocubes induced by cellulosenanocrystal (CNC) at low temperature[J]. Mater Lett, 2007, 61 (28): 5050-5052.

[119]

Wu X, Lu C, Zhang W, et al. A novel reagentless approach for synthesizing cellulose nanocrystalsupported palladium nanoparticles with enhanced catalytic performance[J]. Journal of Materials Chemistry A, 2013, 1 (30): 8645-8652.

[120]

Showkot Hossain A M, Balbin A, Sadeghi Erami R, et al. Synthesis and study of the catalytic applications in C-Ccoupling reactions of hybrid nanosystems based on alumina and palladium nanoparticles[J]. Inorg Chim Acta, 2017, 455: 645-652.

[121]

Shin Y, Bae I T, Arey B W, et al. Simple preparation and stabilization of nickel nanocrystals on cellulose nanocrystal[J]. Mater Lett, 2007, 61 (14/15): 3215-3217.

[122]

Zhou Y Q, Du J, Wang L L, et al. Nanocrystals Technology for Improving Bioavailability of Poorly Soluble Drugs: A Mini-Review[J]. Journal of Nanoscience and Nanotechnology, 2017, 17 (1): 18-28.

[123]

Duran N, Lemes A P, Seabra A B. Review of Cellulose Nanocry stals Patents: Preparation, Composites and General Applications[J]. Recent Patents on Nanotechnology, 2012, 6 (1): 16-28.

[124]

Fontenot K R, Edwards J V, Haldane D, et al. Human neutrophil elastase detection with fluorescent peptide sensors conjugated to cellulosic and nanocellulosic materials: part Ⅱ, structure/function analysis[J]. Cellu, 2016, 23 (2): 1297-1309.

[125]

Esmaeili C, Abdi M M, Mathew A P, et al. Synergy Effect of Nanocrystalline Cellulose for the Biosensing Detection of Glucose[J]. Sensors, 2015, 15 (10): 24681-24697.

[126]

Grate J W, Mo K-F, Shin Y V, et al. Alexa Fluor-Labeled Fluorescent Cellulose Nanocrystals for Bioimaging Solid Cellulose in Spatially Structured Microenvironments[J]. Bioconjugate Chem, 2015, 26 (3): 593-601.

[127]

Chen L, Liu Y, Lai C, et al. Aqueous synthesis and biostabilization of Cd S@Zn S quantum dots for bioimaging applications[J]. Materials Research Express, 2015, DOI:10.1088/2053-1591/2/10/105401.

[128]

Incani V, Danumah C, Boluk Y. Nanocomposites of nanocrystalline cellulose for enzyme immobilization[J]. Cellu, 2013, 20 (1): 191-200.

[129]

Du L, Arnholt K, Ripp S, et al. Biological toxicity of cellulose nanocrystals (CNCs) against the lux CDABE-based bioluminescent bioreporter Escherichia coli652T7[J]. Ecotoxicology, 2015, 24 (10): 2049-2053.

[130]

Mahmoud K A, Mena J A, Male K B, et al. Effect of Surface Charge on the Cellular Uptake and Cytotoxicity of Fluorescent Labeled Cellulose Nanocrystals[J]. ACS Applied Materials & Interfaces, 2010, 2 (10): 2924-2932.

[131]

Yang X, Bakaic E, Hoare T, et al. Injectable Polysaccharide Hydrogels Reinforced with Cellulose Nanocrystals: Morphology, Rheology, Degradation, and Cytotoxicity[J]. Biomacromolecules, 2013, 14 (12): 4447-4455.

[132]

Hanif Z, Ahmed F R, Shin S W, et al. Size-and dosedependent toxicity of cellulose nanocrystals (CNC) on human fibroblasts and colon adenocarcinoma[J]. Colloids and Surfaces B Biointerfaces, 2014, 119: 162-165.

[133]

Alkilany A M, Thompson L B, Boulos S P, et al. Gold nanorods: Their potential for photothermal therapeutics and drug delivery, tempered by the complexity of their biological interactions[J]. Advanced Drug Delivery Reviews, 2012, 64 (2): 190-199.

[134]

Ma Z, Tian L, Di J, et al. Bio-Detection, Cellular Imaging and Cancer Photothermal Therapy Based on Gold Nanorods[J]. Progress in Chemistry, 2009, 21 (1): 134-142.

[135]

Ma Z, Xia H, Liu Y, et al. Applications of gold nanorods in biomedical imaging and related fields[J]. Chinese Science Bulletin, 2013, 58 (21): 2530-2536.

[136]

Manabe Y. Recent Advance in Copper-Free Click Chemistry Using Cyclooctynes, and Applications for Living Systems[J]. Journal of Synthetic Organic Chemistry Japan, 2012, 70 (7): 754-755.

[137]

Thurn K T, Brown E, Wu A, et al. Nanoparticles for applications in cellular imaging[J]. Nanoscale Research Letters, 2007, 2 (9): 430-441.

[138]

Zhang X D, Wu D, Shen X, et al. In vivo renal clearance, biodistribution, toxicity of gold nanoclusters[J]. Biomaterials, 2012, 33 (18): 4628-4638.

Paper and Biomaterials
Pages 34-57
Cite this article:
Ma X, Zhang Y, Huang J. Surface Chemical Modification of Cellulose Nanocrystals and Its Application in Biomaterials. Paper and Biomaterials, 2017, 2(4): 34-57. https://doi.org/10.26599/PBM.2017.9260026

398

Views

8

Downloads

4

Crossref

0

Scopus

Altmetrics

Received: 27 July 2017
Accepted: 13 August 2017
Published: 25 October 2017
© 2017 Paper and Biomaterials Editorial Board

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Return