AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (836.7 KB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Original Article | Open Access

High-value Applications of Nanocellulose

XiaoNan Hao1,3KaiWen Mou1XingYu Jiang1,2RuiTao Cha1( )
Beijing Engineering Research Center for BioNanotechnology and CAS Key Lab for Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, Beijing, 100190, China
University of Chinese Academy of Sciences, Beijing, 100049, China
School of Chemical Engineering and Material Science, Tianjin University of Science and Technology, Tianjin, 300457, China
Show Author Information

Abstract

Nanocelluloses, obtained from the biopolymer cellulose, are a class of renewable functional nanomaterials with excellent properties and a broad range of applications. This review mainly illustrates practical and advanced applications of nanocellulose-based materials in the following categories. ① Fire-resistant materials: in the section on these types of materials, the fireprotection property of nanocellulose/clay hybrid composites (clay nanopaper) is illustrated; oriented montmorillonite (MTM) provides barrier properties and low thermal conductivity whereas cellulose nanofibers (CNFs) impart favorable charring. ② Thermal insulation materials: the best way to obtain materials with good heat insulation performance is to decrease the thermal conductivity of such materials. ③ Template materials: nanocellulose can direct the deposition and patterning of materials to form nanoparticles, nanowires, or nanotubes with improved properties.

References

[1]

Kaushik M, Moores A. nanocelluloses as versatile supports for metal nanoparticles and their applications in catalysis[J]. Green Chemistry, 2016, 18 (3): 622-637.

[2]

Klemm D, Heublein B, Fink H P, et al. Cellulose: fascinating biopolymer and sustainable raw material[J]. Angewandte Chemie International Edition, 2005, 44 (22): 3358-3393.

[3]

Eichhorn S J, Dufresne A, Aranguren M, et al. Current international research into cellulose nanofibres and nanocomposites[J]. Journal of Materials Science, 2010, 45 (1): 1-33.

[4]

Habibi Y, Lucia L A, Rojas O J. Cellulose nanocrystals: chemistry, self-assembly, and applications[J]. Chemical Reviews, 2010, 110 (6): 3479-3500.

[5]

Moon R J, Martini A, Nairn J, et al. Cellulose nanomaterials review: structure, properties and nanocomposites[J]. Chemical Society Reviews, 2011, 40 (7): 3941-3994.

[6]

Lin N, Huang J, Dufresne A. Preparation, properties and applications of polysaccharide nanocrystals in advanced functional nanomaterials: a review[J]. Nanoscale, 2012, 4 (11): 3274-3294.

[7]

Salas C, Nypelö T, Rodriguez-Abreu C, et al. Nanocellulose properties and applications in colloids and interfaces[J]. Current Opinion in Colloid & Interface Science, 2014, 19(5): 383-396.

[8]

Klemm D, Kramer F, Moritz S, et al. Nanocelluloses: A new family of nature-based materials[J]. Angewandte Chemie International Edition, 2011, 50 (24): 5438-5466.

[9]

Sani A, Dahman Y. Improvements in the production of bacterial synthesized biocellulose nanofibres using different culture methods[J]. Journal of Chemical Technology and Biotechnology, 2010, 85 (2): 151-164.

[10]

Kovacs T, Naish V, O'Connor B, et al. An ecotoxicological characterization of nanocrystalline cellulose (NCC)[J]. Nanotoxicology, 2010, 4 (3): 255-270.

[11]

Kümmerer K, Menz J, Schubert T, et al. Biodegradability of organic nanoparticles in the aqueous environment[J]. Chemosphere, 2011, 82 (10): 1387-1392.

[12]

Roman M. Toxicity of cellulose nanocrystals: a review[J]. Industrial Biotechnology, 2015, 11 (1): 25-33.

[13]

Yanamala N, Farcas M T, Hatfield M K, et al. In vivo evaluation of the pulmonary toxicity of cellulose nanocrystals: a renewable and sustainable nanomaterial of the future[J]. ACS Sustainable Chemistry & Engineering, 2014, 2(7): 1691-1698.

[14]
Lin N, Huang J, Dufresne A. Polysaccharide NanocrystalsBased Materials for Advanced Applications[M]//Polysaccharide-Based Nanocrystals: Chemistry and Applications. Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2014: 219-254.
[15]

Qiu K, Netravali A N. A review of fabrication and applications of bacterialcellulose based nanocomposites[J]. Polymer Reviews, 2014, 54 (4): 598-626.

[16]

Wu Weibing, Zhao Lei. Functionalization and applications of nanocrystalline cellulose[J]. Progress in Chemistry, 2014, 26 (2/3): 403-414.

[17]

Incani V, Danumah C, Boluk Y. Nanocomposites of nanocrystalline cellulose for enzyme immobilization[J]. Cellulose, 2013, 20 (1): 191-200.

[18]

Isogai A. Wood nanocelluloses: fundamentals and applications as new bio-based nanomaterials[J]. Journal of Wood Science, 2013, 59 (6): 449-459.

[19]

Jorfi M, Foster E J. Recent advances in nanocellulose for biomedical applications[J]. Journal of Applied Polymer Science, 2015, 132 (14): 41719-41738.

[20]

Grexa O, Poutch F, Manikova D, et al. Intumescence in fire retardancy of lignocellulosic panels[J]. Polymer Degradation and Stability, 2003, 82 (2): 373-377.

[21]

Lowden L A, Hull T R. Flammability behaviour of wood and a review of the methods for its reduction[J]. Fire Science Reviews, 2013, 2 (1): 4-22.

[22]

Gu J, Zhang G, Dong S, et al. Study on preparation and fire-retardant mechanism analysis of intumescent flameretardant coatings[J]. Surface and Coatings Technology, 2007, 201 (18): 7835-7841.

[23]

Wang Z, Han E, Ke W. Influence of nano-LDHs on char formation and fire-resistant properties of flame-retardant coating[J]. Progress in Organic Coatings, 2005, 53 (1): 29-37.

[24]

Carosio F, Cuttica F, Medina L, et al. Clay nanopaper as multifunctional brick and mortar fire protection coating—wood case study[J]. Materials & Design, 2016, 93: 357-363.

[25]

Carosio F, Kochumalayil J, Cuttica F, et al. Oriented clay nanopaper from biobased components-mechanisms for superior fire protection properties[J]. ACS Applied Materials & Interfaces, 2015, 7(10): 5847-5856.

[26]

Liu A, Walther A, Ikkala O, et al. Clay nanopaper with tough cellulose nanofiber matrix for fire retardancy and gas barrier functions[J]. Biomacromolecules, 2011, 12 (3): 633-641.

[27]

Schartel B, Hull T R. Development of fire-retarded materials-interpretation of cone calorimeter data[J]. Fire and Materials, 2007, 31 (5): 327-354.

[28]

Nielsen L E. Models for the permeability of filled polymer systems[J]. Journal of Macromolecular Science-chemistry, 1967, 1 (5): 929-942.

[29]

Baetens R, Jelle B P, Gustavsen A. Aerogel insulation for building applications: a state-of-the-art review[J]. Energy and Buildings, 2011, 43 (4): 761-769.

[30]

Nguyen S T, Feng J, Ng S K, et al. Advanced thermal insulation and absorption properties of recycled cellulose aerogels[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 445: 128-134.

[31]
Duong H M, Nguyen S T. Nanocellulose aerogels as thermal insulation materials[M]//Nano and Biotech Based Materials for Energy Building Efficiency. Germany: Springer International Publishing, 2016: 411-427.
[32]
Lyons A. 13-Insulation materials[M]//Materials for Architects & Builders. 5th. London & New York: Routledge, 2014: 394-408.
[33]

Briga-Sa A, Nascimento D, Teixeira N, et al. Textile waste as an alternative thermal insulation building material solution[J]. Construction and Building Materials, 2013, 38: 155-160.

[34]

Buratti C, Moretti E. Glazing systems with silica aerogel for energy savings in buildings[J]. Applied Energy, 2012, 98: 396-403.

[35]

Jelle B P. Traditional, state-of-the-art and future thermal building insulation materials and solutions-properties, requirements and possibilities[J]. Energy and Buildings, 2011, 43 (10): 2549-2563.

[36]

Silva T C F, Habibi Y, Colodette J L, et al. A fundamental investigation of the microarchitecture and mechanical properties of tempo-oxidized nanofibrillated cellulose (NFC) -based aerogels[J]. Cellulose, 2012, 19 (6): 1945-1956.

[37]

Yuan Z, Fan Q, Dai X, et al. Cross-linkage effect of cellulose/laponite hybrids in aqueous dispersions and solid films[J]. Carbohydrate Polymers, 2014, 102: 431-437.

[38]

Bendahou D, Bendahou A, Seantier B, et al. Nanofibrillated cellulose-zeolites based new hybrid composites aerogels with super thermal insulating properties[J]. Industrial Crops and Products, 2015, 65: 374-382.

[39]

Hayase G, Kanamori K, Abe K, et al. Polymethylsilsesquioxane–cellulose nanofiber biocomposite aerogels with high thermal insulation, bendability, and superhydrophobicity[J]. ACS Applied Materials & Interfaces, 2014, 6(12): 9466-9471.

[40]

Wicklein B, Kocjan A, Salazar-Alvarez G, et al. Thermally insulating and fire-retardant lightweight anisotropic foams based on nanocellulose and graphene oxide[J]. Nature Nanotechnology, 2015, 10 (3): 277-283.

[41]

Lu X, Caps R, Fricke J, et al. Correlation between structure and thermal conductivity of organic aerogels[J]. Journal of Non-crystalline Solids, 1995, 188 (3): 226-234.

[42]

Hrubesh L W, Pekala R W. Thermal properties of organic and inorganic aerogels[J]. Journal of Materials Research, 1994, 9 (3): 731-738.

[43]

Lin N, Huang J, Dufresne A. Preparation, properties and applications of polysaccharide nanocrystals in advanced functional nanomaterials: a review[J]. Nanoscale, 2012, 4 (11): 3274-3294.

[44]

Drogat N, Granet R, Sol V, et al. Antimicrobial silver nanoparticles generated on cellulose nanocrystals[J]. Journal of Nanoparticle Research, 2011, 13 (4): 1557-1562.

[45]

Shin Y, Bae I T, Arey B W, et al. Facile stabilization of gold-silver alloy nanoparticles on cellulose nanocrystal[J]. The Journal of Physical Chemistry C, 2008, 112 (13): 4844-4848.

[46]

Liu H, Wang D, Shang S, et al. Synthesis and characterization of Ag-Pd alloy nanoparticles/carboxylated cellulose nanocrystals nanocomposites[J]. Carbohydrate Polymers, 2011, 83 (1): 38-43.

[47]

Shin Y, Bae I T, Arey B W, et al. Simple preparation and stabilization of nickel nanocrystals on cellulose nanocrystal[J]. Materials Letters, 2007, 61 (14): 3215-3217.

[48]

Scheel H, Zollfrank C, Greil P. Luminescent silica nanotubes and nanowires: preparation from cellulose whisker templates and investigation of irradiation-induced luminescence[J]. Journal of Materials Research, 2009, 24 (5): 1709-1715.

[49]

Dujardin E, Blaseby M, Mann S. Synthesis of mesoporous silica by sol-gel mineralisation of cellulose nanorod nematic suspensions[J]. Journal of Materials Chemistry, 2003, 13 (4): 696-699.

[50]

Gruber S, Taylor R N K, Scheel H, et al. Cellulosebiotemplated silica nanowires coated with a dense gold nanoparticle layer[J]. Materials Chemistry and Physics, 2011, 129 (1): 19-22.

[51]

Gruber S, Gottschlich A, Scheel H, et al. Molecular and supramolecular templating of silica-based nanotubes and introduction of metal nanowires[J]. Physica Status Solidi, 2010, 247 (10): 2401-2411.

[52]

Tingaut P, Zimmermann T, Sèbe G. Cellulose nanocrystals and microfibrillated cellulose as building blocks for the design of hierarchical functional materials[J]. Journal of Materials Chemistry, 2012, 22 (38): 20105-20111.

[53]

Korhonen J T, Hiekkataipale P, Malm J, et al. Inorganic hollow nanotube aerogels by atomic layer deposition onto native nanocellulose templates[J]. ACS Nano, 2011, 5 (3): 1967-1974.

Paper and Biomaterials
Pages 58-64
Cite this article:
Hao X, Mou K, Jiang X, et al. High-value Applications of Nanocellulose. Paper and Biomaterials, 2017, 2(4): 58-64. https://doi.org/10.26599/PBM.2017.9260027

571

Views

13

Downloads

6

Crossref

0

Scopus

Altmetrics

Received: 30 June 2017
Accepted: 31 July 2017
Published: 25 October 2017
© 2017 Paper and Biomaterials Editorial Board

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Return