AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (1.1 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review | Open Access

Review of Cellulose Nanocrystal-based Fluorophore Materials and Their Application in Metal Ion Detection

Ya Wang1Alain Dufresne2Peter R. Chang3XiaoZhou Ma1( )Jin Huang1( )
School of Chemistry and Chemical Engineering, Joint International Research Laboratory of Biomass-Based Macromolecular Chemistry and Materials, Southwest University, Chongqing, 400715, China
Université Grenoble Alpes, CNRS, Grenoble INP, LGP2, F-38000 Grenoble, France
Bioproducts and Bioprocesses National Science Program, Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, S7N0X2, Canada
Show Author Information

Abstract

Cellulose nanocrystals (CNCs), a unique and promising natural material extracted from native cellulose, have attracted considerable attention owing to their physical properties and special surface chemistry. This review focuses on chemical conjugation strategies that can be used for preparation of fluorescent-molecule labeled CNCs and the development of biomaterials.Furthermore, their application in the detection of metal ions and future development prospects are discussed. We hope to provide a clear view of the strategies for surface fluorescent modification of CNCs and their application in detection of metal ions.

References

[1]

Persin Z, Stana-Kleinschek K, Foster T J, et al. Challenges and opportunities in polysaccharides research and technology: The EPNOE views for the next decade in the areas of materials, food and health care[J]. Carbohydrate Polymers, 2011, 84(1): 22-32.

[2]

Xuan L, Zhang P, Li X, et al. Trends for nanotechnology development in China, Russia, and India[J]. Journal of Nanoparticle Research, 2009, 11(8): 1845-1866.

[3]

Baruah S, Dutta J. Nanotechnology applications in pollution sensing and degradation in agriculture: a review[J]. Environmental Chemistry Letters, 2009, 7(3): 191-204.

[4]

Ruiz-Palomero C, Soriano M L, Valcárcel M. Nanocellulose as analyte and analytical tool: Opportunities and challenges[J]. Trac Trends in Analytical Chemistry, 2017, 87: 1-18.

[5]

Siqueira G, Bras J, Dufresne A. Cellulosic bionanocomposites: A review of preparation, properties and applications[J]. Polymers, 2010, 2(4): 728-765.

[6]

Gopalan Nair K, Dufresne A, Gandini A, et al. Crab shell chitin whiskers reinforced natural rubber nanocomposites. 3. Effect of chemical modification of chitin whiskers[J]. Biomacromolecules, 2003, 4(6): 1835-1842.

[7]

Gopalan Nair K, Dufresne A. Crab shell chitin whisker reinforced natural rubber nanocomposites. 2. Mechanical behavior[J]. Biomacromolecules, 2003, 4(3): 666-674.

[8]

Yoshiharu N. Structure and properties of the cellulose microfibril[J]. Journal of Wood Science, 2009, 55(4): 241-249.

[9]

Nishiyama Y, Langan P, Chanzy H. Crystal structure and hydrogen-bonding system in cellulose la from synchrotron X-ray and neutron fiber diffraction[J]. Journal of the American Chemical Society, 2003, 125(47): 14300-14306.

[10]

Habibi Y, Lucia L A, Rojas O J. Cellulose nanocrystals: chemistry, self-assembly, and applications[J]. Chemical Reviews, 2010, 110(6): 3479-3500.

[11]

Moon R J, Martini A, Nairn J, et al. Cellulose nanomaterials review: structure, properties and nanocomposites[J]. Chemical Society Review, 2011, 40(7): 3941-3994.

[12]

Lin N, Huang J, Dufresne A. Preparation, properties and applications of polysaccharide nanocrystals in advanced functional nanomaterials: a review[J]. Nanoscale, 2012, 4(11): 3274-3294.

[13]

Habibi Y, Chanzy H, Vignon M R. TEMPO-mediated surface oxidation of cellulose whiskers[J]. Cellulose, 2006, 13(6): 679-687.

[14]

Chen J, Lin N, Huang J, et al. Highly alkynyl-functionalization of cellulose nanocrystals and advanced nanocomposites thereof via click chemistry[J]. Polymer Chemistry, 2015, 6(24): 4385-4395.

[15]

Van d B O, Capadona J R, Weder C. Preparation of homogeneous dispersions of tunicate cellulose whiskers in organic solvents[J]. Biomacromolecules, 2007, 8(4): 1353-1357.

[16]

Favier V, Chanzy H, Cavaille J Y. Polymer nanocomposites reinforced by cellulose whiskers[J]. Macromolecules, 1995, 28(18): 6365-6367.

[17]

Sacui I A, Nieuwendaal R C, Burnett D J, et al. Comparison of the properties of cellulose nanocrystals and cellulose nanofibrils isolated from bacteria, tunicate, and wood processed using acid, enzymatic, mechanical, and oxidative methods[J]. ACS Applied Materials & Interfaces, 2014, 6(9): 6127-6138.

[18]

Ditzel F I, Prestes E, Carvalho B M, et al. Nanocrystalline cellulose extracted from pine wood and corncob[J]. Carbohydrate Polymers, 2017, 157: 1577-1585.

[19]

Cao L, Fu X, Xu C, et al. High-performance natural rubber nanocomposites with marine biomass (tunicate cellulose)[J]. Cellulose, 2017, 24(7): 2849-2860.

[20]

Jorfi M, Roberts M N, Foster E J, et al. Physiologically responsive, mechanically adaptive bio-nanocomposites for biomedical applications[J]. ACS Applied Materials & Interfaces, 2013, 5(4): 1517-1526.

[21]

Shanmuganathan K, Capadona J R, Rowan S J, et al. Stimuli-responsive mechanically adaptive polymer nanocomposites[J]. ACS Applied Materials & Interfaces, 2010, 2(1): 165-174.

[22]

Vasconcelos N F, Feitosa J P, da Gama F M P, et al. Bacterial cellulose nanocrystals produced under different hydrolysis conditions: Properties and morphological features[J]. Carbohydrate Polymers, 2017, 155: 425-431.

[23]

Siqueira G, Tapin-Lingua S, Bras J, et al. Morphological investigation of nanoparticles obtained from combined mechanical shearing, and enzymatic and acid hydrolysis of sisal fibers[J]. Cellulose, 2010, 17(6): 1147-1158.

[24]

Filson P B, Dawson-Andoh B E, Schwegler-Berry D. Enzymatic-mediated production of cellulose nanocrystals from recycled pulp[J]. Green Chemistry, 2009, 11(11): 1808-1814.

[25]

Roman M, Winter W T. Effect of sulfate groups from sulfuric acid hydrolysis on the thermal degradation behavior of bacterial cellulose[J]. Biomacromolecules, 2004, 5(5): 1671-1677.

[26]

Abitbol T, Kloser E, Gray D G. Estimation of the surface sulfur content of cellulose nanocrystals prepared by sulfuric acid hydrolysis[J]. Cellulose, 2013, 20(2): 785-794.

[27]

Araki J, Wada M, Kuga S, et al. Birefringent glassy phase of a cellulose microcrystal suspension[J]. Langmuir, 2000, 16(6): 2413-2415.

[28]

Camarero Espinosa S, Kuhnt T, Foster E J, et al. Isolation of thermally stable cellulose nanocrystals by phosphoric acid hydrolysis[J]. Biomacromolecules. 2013, 14(4): 1223-1230.

[29]

Sadeghifar H, Filpponen I, Clarke S P, et al. Production of cellulose nanocrystals using hydrobromic acid and click reactions on their surface[J]. Journal of Materials Science, 2011, 46(22): 7344-7355.

[30]

Edwards J V, Prevost N T, French A D, et al. Kinetic and structural analysis of fluorescent peptides on cotton cellulose nanocrystals as elastase sensors[J]. Carbohydrate Polymers, 2015, 116: 278-285.

[31]

Jaušovec D, VogrinčičR, Kokol V. Introduction of aldehyde vs. carboxylic groups to cellulose nanofibers using laccase/TEMPO mediated oxidation[J]. Carbohydrate Polymers, 2015, 116: 74-85.

[32]

Garcia-Astrain C, González K, Gurrea T, et al. Maleimide-grafted cellulose nanocrystals as cross-linkers for bionanocomposite hydrogels[J]. Carbohydrate Polymers, 2016, 149: 94-101.

[33]

De Menezes A J, Siqueira G, Curvelo A A S, et al. Extrusion and characterization of functionalized cellulose whiskers reinforced polyethylene nanocomposites[J]. Polymer, 2009, 50(19): 4552-4563.

[34]

Grubbström G, Holmgren A, Oksman K. Silane-crosslinking of recycled low-density polyethylene/wood composites[J]. Composites Part A: Applied Science and Manufacturing, 2010, 41(5): 678-683.

[35]

Habibi Y, Hoeger I, Kelley S S, et al. Development of langmuir-schaeffer cellulose nanocrystal monolayers and their interfacial behaviors[J]. Langmuir, 2010, 26(2): 990-1001.

[36]

Thielemans W, Belgacem M N, Dufresne A. Starch nanocrystals with large chain surface modifications[J]. Langmuir, 2006, 22(10): 4804-4810.

[37]

Eyley S, Thielemans W. Surface modification of cellulose nanocrystals[J]. Nanoscale, 2014, 6(14): 7764-7779.

[38]

Dong S, Roman M. Fluorescently labeled cellulose nanocrystals for bioimaging applications[J]. Journal of American Chemical Society, 2007, 129(45): 13810-13811.

[39]

Zoppe J O, Peresin M S, Habibi Y, et al. Reinforcing poly(epsilon-caprolactone) nanofibers with cellulose nanocrystals[J]. ACS Applied Materials & Interfaces, 2009, 1(9): 1996-2004.

[40]

Angellier H, Molina-Boisseau S, Dufresne A. Mechanical properties of waxy maize starch nanocrystal reinforced natural rubber[J]. Macromolecules, 2005, 38(22): 9161-9170.

[41]

Yang H, Tejado A, Alam N, et al. Films prepared from electrosterically stabilized nanocrystalline cellulose[J]. Langmuir, 2012, 28(20): 7834-7842.

[42]

Brioude M M, Roucoules V, Haidara H, et al. Role of Cellulose nanocrystals on the microstructure of maleic anhydride plasma polymer thin films[J]. ACS Applied Materials & Interfaces, 2015, 7(25): 14079-14088.

[43]

Qi H, Chang C, Zhang L. Properties and applications of biodegradable transparent and photoluminescent cellulose films prepared via a green process[J]. Green Chemistry, 2009, 11(2): 177-184.

[44]

Tummala G K, Felde N, Gustafsson S, et al. Light scattering in poly(vinyl alcohol) hydrogels reinforced with nanocellulose for ophthalmic use[J]. Optical Materials Express, 2017, 7(8): 2824-2837.

[45]

Morandi G, Thielemans W. Synthesis of cellulose nanocrystals bearing photocleavable grafts by ATRP[J]. Polymer Chemistry, 2012, 3(6): 1402-1407.

[46]

Qu D, Zhang J, Chu G, et al. Chiral fluorescent films of gold nanoclusters and photonic cellulose with modulated fluorescence emission[J]. Journal of Materials Chemistry C, 2016, 4(9): 1764-1768.

[47]

Thérien-Aubin H, Lukach A, Pitch N, et al. Structure and properties of composite films formed by cellulose nanocrystals and charged latex nanoparticles[J]. Nanoscale, 2015, 7(15): 6612-6618.

[48]

Song J, Fu G, Cheng Q, et al. Bimodal mesoporous silica nanotubes fabricated by dual templates of CTAB and bare nanocrystalline cellulose[J]. Industrial & Engineering Chemistry Research, 2013, 53(2): 708-714.

[49]

Maeda H, Nakajima M, Hagiwara T, et al. Bacterial cellulose/silica hybrid fabricated by mimicking biocomposites[J]. Journal of Materials Science, 2006, 41(17): 5646-5656.

[50]

Seabra A B, Bernardes J S, Favaro W J, et al. Cellulose nanocrystals as carriers in medicine and their toxicities: a review[J]. Carbohydrate Polymers, 2018, 181: 514-527.

[51]

Viet D, Beck-Candanedo S, Gray D G. Dispersion of cellulose nanocrystals in polar organic solvents[J]. Cellulose, 2006, 14(2): 109-113.

[52]

Aylott J W. Optical nanosensors—an enabling technology for intracellular measurements[J]. The Analyst, 2003, 128(4): 309-312.

[53]

Helbert W, Chanzy H, Husum T L, et al. Fluorescent cellulose microfibrils as substrate for the detection of cellulase activity[J]. Biomacromolecules, 2003, 4(3): 481-487.

[54]

Ferreira L F V, Cabral P V, Almeida P, et al. Ultraviolet visible absorption, luminescence, and X-ray photoelectron spectroscopic studies of a rhodamine dye covalently bound to microcrystalline cellulose[J]. Macromolecules, 1998, 31(12): 3936-3944.

[55]

Nawaz H, Tian W, Zhang J, et al. Cellulose-Based Sensor Containing Phenanthroline for the Highly Selective and Rapid Detection of Fe(2+) ions with naked eye and fluorescent dual modes[J]. ACS Applied Materials & Interfaces, 2018, 10(2): 2114-2121.

[56]

Xu W, Mu L, Miao R, et al. Fluorescence sensor for Cu(Ⅱ) based on R6G derivatives modified silicon nanowires[J]. Journal of Luminescence, 2011, 131(12): 2616-2620.

[57]

Bag B, Pal A. Rhodamine-based probes for metal ion-induced chromo-/fluorogenic dual signaling and their selectivity towards Hg(Ⅱ) ion[J]. Org Biomol Chem, 2011, 9(12): 4467-4480.

[58]

Panda S, Pati P B, Zade S S. Twisting (conformational changes)-based selective 2D chalcogeno podand fluorescent probes for Cr(Ⅲ) and Fe(Ⅱ)[J]. Chemical Communications, 2011, 47(14): 4174-4176.

[59]

De Silva A P, Gunaratne H Q, Gunnlaugsson T, et al. Signaling recognition events with fluorescent sensors and switches[J]. Chemical Reviews, 1997, 97(5): 1515-1566.

[60]

Li L, Pan S S, Dou X C, et al. Direct electrodeposition of ZnO nanotube arrays in anodic alumina membranes[J]. Journal of Physical Chemistry C, 2007, 111(20): 7288-7291.

[61]

Chen J, Zhou Z, Chen Z, et al. A fluorescent nanoprobe based on cellulose nanocrystals with porphyrin pendants for selective quantitative trace detection of Hg2+[J]. New Journal of Chemistry, 2017, 41(18): 10272-10280.

[62]

Zhang L, Li Q, Zhou J, et al. Synthesis and photophysical behavior of pyrene-bearing cellulose nanocrystals for Fe3+ sensing[J]. Macromolecular Chemistry and Physics, 2012, 213(15): 1612-1617.

[63]

Saito T, Kimura S, Nishiyama Y, et al. Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose[J]. Biomacromolecules, 2007, 8(8): 2485-2491.

[64]

Follain N, Marais M F, Montanari S, et al. Coupling onto surface carboxylated cellulose nanocrystals[J]. Polymer, 2010, 51(23): 5332-5344.

[65]

Okita Y, Saito T, Isogai A. Entire surface oxidation of various cellulose microfibrils by TEMPO-mediated oxidation[J]. Biomacromolecules, 2010, 11(6): 1696-1700.

[66]

Da Silva Perez D, Montanari S, Vignon M R. TEMPOmediated oxidation of cellulose Ⅲ[J]. Biomacromolecules, 2003, 4(5): 1417-1425.

[67]

Mangalam A P, Simonsen J, Benight A S. Cellulose/DNA hybrid nanomaterials[J]. Biomacromolecules, 2009, 10(3): 497-504.

[68]

Kumari S, Chauhan G S. New cellulose-lysine Schiff-base-based sensor-adsorbent for mercury ions[J]. ACS Applied Materials & Interfaces, 2014, 6(8): 5908-5917.

[69]

Leung A C, Hrapovic S, Lam E, et al. Characteristics and properties of carboxylated cellulose nanocrystals prepared from a novel one-step procedure[J]. Small, 2011, 7(3): 302-305.

[70]

Shibata I, Yanagisawa M, Saito T, et al. SEC-MALS analysis of cellouronic acid prepared from regenerated cellulose by TEMPO-mediated oxidation[J]. Cellulose, 2006, 13(1): 73-80.

[71]

Shibata I, Isogai A. Nitroxide-mediated oxidation ofcellulose using TEMPO derivatives: HPSEC and NMR analyses of the oxidized products[J]. Cellulose, 2003, 10(4): 335-341.

[72]

Saito T, Yanagisawa M, Isogai A. TEMPO-mediated oxidation of native cellulose: SEC-MALLS analysis of water-soluble and-insoluble fractions in the oxidized products[J]. Cellulose, 2005, 12(3): 305-315.

[73]

Lin N, Bruzzese C, Dufresne A. TEMPO-oxidized nanocellulose participating as crosslinking aid for alginatebased sponges[J]. ACS Applied Materials & Interfaces, 2012, 4(9): 4948-4959.

[74]

Lin N, Dufresne A. Physical and/or chemical compatibilization of extruded cellulose nanocrystal reinforced polystyrene nanocomposites[J]. Macromolecules, 2013, 46(14): 5570-5583.

[75]

Mascheroni E, Rampazzo R, Ortenzi M A, et al. Comparison of cellulose nanocrystals obtained by sulfuric acid hydrolysis and ammonium persulfate to be used as coating on flexible food-packaging materials[J]. Cellulose, 2016, 23(1): 779-793.

[76]

Abitbol T, Marway H S, Kedzior S A, et al. Hybrid fluorescent nanoparticles from quantum dots coupled to cellulose nanocrystals[J]. Cellulose, 2017, 24(3): 1287-1293.

[77]

Grate J W, Mo K F, Shin Y, et al. Alexa Fluor-labeled fluorescent cellulose nanocrystals for bioimaging solid cellulose in spatially structured microenvironments[J]. Bioconjugate Chemistry, 2015, 26(3): 593-601.

[78]

Huang J L, Li C J, Gray D G. Cellulose nanocrystals incorporating fluorescent methylcoumarin groups[J]. ACS Sustainable Chemistry & Engineering, 2013, 1(9): 1160-1164.

[79]

Zhou Y, Jin Q, Hu X, et al. Heavy metal ions and organic dyes removal from water by cellulose modified with maleic anhydride[J]. Journal of Materials Science, 2012, 47(12): 5019-5029.

[80]

Zhang Y J, Ma X Z, Huang J, et al. Fabrication of fluorescent cellulose nanocrystal via controllable chemical modification towards selective and quantitative detection of Cu(Ⅱ) ion[J]. Cellulose, 2018, 1-12.

[81]

Sîrbu E, Eyley S, Thielemans W. Coumarin and carbazole fluorescently modified cellulose nanocrystals using a onestep esterification procedure[J]. The Canadian Journal of Chemical Engineering, 2016, 94(11): 2186-2194.

[82]

Gorgieva S, Vivod V, Maver U, et al. Internalization of (bis) phosphonate-modified cellulose nanocrystals by human osteoblast cells[J]. Cellulose, 2017, 24(10): 4235-4252.

[83]

Hassan M L, Moorefield C M, Elbatal H S, et al. New metallo-supramolecular terpyridine-modified cellulose functional nanomaterials[J]. Journal of MacromolecularScience, Part A, 2012, 49(4): 298-305.

[84]

Wu W, Li J, Liu W, et al. Temperature-sensitive, fluorescent poly(N-Isopropyl-acrylamide)-grafted cellulose nanocrystals for drug release[J]. Bioresources, 2016, 11(3): 7026-7035.

[85]

Wu W, Huang F, Pan S, et al. Thermo-responsive and fluorescent cellulose nanocrystals grafted with polymer brushes[J]. Journal of Materials Chemistry A, 2015, 3(5): 1995-2005.

[86]

Yuan W, Wang C, Lei S, et al. Ultraviolet light-, temperature-and pH-responsive fluorescent sensors based on cellulose nanocrystals[J]. Polymer Chemistry, 2018, 9(22): 3098-3107.

[87]

Chen L, Cao W, Grishkewich N, et al. Synthesis and characterization of pH-responsive and fluorescent poly (amidoamine) dendrimer-grafted cellulose nanocrystals[J]. Journal of Colloid & Interface Science, 2015, 450(12): 101-108.

[88]

Eyley S, Thielemans W. Imidazolium grafted cellulose nanocrystals for ion exchange applications[J]. Chemical Communications, 2011, 47(14): 4177-4179.

[89]

Parsamanesh M, Tehrani A D. Synthesize of new fluorescent polymeric nanoparticle using modified cellulose nanowhisker through click reaction[J]. Carbohydrate Polymers, 2016, 136: 1323-1331.

[90]

Abitbol T, Palermo A, Moran-Mirabal J M, et al. Fluorescent labeling and characterization of cellulose nanocrystals with varying charge contents[J]. Biomacromolecules, 2013, 14(9): 3278-3284.

[91]

Zhao L, Li W, Plog A, et al Multi-responsive cellulose nanocrystal-rhodamine conjugates: an advanced structure study by solid-state dynamic nuclear polarization (DNP) NMR[J]. Physical Chemistry Chemical Physics, 2014, 16(47): 26322-26329.

[92]

Guo J, Liu D, Filpponen I, et al. Photoluminescent hybrids of cellulose nanocrystals and carbon quantum dots as cytocompatible probes for in vitro bio-imaging[J]. Biomacromolecules, 2017, 18(7): 2045-2055.

[93]

Filpponen I, Sadeghifar H, Argyropoulos D S. Photoresponsive cellulose nanocrystals[J]. Nanomaterials and Nanotechnology, 2011, 1(1): 34-43.

[94]

Colombo L, Zoia L, Violatto M B, et al. Organ distribution and bone tropism of cellulose nanocrystals in living mice[J]. Biomacromolecules, 2015, 16(9): 2862-2871.

[95]

Yang Q, Pan X. A facile approach for fabricating fluorescent cellulose[J]. Journal of Applied Polymer Science, 2010, 117(6): 3639-3644.

[96]

Cai C, Wei B, Jin Z, et al. Facile method for fluorescent labeling of starch nanocrystal[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(5): 3751-3761.

[97]

Nielsen L J, Eyley S, Thielemans W, et al. Dualfluorescent labelling of cellulose nanocrystals for pH sensing[J]. Chemical Communications, 2010, 46(47): 8929-8931.

[98]

Tang L, Li T, Zhuang S, et al. Synthesis of pH-sensitive fluorescein grafted cellulose nanocrystals with an amino acid spacer[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(9): 4842-4849.

[99]

Mahmoud K A, Mena J A, Male K B, et al. Effect of surface charge on the cellular uptake and cytotoxicity of fluorescent labeled cellulose nanocrystals[J]. ACS Applied Materials & Interfaces, 2010, 2(10): 2924-2932.

[100]

Ding Q, Zeng J, Wang B, et al. Influence of binding mechanism on labeling efficiency and luminous properties of fluorescent cellulose nanocrystals[J]. Carbohydrate Polymers, 2017, 175: 105-112.

[101]

Khabibullin A, Alizadehgiashi M, Khuu N, et al. Injectable shear-thinning fluorescent hydrogel formed by cellulose nanocrystals and graphene quantum dots[J]. Langmuir, 2017, 33(43): 12344-12350.

[102]

Zhang L, Zhou J, Zhang L. Synthesis and fluorescent properties of carbazole-substituted hydroxyethyl celluloses[J]. Macromolecular Chemistry and Physics, 2012, 213(1): 57-63.

[103]

Hassan M L, Moorefield C M, Elbatal H S, et al. Fluorescent cellulose nanocrystals via supramolecular assembly of terpyridine-modified cellulose nanocrystals and terpyridine-modified perylene[J]. Materials Science and Engineering: B, 2012, 177(4): 350-358.

[104]

Harrisson S, Drisko G L, Malmstrom E, et al. Hybrid rigid/soft and biologic/synthetic materials: polymers grafted onto cellulose microcrystals[J]. Biomacromolecules, 2011, 12(4): 1214-1223.

[105]

Way A E, Hsu L, Shanmuganathan K, et al. pH-responsive cellulose nanocrystal gels and nanocomposites[J]. ACS Macro Letters, 2012, 1(8): 1001-1006.

[106]

Akhlaghi S P, Berry R C, Tam K C. Surface modification of cellulose nanocrystal with chitosan oligosaccharide for drug delivery applications[J]. Cellulose, 2013, 20(4): 1747-1764.

[107]

Tang Y, Yang S, Zhang N, et al. Preparation and characterization of nanocrystalline cellulose via low-intensity ultrasonic-assisted sulfuric acid hydrolysis[J]. Cellulose, 2013, 21(1): 335-346.

[108]

Gong B, Liu W, Chen X, et al. Stabilizing alkenyl succinic anhydride (ASA) emulsions with starch nanocrystals and fluorescent carbon dots[J]. Carbohydrate Polymers, 2017, 165: 13-21.

[109]

Figueira F, Farinha A S, Muteto P V, et al. [28] Hexaphyrin derivatives for anion recognition in organic and aqueous media[J]. Chemical Communications, 2016, 52(10): 2181-2184.

[110]

Shamsipur M, Sadeghi M, Beyzavi M H, et al. Development of a novel fluorimetric bulk optode membrane based on meso-tetrakis (2-hydroxynaphthyl) porphyrin (MTHNP) for highly sensitive and selective monitoring of trace amounts of Hg2+ ions[J]. Materials Science and Engineering: C, 2015, 48: 424-433.

[111]

Motreff N, Le Gac S, Luhmer M, et al. Formation of a dinuclear mercury(Ⅱ) complex with a regular bisstrapped porphyrin following a tunable cooperative process[J]. Angewandte Chemie International Edition, 2011, 50(7): 1560-1564.

[112]

Suijkerbuijk B M, Klein Gebbink R J. Merging porphyrins with organometallics: synthesis and applications[J]. Angewandte Chemie International Edition, 2008, 47(39): 7396-7421.

[113]

Caselli M. Porphyrin-based electrostatically selfassembled multilayers as fluorescent probes for mercury (Ⅱ) ions: a study of the adsorption kinetics of metal ions on ultrathin films for sensing applications[J]. RSC Advances, 2015, 5(2): 1350-1358.

[114]

Lv J, Ouyang C, Yin X, et al. Reversible and highly selective fluorescent sensor for mercury(Ⅱ) based on a water-soluble poly(para-phenylene) s containing thymine and sulfonate moieties[J]. Macromolecular Rapid Communications, 2008, 29(19): 1588-1592.

[115]

Hu Z Q, Feng Y C, Huang H Q, et al. Fe3+-selective fluorescent probe based on rhodamine B and its application in bioimaging[J]. Sensors and Actuators B: Chemical, 2011, 156(1): 428-432.

[116]

Kumar R, Nandi G C, Verma R K, et al. A facile approach for the synthesis of 14-aryl-or alkyl-14H-dibenzo[a, j] xanthenes under solvent-free condition[J]. Tetrahedron Letters, 2010, 51(2): 442-445.

[117]

Aamer K A, Tew G N. Supramolecular polymers containing terpyridine-metal complexes in the side chain[J]. Macromolecules, 2007, 40(8): 2737-2744.

[118]

Morsali A, Monfared H H, Morsali A. Syntheses andcharacterization of nano-scale of the Mn (Ⅱ) complex with 4'-(4-pyridyl)-2,2': 6',2"-terpyridine (pyterpy): the influence of the nano-structure upon catalytic properties[J]. Inorganica Chimica Acta, 2009, 362(10): 3427-3432.

[119]

Chiper M, Hoogenboom R, Schubert U S. New terpyridine macroligands as potential synthons for supramolecular assemblies[J]. European Polymer Journal, 2010, 46(2): 260-269.

[120]

Yeung C T, Lee W S, Tsang C S, et al. Chiral-symmetric2, 2': 6', 2"-terpyridine ligands: synthesis, characterization, complexation with copper(Ⅱ), rhodium(Ⅲ) and ruthenium(Ⅱ) ions and use of the complexes in catalytic cyclopropanation of styrene[J]. Polyhedron, 2010, 29(5): 1497-1507.

[121]

Kamyabi M A, Narimani O, Monfared H H. Electrocatalytic oxidation of hydrazine using glassy carbon electrode modified with carbon nanotube and terpyridine manganese(Ⅱ) complex[J]. Journal of Electroanalytical Chemistry, 2010, 644(1): 67-73.

[122]

Hornig S, Manners I, Newkome G R, et al. Metal-containing and metallo-supramolecular polymers and materials[J]. Macromolecular Rapid Communications, 2010, DOI:10.1002/marc.201000196.

[123]

Chiper M, Hoogenboom R, Schubert U S. Toward main chain metallo-terpyridyl supramolecular polymers: "the metal does the trick"[J]. Macromolecular Rapid Communications, 2009, 30(8): 565-578.

[124]

Goncalves A C, Luis Capelo J, Lodeiro C, et al. A selective emissive chromogenic and fluorogenic selenocoumarin probe for Cu2+ detection in aprotic media[J]. Photochemical & Photobiological Sciences, 2017, 16(7): 1174-1181.

[125]

Karaoglu K, Yilmaz F, Mentese E. A new fluorescent"Turn-Off"coumarin-based chemosensor: synthesis, structure and Cu-selective fluorescent sensing in water samples[J]. Journal of Fluorescence, 2017, 27(4): 1293-1298.

Paper and Biomaterials
Pages 45-61
Cite this article:
Wang Y, Dufresne A, Chang PR, et al. Review of Cellulose Nanocrystal-based Fluorophore Materials and Their Application in Metal Ion Detection. Paper and Biomaterials, 2018, 3(4): 45-61. https://doi.org/10.26599/PBM.2018.9260027

451

Views

15

Downloads

0

Crossref

0

Scopus

Altmetrics

Received: 23 July 2018
Accepted: 16 August 2018
Published: 01 October 2018
© 2018 Paper and Biomaterials Editorial Board

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Return