AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (636.6 KB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review | Open Access

Review on Cellulose Nanocrystal Assembly for Optical Applications

Dong LiNa FengSiYuan LiuLin Gan( )Jin Huang( )
School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Southwest University, Chongqing, 400715, China
Show Author Information

Abstract

Cellulose nanocrystals (CNCs) can self-assemble in suspension to form chiral cholesteric structure of liquid crystal with unique birefringence phenomena, and the structural parameters strongly depend upon the aspect ratio, surface structure, and physicochemical properties of CNC, along with suspension media. Many attempts have been carried out to keep this cholesteric structure in solid state via removing solvent, such as slower solvent-evaporation, rapid vacuum-filtration, and spin-casting under centrifugal force. The solid-state iridescence of the cholesteric CNC arrays has been used as structural color, and showed a great potential for the coding and securing of optical information. Moreover, to promote practical applications of such structural iridescence, the cholesteric CNC arrays have been embedded into many kinds of substrates via in-situ reaction of monomers or physical blending with polymers. However, this kind of structural iridescences may lead to misreading information. The uniaxial-orientation assembly of CNC has thus been proposed via regulating external force fields of CNC self-assembly, and successfully achieved nanoparticle assembly-induced solid-state monochrome emission based on enhanced inelastic collision theory of CNC dipoles and photons. This method can eliminate the chiral arrangement of CNC and the corresponding iridescence, and the structural monochromaticity can contribute to enhancing the accuracy of optical information. Overall, the CNC can be controllably assembled as the ordered arrays in solid state and presented structural color, and support optical anti-counterfeiting strategies different from the fluorescent technologies.

References

[1]

Jonoobi M, Oladi R, Davoudpour Y, et al. Different preparation methods and properties of nanostructured cellulose from various natural resources and residues: a review[J]. Cellulose, 2015, 22(2): 935-969.

[2]

Ranby B G. Cellulose and Muscle—The Colloidal Properties of Cellulose Micelles[J]. Discussions of the Faraday Society, 1951, 11: 158-164.

[3]

Habibi Y, Lucia L A, Rojas O J. Cellulose Nanocrystals: Chemistry, Self-assembly, and Applications[J]. Chem. Rev., 2010, 110(6): 3479-3500.

[4]

Marchessault R H, Morehead F F, Walter N M. Liquid Crystal Systems From Fibrillar Polysaccharides[J]. Nature, 1959, 184(4686): 632-633.

[5]

Revol J F, Bradford H, Giasson J, et al. Helicoidal self-ordering of cellulose microfibrils in aqueous suspension[J]. Int. J. Biol. Macromol., 1992, 14(3): 170-172.

[6]

Pan J H, Hamad W, Straus S K. Parameters Affecting the Chiral Nematic Phase of Nanocrystalline Cellulose Films[J]. Macromolecules, 2010, 43(8): 3851-3858.

[7]

Yao K, Meng Q, Bulone V, et al. Flexible and Responsive Chiral Nematic Cellulose Nanocrystal/Poly(ethylene glycol) Composite Films with Uniform and Tunable Structural Color[J]. Adv. Mater., 2017, DOI: 10.1002/adma.201701323.

[8]

Shopsowitz K E, Kelly J A, Hamad W Y, et al. Biopolymer Templated Glass with a Twist: Controlling the Chirality, Porosity, and Photonic Properties of Silica with Cellulose Nanocrystals[J]. Adv. Funct. Mater., 2014, 24(3): 327-338.

[9]

Frka-Petesic B, Guidetti G, Kamita G, et al. Controlling the Photonic Properties of Cholesteric Cellulose Nanocrystal Films with Magnets[J]. Adv. Mater., 2017, DOI: 10.1002/adma.201701469.

[10]

Gan L, Feng N, Liu S Y, et al. Assembly-induced emission of cellulose nanocrystals for hiding information[J]. Part. Part. Syst. Charact., 2019, 36(3): 8.

[11]

Livolant F, Leforestier A. Condensed phases of DNA: structures and phase transitions[J]. Prog. Polym. Sci., 1996, 21(6): 1115-1164.

[12]

Revol J F, Marchessault R H. In-vitro Chiral Nematic Ordering of Chitin Crystallites[J]. Int. J. Biol. Macromol., 1993, 15(6): 329-335.

[13]

Oster G. 2-Phase formation in solutions of tobacco mosaic virus and the problem of long-range forces[J]. J. Gen. Physiol., 1950, 33(5): 445-473.

[14]

Folda T, Hoffmann H, Chanzy H, et al. Liquid-crystalline suspensions of poly(tetrafluoroethylene) whiskers[J]. Nature, 1988, 333(6168): 55-56.

[15]

Meseck G R, Terpstra A S, MacLachlan M J. Liquid crystal templating of nanomaterials with nature's toolbox[J]. Curr. Opin. Colloid Interface Sci., 2017, 29: 9-20.

[16]

Araki J, Wada M, Kuga S. Steric stabilization of a cellulose microcrystal suspension by poly(ethylene glycol) grafting[J]. Langmuir, 2001, 17(1): 21-27.

[17]

Heux L, Chauve G, Bonini C. Nonflocculating and chiral-nematic self-ordering of cellulose microcrystals suspensions in nonpolar solvents[J]. Langmuir, 2000, 16(21): 8210-8212.

[18]

Elazzouzi-Hafraoui S, Putaux J L, Heux L. Self-assembling and chiral nematic properties of organophilic cellulose nanocrystals[J]. J. Phys. Chem. B, 2009, 113(32): 11069-11075.

[19]

Cheung C C Y, Giese M, Kelly J A, et al. Iridescent Chiral Nematic Cellulose Nanocrystal/Polymer Composites Assembled in Organic Solvents[J]. ACS Macro Lett., 2013, 2(11): 1016-1020.

[20]

Araki J, Kuga S. Effect of trace electrolyte on liquid crystal type of cellulose microcrystals[J]. Langmuir, 2001, 17(15): 4493-4496.

[21]

Zhang Y P, Chodavarapu V P, Kirk A G, et al. Structured color humidity indicator from reversible pitch tuning in self-assembled nanocrystalline cellulose films[J]. Sens. Actuator B-Chem., 2013, 176: 692-697.

[22]

Natarajan B, Emiroglu C, Obrzut J, et al. Dielectric Characterization of Confined Water in Chiral Cellulose Nanocrystal Films[J]. ACS Appl. Mater. Interfaces, 2017, 9(16): 14222-14231.

[23]

Revol J F, Godbout L, Gray D G. Solid self-assembled films of cellulose with chiral nematic order and optically variable properties[J]. J. Pulp Pap. Sci., 1998, 24(5): 146-149.

[24]

Chen Q, Liu P, Nan F C, et al. Tuning the Iridescence of Chiral Nematic Cellulose Nanocrystal Films with a Vacuum-assisted Self-assembly Technique[J]. Biomacromolecules, 2014, 15(11): 4343-4350.

[25]

Cranston E D, Gray D G. Birefringence in spin-coated films containing cellulose nanocrystals[J]. Colloid Surf. A-Physicochem. Eng. Asp., 2008, 325(1/2): 44-51.

[26]

Beck-Candanedo S, Roman M, Gray D G. Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions[J]. Biomacromolecules, 2005, 6(2): 1048-1054.

[27]

Gray D G, Mu X Y. Twist-bend Stage in the Relaxation of Sheared Chiral Nematic Suspensions of Cellulose Nanocrystals[J]. ACS Omega, 2016, 1(2): 212-219.

[28]

Revol J F, Godbout L, Dong X M, et al. Chiral nematic suspensions of cellulose crystallites-phase-separation and magnetic-field orientation[J]. Liq. Cryst., 1994, 16(1): 127-134.

[29]

Habibi Y, Heim T, Douillard R. AC electric field-assisted assembly and alignment of cellulose nanocrystals[J]. J. Polym. Sci. Pt. B-Polym. Phys., 2008, 46(14): 1430-1436.

[30]

Park J H, Noh J, Schutz C, et al. Macroscopic control of helix orientation in films dried from cholesteric liquid-crystalline cellulose nanocrystal suspensions[J]. Chem Phys Chem, 2014, 15(7): 1477-1484.

[31]

Frka-Petesic B, Radavidson H, Jean B, et al. Dynamically Controlled Iridescence of Cholesteric Cellulose Nanocrystal Suspensions Using Electric Fields[J]. Adv. Mater., 2017, 29(11): 9.

[32]

Chowdhury R A, Peng S X, Youngblood J. Improved order parameter (alignment) determination in cellulose nanocrystal (CNC) films by a simple optical birefringence method[J]. Cellulose, 2017, 24(5): 1957-1970.

[33]

Chen Q, Liu P, Sheng C R, et al. Tunable self-assembly structure of graphene oxide/cellulose nanocrystal hybrid films fabricated by vacuum filtration technique[J]. RSC Adv., 2014, 4(74): 39301-39304.

[34]

Qu D, Zheng H, Jiang H, et al. Chiral Photonic Cellulose Films Enabling Mechano/Chemo Responsive Selective Reflection of Circularly Polarized Light[J]. Advanced Optical Materials, 2019, 7(7): 1801395.

[35]

Wang B C, Walther A. Self-assembled, iridescent, crustacean-mimetic nanocomposites with tailored periodicity and layered cuticular structure[J]. ACS Nano, 2015, 9(11): 10637-10646.

[36]

Tatsumi M, Teramoto Y, Nishio Y. Polymer composites reinforced by locking-in a liquid-crystalline assembly of cellulose nanocrystallites[J]. Biomacromolecules, 2012, 13(5): 1584-1591.

[37]

Kelly J A, Shukaliak A M, Cheung C C, et al. Responsive Photonic Hydrogels Based on Nanocrystalline Cellulose[J]. Angew. Chem.-Int. Edit., 2013, 52(34): 8912-8916.

[38]

Giese M, Blusch L K, Khan M K, et al. Responsive Mesoporous Photonic Cellulose Films by Supramolecular Cotemplating[J]. Angew. Chem.-Int. Edit., 2014, 53(34): 8880-8884.

[39]

Khan M K, Giese M, Yu M, et al. Flexible Mesoporous Photonic Resins with Tunable Chiral Nematic Structures[J]. Angew. Chem.-Int. Edit., 2013, 52(34): 8921-8924.

[40]

Giese M, Khan M K, Hamad W Y, et al. Imprinting of photonic patterns with thermosetting amino-formaldehyde-cellulose composites[J]. ACS Macro Lett., 2013, 2(9): 818-821.

[41]

Zhang Y P, Chodavarapu V P, Kirk A G, et al. Nanocrystalline cellulose for covert optical encryption[J]. J. Nanophotonics, 2012, 6: 9.

Paper and Biomaterials
Pages 54-62
Cite this article:
Li D, Feng N, Liu S, et al. Review on Cellulose Nanocrystal Assembly for Optical Applications. Paper and Biomaterials, 2019, 4(2): 54-62. https://doi.org/10.26599/PBM.2019.9260015

515

Views

11

Downloads

4

Crossref

8

Scopus

Altmetrics

Received: 17 February 2019
Accepted: 14 March 2019
Published: 01 April 2019
© 2019 Paper and Biomaterials Editorial Board

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Return