AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (995.7 KB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review | Open Access

Cellulose Paper-based Strapping Products for Green/Sustainable Packaging Needs

Zhibin He1Amit Chowdhury1Li Tong1Mike Reynolds2Yonghao Ni1( )
Limerick Pulp and Paper Centre, University of New Brunswick, Fredericton, New Brunswick E3B 5A3, Canada
Oval International, 206 Firman Ave, Hoquiam, WA 98550, USA
Show Author Information

Abstract

Paper products such as corrugated paperboards are the most common green packaging materials, which are renewable, sustainable, recyclable and biodegradable. However, the plastic or metal straps used to secure the carton boxes are not so green. At the end of packaging, the carton boxes can be recycled, but the plastic/metal straps have to be sorted out for disposal separately. This review focuses on: 1) the global trend of green packaging; 2) conventional plastic/metal strapping materials for carton boxes; 3) conventional market pulp baling with steel wire as the tying materials; 4) cellulose fiber-based materials for strapping market pulp bales and carton boxes. New generation of cellulose paper straps are being developed for more challenging applications with superior strength properties and repulpability.

References

[2]

Barnes D K A, Walters A, Gonçalves L. Macroplastics at sea around Antarctica[J]. Marine Environmental Research, 2010, 70(2): 250-252.

[3]

Rujnić-Sokele M. Plastic waste - Global environmental problem[J]. Polimeri, 2015, 36(1): 34-37.

[4]

Worm B, Lotze H K, Jubinville I, et al. Plastic as a Persistent Marine Pollutant[J]. In Annual Review of Environment and Resources, 2017, 42: 1-26.

[5]

Frampton R. Paper - Green problem or solution[J]. AP Australian Printer Magazine, 2008(4): 28-30.

[6]
Van Heiningen A. Converting a kraft pulp mill into an integrated forest products biorefinery[C]//Annual Meeting of the Pulp and Paper Technical Association of Canada (PAPTAC). 2006.
[7]
Bracmort K. Biomass feedstocks for biopower: Background and selected issues[R]. Washington D. C, 2010.
[8]

Wang W, Wang Y, Wang Y, et al. Fabrication and characterization of microfibrillated cellulose and collagen composite films[J]. Journal of Bioresources and Bioproducts, 2016, 1(4): 162-168.

[9]

Wang Z, Yi M, Zhang Z, et al. Fabrication of highly water-repelling paper by surface coating with stearic acid modified calcium carbonate particles and reactive biopolymers[J]. Journal of Bioresources and Bioproducts, 2017, 2(2): 89-92.

[10]

Pan Y, Farmahini-Farahani M, O'Hearn P, et al. An overview of bio-based polymers for packaging materials[J]. Journal of Bioresources and Bioproducts, 2016, 1(3): 106-113.

[13]

Franco-Trecu V, Drago M, Katz H, et al. With the noose around the neck: Marine debris entangling otariid species[J]. Environmental Pollution, 2017, 220: 985-989.

[14]

Unger B, Rebolledo E L B, Deaville, R, et al. Large amounts of marine debris found in sperm whales stranded along the North Sea coast in early 2016[J]. Marine Pollution Bulletin, 2016, 112 (1-2): 134-141.

[15]

Waluda C M, Staniland I J. Entanglement of Antarctic fur seals at Bird Island, South Georgia[J]. Marine Pollution Bulletin, 2013, 74 (1): 244-252.

[18]

Cózar A, Martí E, Duarte C M, et al. The Arctic Ocean as a dead end for floating plastics in the North Atlantic branch of the thermohaline circulation[J]. Sci. Adv., 2017, DOI: 10.1126/sciadv.1600582.

[19]

Suaria G, Avio C G, Mineo A, et al. The Mediterranean plastic soup: synthetic polymers in Mediterranean surface waters[J]. Sci. Rep., 2016, 6: 37551.

[20]

Waller C L, Griffiths H J, Waluda C M, et al. Microplastics in the Antarctic marine system: an emerging area of research[J]. Sci. Total Environ., 2017, 598: 220-227.

[21]
Galgani F, Hanke G, Maes T. Global distribution, composition and abundance of marine litter[M]//Bergmann M. Marine Anthropogenic Litter. Springer, 2015: 29-56.
[22]

Peters C A, Bratton S P. Urbanization is a major influence on microplastic ingestion by sunfish in the Brazos River Basin, Central Texas, USA[J]. Environ. Pollut., 2016, 210: 380-387.

[23]

Frère L, Paul-Pont I, Rinnert E, et al. Influence of environmental and anthropogenic factors on the composition, concentration and spatial distribution of microplastics: a case study of the Bay of Brest (Brittany, France)[J]. Environ. Pollut., 2017, 225: 211-222.

[24]
Lusher A. Microplastics in the Marine Environment: Distribution, Interactions and Effects[M]//Bergmann M. Marine Anthropogenic Litter. New York: Springer, 2015: 245-307.
[25]

Foley C J, Feiner Z S, Malinich T D, et al. A meta-analysis of the effects of exposure to microplastics on fish and aquatic invertebrates[J]. Sci. Total Environ., 2018, DOI: 10.1016/j.scitotenv.2018.03.046.

[26]

Khalik W M. Microplastics analysis in Malaysian marine waters: A field study of Kuala Nerus and Kuantan[J]. Marine Pollution Bulletin, 2018, 135: 451-457.

[29]
Jay D Crary. Paper strap: USA, US2499463A[P].
[30]
Bobbie Peacock. Folded paper straps: USA, US20030235687A1[P].
[31]
Bobbie Peacock. Folded paper straps. WO 03/101872 A1[P].
[32]
Cranston A. Strap and method for producing strap. WO 2005/108050 A1[P].
[33]
Edward Dever, Paul W Weber. Paper straps: USA, US7118648B2[P].
[34]
Chtourou H, Ricard M, Page N, et al. Methods for making repulpable paper strings and straps through pultrusion process and related devices for the same. WO 2016/196745 Al[P]. 2015-06-03.
[35]

Page D H, Barbe M C, Seth R S, et al. Mechanism of curl creation, removal and retention in pulp fibers[J]. Journal of Pulp and Paper Science, 1984, 10(3): 74-79.

[36]

Page D H, Seth R S. Elastic modulus of paper - 3. the effects of dislocations, microcompressions, curl, crimps, and kinks[J]. TAPPI, 1980, 63(10): 99-102.

[37]

Page D H, Seth R S. Elastic modulus of paper-2. the importance of fiber modulus, bonding, and fiber length[J]. TAPPI, 1980, 63(6): 113-116.

[38]

Page D H, Seth R S. Note on the effect of fiber strength on the tensile strength of paper[J]. TAPPI Journal, 1988, 71(10): 182-183.

[39]

Page D H, Seth R S, De Grace J H. Elastic modulus of paper - 1. the controlling mechanisms[J]. TAPPI, 1979, 62(9): 99-102.

[40]

Seth R S. Beating and refining response of some reinforcement pulps[J]. TAPPI Journal, 1999, 82(3): 147-155.

[41]

Seth R S. Zero-span tensile strength of papermaking fibers[J]. Paperi ja Puu/Paper and Timber, 2001, 83(8): 597-604.

[42]

Seth RS. The importance of fiber straightness for pulp strength[J]. Pulp and Paper Canada, 2006, 107(1): 34-42.

[43]

Seth R S, Chan B K. Measuring fiber strength of papermaking pulps[J]. TAPPI Journal, 1999, 82(11): 115-120.

[44]

Berggren R, Berthold F, Sjöholm E, et al. Fiber strength in relation to molecular mass distribution of hardwood kraft pulp: Degradation by ozone and acid hydrolysis[J]. Nord. Pulp Pap. Res. J., 2001, 16(4): 333-338.

[45]

Berggren R, Molin U, Berthold F, et al. Alkaline degradation of birch and spruce: influence of degradation conditions on molecular mass distributions and fiber strength[J]. Carbohydr. Polym., 2003, 51: 255-264.

[46]

de Souza Lima M M, Borsali R. Rodlike cellulose microcrystals: Structure, properties, and applications[J]. Macromolecular Rapid Communications, 2004, 25(7): 771-787.

[47]

Kibblewhite R P. Fractures and dislocations in the walls of kraft and bisulphite pulp fibers[J]. Cellulose Chem. Technol., 1976, 10(4): 497-503.

[48]

Nyholm K, Ander P, Bardage S, et al. Dislocations in pulp fibers: Their origin, characteristics and importance: A review[J]. Nord. Pulp Pap. Res. J., 2001, 16(4): 376-384.

[49]
Abitz P R. Effects of medium consistency mixing on paper and fiber properties of bleached chemical pulps[C]//1991 International Paper Physics Conference, September 22-26, 1991, Kona, HI, TAPPI, Book 1: 1-10.
[50]
Bennington C P J, Seth R S. Response of fibers on mechanical treatment during MC fluidization[C]//Fundamentals of Papermaking, Transactions of the 9th Fundamental Research Symposium, September 17-22, 1989, Cambridge, UK.
[51]

Seth R S, Bennington C P J. Fiber morphology and the response of pulps to medium-consistency fluidization[J]. TAPPI Journal, 1995, 78(12): 152-154.

[52]

MacLeod J M, McPhee F J, Kingsland K A, et al. Pulp strength delivery along complete kraft mill fiber lines[J]. TAPPI Journal, 1995, 78(8): 153-160.

[53]
Tikka P, Sundquist J. Softwood fiber damage: A newly discovered enigma in modern kraft fiber lines[C]//1991 Pulping Conference, November 4-7, 1991, Seattle, WA, USA.
[54]

Kibblewhite R P. Fractures and dislocations in the walls of kraft and bisulphite pulp fibers[J]. Cellulose Chem. Technol., 1976, 10(4): 497-503.

[55]

Mohlin U-B, Alfredsson C. Fiber deformation and its implications in pulp characterization[J]. Nord. Pulp Pap. Res. J., 1990, 5(4): 172-179.

[56]
Neimol L. Papermaking chemistry Book 4[M]//Gullichsen J, Paulapuro H, ed. Papermaking science and technology. Helsinki Finnish Paper Engineers' Association and Tappi, 1999.
[57]

Hollertz R, Durán V, Larsson P, et al. Chemically modified cellulose micro- and nanofibrils as paper-strength additives[J]. Cellulose, 2017, 24(9): 3883-3899.

[58]

Merayo N, Balea Ana, de la Fuente E, et al. Synergies between cellulose nanofibers and retention additives to improve recycled paper properties and the drainage process[J]. Cellulose, 2017, 24(7): 2987-3000.

[59]

Osong S H, Norgren S, Engstrand P. Paper strength improvement by inclusion of nano-ligno-cellulose to Chemi-thermomechanical pulp[J]. Nordic Pulp and Paper Research Journal, 2014, 29(2): 309-316.

[60]

Kargarzadeh H, Mariano M, Gopakumar D, et al. Advances in cellulose nanomaterials[J]. Cellulose, 2018, 25(4): 2151-2189.

[61]

Nechyporchuk O, Belgacem M N, Bras J. Production of cellulose nanofibrils: A review of recent advances[J]. Industrial Crops and Products, 2016, 93: 2-25.

[62]

Trache D, Hussin M H, Haafiz M K M, et al. Recent progress in cellulose nanocrystals: Sources and production[J]. Nanoscale, 2017, 9 (5): 1763-1786.

[64]

Cho M J, Park B D. Tensile and thermal properties of nanocellulose-reinforced poly(vinyl alcohol) nanocomposites[J]. Journal of Industrial and Engineering Chemistry, 2011, 17(1): 36-40.

[65]

Jahan Z, Niazi M B K, Gregersen Ø W. Mechanical, thermal and swelling properties of cellulose nanocrystals/PVOH nanocomposites membranes[J]. Journal of Industrial and Engineering Chemistry, 2018, 57: 113-124.

[66]

Moon R J, Martini A, Nairn J, et al. Cellulose nanomaterials review: Structure, properties and nanocomposites[J]. Chem Soc Rev., 2011, 40(7): 3941-3994.

[67]

Tashiro K, Kobayashi M. Theoretical evaluation of threedimensional elastic constants of native and regenerated celluloses: Role of hydrogen bonds[J]. Polymer, 1991, 32(8): 1516-1526.

[68]

Cranston E D, Gray D G. Morphological and optical characterization of polyelectrolyte multilayers incorporating nanocrystalline cellulose[J]. Biomacromolecules, 2006, doi: 10.1021/bm0602886.

[69]

Chazeau L, Cavaillé J Y, Canova G, et al. Viscoelastic properties of plasticized PVC reinforced with cellulose whiskers[J]. J. Appl. Polym. Sci., 1999, 71(11): 1797-1808.

[70]

Klemm D, Schumann D, Kramer F, et al. Nanocellulose materials-different cellulose, different functionality[J]. Macromolecular Symposia, 2009, 280(1): 60-71.

[71]

Sriupayo J, Supaphol P, Blackwell J, et al. Preparation and characterization of a-chitin whisker-reinforced poly(vinyl alcohol) nanocomposite films with or without heat treatment[J]. Polymer, 2005, 46(15): 5637-5644.

[72]

Zimmermann T, Pöhler E, Geiger T. Cellulose fibrils for polymer reinforcement[J]. Advanced Engineering Materials, 2004, 6(9): 754-761.

[73]

Favier V, Chanzy H, Cavaille J Y. Polymer nanocomposites reinforced by cellulose whiskers[J]. Macromolecules, 1995, 2(18): 6365-6367.

[75]
Amit Chowdhury. MSc thesi[D]. Canada: University of New Brunswick, 2017.
Paper and Biomaterials
Pages 54-68
Cite this article:
He Z, Chowdhury A, Tong L, et al. Cellulose Paper-based Strapping Products for Green/Sustainable Packaging Needs. Paper and Biomaterials, 2019, 4(3): 54-68. https://doi.org/10.26599/PBM.2019.9260023

837

Views

63

Downloads

5

Crossref

17

Scopus

Altmetrics

Received: 07 May 2019
Accepted: 05 June 2019
Published: 01 July 2019
© 2019 Paper and Biomaterials Editorial Board

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Return