Abstract
To reduce the adverse effects of non-cellulose materials on subsequent homogenization, the effects of a high-pressure homogenization treatment on the structure and properties of cellulose nanofibers (CNF) prepared by acid treatment of soybean residue were studied. The effects of the number of homogenization step on the microfibrillation degree, crystalline structure and mechanical properties of the soybean residue were analyzed by SEM, FT-IR, XRD, TG and DTG. The results showed that an increase in the number of homogenization steps led to an increase in the degree of microfibrillation, a more uniform distribution of the CNF diameter, and an increase in the crystallinity of CNF. However, but when the number of homogenization steps exceeded 15, the rate of change decreased, and the crystallinity of CNF decreased. As the number of homogenization steps increased, the average degree of polymerization and average molecular weight of CNF decreased continuously, and after 15 homogenization steps, their rate of change also decreased. Therefore, 15 steps of high-pressure homogenization represented a suitable number of steps to prepare the soybean residue CNF with an average diameter of 15 nm.