AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (24.6 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Anderson-type polyoxometalate-based sandwich complexes bearing a new “V”-like bis-imidazole-bis-amide ligand as electrochemical sensors and catalysts for sulfide oxidation

Yue ZhangXiang WangYue WangNa XuXiu-Li Wang ( )
College of Chemistry and Materials Engineering, Bohai University, Jinzhou 121013, China
Show Author Information

Graphical Abstract

Abstract

By introducing a new “V”-like semirigid bis-imidazole-bis-amide ligand, 4,4’-bis(1H-imidazole-4-carboxamide)phenylmethane (L), into a reaction system containing Anderson-type polyoxoanions, three polyoxometalate-based metal–organic complexes (POMOCs) with different metal ions were successfully synthesized under solvothermal conditions. The as-prepared POMOCs [Zn2L2(H2O)4][Zn(H2O)2(TeMo6O24)]·9H2O (1), [Ni(H2O)6][Ni2L2(H2O)2[AlMo6(OH)6O18]2]·9H2O (2), and [Co(H2O)6][Co2L2(H2O)2[AlMo6(OH)6O18]2]·11.5H2O (3) show sandwich-like supramolecular structures. Complexes 2 and 3 are isostructural, having two [ML(H2O)2]2+ chains with [AlMo6(OH)6O18]3− polyoxoanions as pendants arranged in an interdigital mode to construct the sandwich-like architecture, whereas in complex 1 the anionic [Zn(H2O)2(TeMo6O24)]4− chain is sandwiched by two cationic [ZnL(H2O)2]2+ chains to generate the supramolecular structure. POMOCs 13 display excellent electrochemical sensing behavior for Cr(VI), Fe(III), BrO3, and NO2 ions and efficient catalytic performance in sulfide oxidation. The effect of the central metal on the electrochemical sensing and sulfide oxidation performance and that of the special architecture of 1 on the detection ability are discussed.

Electronic Supplementary Material

Download File(s)
0004_ESM.pdf (1.2 MB)
0004_ESM_1.cif (3.4 MB)
0004_ESM_checkcif.pdf (303.3 KB)

References

[1]

Abdelkader-Fernández, V. K.; Fernandes, D. M.; Balula, S. S.; Cunha-Silva, L.; Freire, C. Oxygen evolution reaction electrocatalytic improvement in POM@ZIF nanocomposites: A bidirectional synergistic effect. ACS Appl. Energy Mater. 2020, 3, 2925–2934.

[2]

An, H. Y.; Zhang, J.; Chang, S. Z.; Hou, Y. J.; Zhu, Q. S. 2D hybrid architectures constructed from two kinds of polyoxovanadates as efficient heterogeneous catalysts for cyanosilylation and knoevenagel condensation. Inorg. Chem. 2020, 59, 10578–10590.

[3]

Zhang, Y.; Wang, X.; Wang, Y.; Li, L.; Xu, N.; Wang, X. L. Anderson-type polyoxometalate-based complexes constructed from a new ‘V’-like bis-pyridine-bis-amide ligand for selective adsorption of organic dyes and detection of Cr(VI) and Fe(III) ions. Inorg. Chem. Front. 2021, 8, 4458–4466.

[4]

Zhao, Z. F.; Cong, B. W.; Su, Z. H.; Li, B. R. Self-assembly of biarsenate capped Keggin arsenomolybdates with tetravanadium substitution for photocatalytic degradation of organic dyes. Cryst. Growth Des. 2020, 20, 2753–2760.

[5]

Zhang, S.; Lu, Y.; Sun, X. W.; Li, Z.; Dang, T. Y.; Zhang, Z.; Tian, H. R.; Liu, S. X. Purely inorganic frameworks based on polyoxometalate clusters with abundant phosphate groups: Single-crystal to single-crystal structural transformation and remarkable proton conduction. Chem. Commun. 2020, 56, 391–394.

[6]
Rohmer, M. M. ; Bénard, M. Bond-stretch isomerism in strained inorganic molecules and in transition metal complexes: A revival? Electronic supplementary information (ESI) available: Tables 1-6 report structural information obtained either from X-ray diffraction experiments or from ab initio and DFT calculations. See http://www.rsc.org/suppdata/cs/b1/b101270n/. Chem. Soc. Rev. 2001, 30, 340–354.
[7]

Yang, H. Z.; Yang, D. R.; Zhou, Y.; Wang, X. Polyoxometalate interlayered zinc-metallophthalocyanine molecular layer sandwich as photocoupled electrocatalytic CO2 reduction catalyst. J. Am. Chem. Soc. 2021, 143, 13721–13730.

[8]

Gong, K. N.; Wang, W. J.; Yan, J. S.; Han, Z. G. Highly reduced molybdophosphate as a noble-metal-free catalyst for the reduction of chromium using formic acid as a reducing agent. J. Mater. Chem. A 2015, 3, 6019–6027.

[9]

Xu, B. J.; Xu, Q.; Wang, Q. Z.; Liu, Z.; Zhao, R. K.; Li, D. D.; Ma, P. T.; Wang, J. P.; Niu, J. Y. A copper-containing polyoxometalate-based metal-organic framework as an efficient catalyst for selective catalytic oxidation of alkylbenzenes. Inorg. Chem. 2021, 60, 4792–4799.

[10]

Zhong, R.; Cui, L. P.; Yu, K.; Lv, J. H.; Guo, Y. H.; Zhang, E. M.; Zhou, B. B. Wells-Dawson arsenotungstate porous derivatives for electrochemical supercapacitor electrodes and electrocatalytically active materials. Inorg. Chem. 2021, 60, 9869–9879.

[11]

Liu, G. L.; Yang, Z. Q.; Zhou, M.; Wang, Y. X.; Yuan, D. Q.; Zhao, D. Heterogeneous postassembly modification of zirconium metal-organic cages in supramolecular frameworks. Chem. Commun. 2021, 57, 6276–6279.

[12]

Folkman, S. J.; Soriano-Lopez, J.; Galán-Mascarós, J. R.; Finke, R. G. Electrochemically driven water-oxidation catalysis beginning with six exemplary cobalt polyoxometalates: Is it molecular, homogeneous catalysis or electrode-bound, heterogeneous CoOx catalysis? J. Am. Chem. Soc. 2018, 140, 12040–12055.

[13]

Huang, Z. W.; Hu, K. Q.; Mei, L.; Wang, D. G.; Wang, J. Y.; Wu, W. S.; Chai, Z. F.; Shi, W. Q. Encapsulation of polymetallic oxygen clusters in a mesoporous/microporous thorium-based porphyrin metal-organic framework for enhanced photocatalytic CO2 reduction. Inorg. Chem. 2022, 61, 3368–3373.

[14]

Wang, X. L. ; Zhang, J. Y. ; Chang, Z. H. ; Zhang, Z. ; Wang, X. ; Lin, H. Y. ; Cui, Z. W. α-γ-type [Mo8O26]4–-containing metal-organic complex possessing efficient catalytic activity toward the oxidation of thioether derivatives. Inorg. Chem 2021, 60, 3331–3337.

[15]

Wang, X. L.; Tian, Y.; Chang, Z. H.; Lin, H. Y. A series of polyoxometalate-based Metal-Bis(pyridyl-tetrazole) complexes with high electrocatalytic activity for hydrogen evolution reaction in alkaline and acid media. ACS Sustainable Chem. Eng. 2020, 8, 15696–15702.

[16]

Li, J. H.; Wang, X. L.; Song, G.; Lin, H. Y.; Wang, X.; Liu, G. C. Various Anderson-type polyoxometalate-based metal-organic complexes induced by diverse solvents: Assembly, structures and selective adsorption for organic dyes. Dalton Trans. 2020, 49, 1265–1275.

[17]

Li, B. N.; Yu, X. J.; Pang, H. J.; Shen, Q. B.; Hou, Y.; Ma, H. Y.; Xin, J. J. Rational regulation of transition metals in polyoxometalate hybrids without noble metal assistance for efficient light-driven H2 production. Chem. Commun. 2020, 56, 7199–7202.

[18]

Manna, P.; Tripuramallu, B. K.; Das, S. K. Influential role of geometrical disparity of linker and metal ionic radii in elucidating the structural diversity of coordination polymers based on angular dicarboxylate and Bis-pyridyl ligands. Cryst. Growth Des. 2014, 14, 278–289.

[19]

Shen, Q. B.; Gómez-García, C. J.; Sun, W. L.; Lai, X. Y.; Pang, H. J.; Ma, H. Y. Improving the photocatalytic H2 evolution activity of Keggin polyoxometalates anchoring copper-azole complexes. Green Chem. 2021, 23, 3104–3114.

[20]

Lin, X. L.; Zhang, M. L.; Zhu, M. M.; Huang, H.; Shi, C. F.; Liu, Y.; Kang, Z. H. Engineering a polyoxometalate-based metal organic framework with more exposed active edge sites of Ag for visible light-driven selective oxidation of cis-cyclooctene. Inorg. Chem. Front. 2018, 5, 2493–2500.

[21]

Zheng, Y. P.; Tan, Y.; Zhou, W. L.; Hao, X. R.; Liu, X. K.; Peng, J. Three polyoxovanadates-based organic-inorganic hybrids: Structural variation, bifunctional electrocatalytic activities, and computational studies. Inorg. Chem. 2021, 60, 12323–12330.

[22]

Li, Y.-W.; Guo, L.-Y.; Su, H.-F.; Jagodic, M.; Luo, M. ; Zhou, X.-Q.; Zeng, S.-Y.; Tung, C.-H.; Sun, D.; Zheng, L.-S. Two Unprecedented POM-based inorganic–organic hybrids with concomitant heteropolytungstate and molybdate. Inorg Chem. 2017, 56, 2481–2489.

[23]

Wang, X. L.; Chang, Z. H.; Lin, H. Y.; Tian, A. X.; Liu, G. C.; Zhang, J. W.; Liu, D. N. Two novel Anderson-type polyoxometalate-based metal-organic complexes with high-efficiency photocatalysis towards degradation of organic dyes under UV and visible light irradiation. RSC Adv. 2015, 5, 14020–14026.

[24]

Li, F. C.; Li, X. L.; Tan, L. K.; Wang, J. T.; Yao, W. Z. Evans-Showell-type polyoxometalate-based metal-organic complexes with novel 3D structures constructed from flexible bis-pyrazine-bis-amide ligands and copper metals: Syntheses, structures, and fluorescence and catalytic properties. Dalton Trans. 2019, 48, 2160–2169.

[25]

Tian, Y.; Chang, Z. H.; Wang, X. L.; Lin, H. Y.; Zhang, Y. C.; Liu, Q. Q.; Chen, Y. Z. Pseudocapacitance improvement of polymolybdates-based metal-organic complexes via modification with hydrogen molybdenum bronze by electrochemical treatment. Chem. Eng. J. 2022, 428, 132380.

[26]

Nam, S.; French, A. D.; Condon, B. D.; Concha, M. Segal crystallinity index revisited by the simulation of X-ray diffraction patterns of cotton cellulose Iβ and cellulose II. Carbohydr. Polym. 2016, 135, 1–9.

[27]

Carrier, X.; Lambert, J. F.; Che, M. Ligand-promoted alumina dissolution in the preparation of MoOx/γ-Al2O3 catalysts:  Evidence for the formation and deposition of an anderson-type alumino heteropolymolybdate. J. Am. Chem. Soc. 1997, 119, 10137–10146.

[28]

Singh, M.; Lofland, S. E.; Ramanujachary, K. V.; Ramanan, A. Crystallization of Anderson-Evans type chromium molybdate solids incorporated with a metal pyrazine complex or coordination polymer. Cryst. Growth Des. 2010, 10, 5105–5112.

[29]

Bai, L.; Lin, B. Z.; Huang, X. F.; Chen, Z. J.; Cao, X. G. Hydrothermal synthesis, crystal structures and electrochemical properties of two phosphatotungstates containing Keggin clusters, [Cu(2,2′-bipy)2]5[PW12O40]·2H2O and (Hpip)3[PW12O40]. J. Cluster Sci. 2008, 19, 561–572.

[30]

Pan, X.; Wang, X. L.; Wang, X.; Li, Y.; Liu, G. C.; Lin, H. Y. Various types of isopolymolybdate-based metal-organic complexes formed in different conditions: Synthesis, structures, luminescence, electrochemical, and photocatalytic performances. CrystEngComm 2019, 21, 6472–6481.

[31]

Sárkány, J. Effects of water and ion-exchanged counterion on the FTIR spectra of ZSM-5 II. (Cu+-CO)-ZSM-5:Coordination of Cu+-CO complex by H2O and changes in skeletal T-O-T vibrations. Top. Catal. 2002, 18, 271–277.

[32]

Zhou, W. L.; Zheng, Y. P.; Yuan, G.; Peng, J. Three polyoxometalates-based organic-inorganic hybrids decorated with Cu-terpyridine complexes exhibiting dual functional electro-catalytic behaviors. Dalton Trans. 2019, 48, 2598–2605.

[33]

Niu, J. Q.; Ma, Y. Y.; Xin, X.; Han, Z. G. Rare earth ion encapsulated basket-like {Gd⊂P6MoV2MoVI16O73} cage as efficient electrochemical sensor and fluorescent probe for Cr(VI). Cryst. Growth Des. 2020, 20, 3584–3589.

[34]

Wang, X.; Lin, J. F.; Li, H.; Wang, C. Y.; Wang, X. L. Carbazole-based bis-imidazole ligand-involved synthesis of inorganic-organic hybrid polyoxometalates as electrochemical sensors for detecting bromate and efficient catalysts for selective oxidation of thioether. RSC Adv. 2022, 12, 4437–4445.

[35]

Dong, B. X.; Chen, L.; Zhang, S. Y.; Ge, J.; Song, L.; Tian, H.; Teng, Y. L.; Liu, W. L. The first tritopic bridging ligand 1, 3, 5-tris(4-carboxyphenyl)-benzene (H3BTB) functionalized porous polyoxometalate-based metal-organic framework (POMOF): From design, synthesis to electrocatalytic properties. Dalton Trans. 2015, 44, 1435–1440.

[36]

Hassan, S. S.; Liu, Y. P.; Sirajuddin; Solangi, A. R.; Bond, A. M.; Zhang, J. Phosphomolybdate-doped-poly(3, 4-ethylenedioxythiophene) coated gold nanoparticles: Synthesis, characterization and electrocatalytic reduction of bromate. Anal Chim. Acta 2013, 803, 41–46.

[37]

Li, Y. C.; Bu, W. F.; Wu, L. X.; Sun, C. Q. A new amperometric sensor for the determination of bromate, iodate and hydrogen peroxide based on Titania sol-gel matrix for immobilization of cobalt substituted Keggin-type cobalttungstate anion by vapor deposition method. Sens. Actuators B: Chem. 2005, 107, 921–928.

[38]

Xin, X.; Hu, N.; Ma, Y. Y.; Wang, Y. L.; Hou, L.; Zhang, H.; Han, Z. G. Polyoxometalate-based crystalline materials as a highly sensitive electrochemical sensor for detecting trace Cr(VI). Dalton Trans. 2020, 49, 4570–4577.

[39]

Wang, X.; Li, H.; Lin, J. F.; Wang, C. Y.; Wang, X. L. Capped Keggin type polyoxometalate-based inorganic-organic hybrids involving in situ ligand transformation as supercapacitors and efficient electrochemical sensors for detecting Cr(VI). Inorg. Chem. 2021, 60, 19287–19296.

[40]

Wang, Y. L.; Ma, Y. Y.; Zhao, Q.; Hou, L.; Han, Z. G. Polyoxometalate-based crystalline catalytic materials for efficient electrochemical detection of Cr(VI). Sens. Actuators B: Chem. 2020, 305, 127469.

[41]

Wang, C.; Ying, J.; Mou, H. C.; Tian, A. X.; Wang, X. L. Multi-functional photoelectric sensors based on a series of isopolymolybdate-based compounds for detecting different ions. Inorg. Chem. Front. 2020, 7, 3882–3894.

[42]

Wang, Y.; Ma, J. X.; Zhang, Y.; Xu, N.; Wang, X. L. A series of cobalt-based coordination polymer crystalline materials as highly sensitive electrochemical sensors for detecting trace Cr(VI), Fe(III) Ions, and Ascorbic Acid. Cryst. Growth Des. 2021, 21, 4390–4397.

[43]

Xu, H.; Zheng, Q. L.; Yang, P.; Liu, J. S.; Xing, S. J.; Jin, L. T. Electrochemical synthesis of silver nanoparticles-coated gold nanoporous film electrode and its application to amperometric detection for trace Cr(VI). Sci. China Chem. 2011, 54, 1004–1010.

[44]

Jin, W.; Wu, G. S.; Chen, A. C. Sensitive and selective electrochemical detection of chromium(VI) based on gold nanoparticle-decorated Titania nanotube arrays. Analyst 2014, 139, 235–241.

[45]

Qiao, J. Y.; Wang, Y. H.; Liang, Q.; Dong, S. Q.; Zeng, Z. X.; Shao, S. J. A photoelectrochemical sensor based on TiO2 nanotube arrays decorated with nickel-cobalt layered double hydroxides for the effective and sensitive detection of chromium(VI). ACS Appl. Nano Mater. 2022, 5, 5535–5543.

[46]

Kindra, L. R.; Eggers, C. J.; Liu, A. T.; Mendoza, K.; Mendoza, J.; Klein Myers, A. R.; Penner, R. M. Lithographically patterned PEDOT nanowires for the detection of iron(III) with nanomolar sensitivity. Anal. Chem. 2015, 87, 11492–11500.

[47]

Mittal, S. K.; Rana, S.; Kaur, N.; Banks, C. E. A voltammetric method for Fe(III) in blood serum using a screen-printed electrode modified with a Schiff base ionophore. Analyst 2018, 143, 2851–2861.

[48]

Zareh, M. M.; Zordek, W.; Abd-Alhady, A. Iron-selective electrode based on phosphorylated calix-6-arene derivative. J. Sensor Technol. 2014, 4, 186–194.

[49]

Wang, X. L.; Li, L.; Wang, X.; Zhang, Y. Q. Various amide-derived ligands induced five octamolybdate-based metal-organic complexes: Synthesis, structure, electrochemical sensing and photocatalytic properties. CrystEngComm 2021, 23, 5176–5183.

[50]

Lu, J. J.; Liang, J. J.; Lin, H. Y.; Liu, Q. Q.; Cui, Z. W.; Wang, X. L. Four Anderson-type [TeMo6O24]6−-based metal-organic complexes with a new bis(pyrimidine)-bis(amide): Multifunctional electrochemical and adsorption performances. CrystEngComm 2022, 24, 3921–3927.

[51]

Li, L.; Wang, X.; Xu, N.; Chang, Z. H.; Liu, G. C.; Lin, H. Y.; Wang, X. L. Four octamolybdate complexes constructed from a quinoline-imidazole-monoamide ligand: Structures and electrochemical, photocatalytic and magnetic properties. CrystEngComm 2020, 22, 8322–8329.

[52]

Guo, K. K.; Jiang, X. Y.; Xu, M.; Li, F. Y.; Dong, S. M.; Zheng, Y.; Xu, L. An unprecedented polyoxometalate-based 1D double chain compound with opposite charges enables conductivity improvement. Chem. Commun. 2021, 57, 11398–11401.

[53]

Dai, C. N.; Zhang, J.; Huang, C. P.; Lei, Z. G. Ionic liquids in selective oxidation: Catalysts and solvents. Chem. Rev. 2017, 117, 6929–6983.

[54]

Yu, M. Y.; Guo, T. T.; Shi, X. C.; Yang, J.; Xu, X. X.; Ma, J. F.; Yu, Z. T. Polyoxometalate-bridged Cu(I)- and Ag(I)-thiacalix[4]arene dimers for heterogeneous catalytic oxidative desulfurization and azide-alkyne “Click” reaction. Inorg. Chem. 2019, 58, 11010–11019.

[55]

Buru, C. T. ; Wasson, M. C. ; Farha, O. K. H5PV2Mo10O40 polyoxometalate encapsulated in NU-1000 metal-organic framework for aerobic oxidation of a mustard gas simulant. ACS Appl. Nano Mater 2020, 3, 658–664.

[56]

Du, Z. Y.; Yu, Y. Z.; Hong, Y. L.; Li, N. F.; Han, Y. M.; Cao, J. P.; Sun, Q.; Mei, H.; Xu, Y. Polyoxometalate-based metal-organic frameworks with unique high-nuclearity water clusters. ACS Appl. Mater. Interfaces 2020, 12, 57174–57181.

[57]

Hou, Y. J.; An, H. Y.; Chang, S. Z.; Zhang, J. Versatile catalysts constructed from hybrid polyoxomolybdates for simultaneously detoxifying sulfur mustard and organophosphate simulants. Catal. Sci. Technol. 2019, 9, 2445–2455.

[58]

An, H. Y.; Hou, Y. J.; Wang, L.; Zhang, Y. M.; Yang, W.; Chang, S. Z. Evans-showell-type polyoxometalates constructing high-dimensional inorganic-organic hybrid compounds with copper-organic coordination complexes: Synthesis and oxidation catalysis. Inorg. Chem. 2017, 56, 11619–11632.

[59]

Wang, X. ; Zhang, T. ; Li, Y. H. ; Lin, J. F. ; Li, H. ; Wang, X. L. In situ ligand-transformation-involved synthesis of inorganic-organic hybrid polyoxovanadates as efficient heterogeneous catalysts for the selective oxidation of sulfides. Inorg. Chem 2020, 59, 17590.

[60]

Zhang, Y.; Yu, W. D.; Li, B.; Chen, Z. F.; Yan, J. Discovery of a new family of polyoxometalate-based hybrids with improved catalytic performances for selective sulfoxidation: The synergy between classic heptamolybdate anions and complex cations. Inorg. Chem. 2019, 58, 14876–14884.

Polyoxometalates
Article number: 9140004
Cite this article:
Zhang Y, Wang X, Wang Y, et al. Anderson-type polyoxometalate-based sandwich complexes bearing a new “V”-like bis-imidazole-bis-amide ligand as electrochemical sensors and catalysts for sulfide oxidation. Polyoxometalates, 2022, 1(1): 9140004. https://doi.org/10.26599/POM.2022.9140004

3205

Views

480

Downloads

32

Crossref

Altmetrics

Received: 08 May 2022
Revised: 28 June 2022
Accepted: 05 August 2022
Published: 03 September 2022
© The Author(s) 2022. Polyoxometalates published by Tsinghua University Press.

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return