AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (11.9 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article | Open Access

Polyoxometalate-based nanostructures for electrocatalytic and photocatalytic CO2 reduction

Dejin Zang1 ( )Haiqing Wang2
School of Pharmacy and Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, NHC Key Laboratory of biotechnology drugs (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan 250117, China
Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan 250022, China
Show Author Information

Graphical Abstract

Abstract

Electro/photocatalytic carbon dioxide (CO2) reduction to value-added chemicals and fuels is being actively studied as a promising pathway for renewable energy storage and climate change mitigation. Because of inert molecular properties and competing hydrogen generation reactions, high-performance electrocatalysts with high Faradaic efficiency and product selectivity but low overpotential are urgently needed. Polyoxometalates (POMs) are a class of polynuclear metal oxide clusters with a precise atomic structure, providing an ideal research platform to reveal the relationship between macroscopic properties and microstructures. Moreover, their highly tunable redox properties and abundant transition metal atom composition ensure thriving research for POM-based nanostructures toward CO2 reduction. In this review, we first introduce the specific roles of POMs in electro/photocatalytic CO2 reduction. Recent advances in POM-based nanostructures ranging from single clusters, assemblies, organic–inorganic hybrids to derivatives are systematically summarized. In particular, the structure–performance relationship of POM-based nanostructures is discussed at the atomic and molecular levels. Finally, the challenges and opportunities in the design of high-efficiency POM-based nanostructures are discussed to promote electro/photocatalytic CO2 reduction.

References

[1]

Chu, S.; Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 2012, 488, 294–303.

[2]

Shih, C. F.; Zhang, T.; Li, J. H.; Bai, C. L. Powering the future with liquid sunshine. Joule 2018, 2, 1925–1949.

[3]

Liu, Y. T.; Deng, D. H.; Bao, X. H. Catalysis for selected C1 chemistry. Chem 2020, 6, 2497–2514.

[4]

Graciani, J.; Mudiyanselage, K.; Xu, F.; Baber, A. E.; Evans, J.; Senanayake, S. D.; Stacchiola, D. J.; Liu, P.; Hrbek, J.; Sanz, J. F. et al. Highly active copper-ceria and copper-ceria-titania catalysts for methanol synthesis from CO2. Science 2014, 345, 546–550.

[5]

Gawande, M. B.; Goswami, A.; Felpin, F. X.; Asefa, T.; Huang, X. X.; Silva, R.; Zou, X. X.; Zboril, R.; Varma, R. S. Cu and Cu-based nanoparticles: Synthesis and applications in catalysis. Chem. Rev. 2016, 116, 3722–3811.

[6]

Zheng, Y.; Vasileff, A.; Zhou, X. L.; Jiao, Y.; Jaroniec, M.; Qiao, S. Z. Understanding the roadmap for electrochemical reduction of CO2 to multi-carbon oxygenates and hydrocarbons on copper-based catalysts. J. Am. Chem. Soc. 2019, 141, 7646–7659.

[7]

Li, X. D.; Sun, Y. F.; Xu, J. Q.; Shao, Y. J.; Wu, J.; Xu, X. L.; Pan, Y.; Ju, H. X.; Zhu, J. F.; Xie, Y. Selective visible-light-driven photocatalytic CO2 reduction to CH4 mediated by atomically thin CuIn5S8 layers. Nat. Energy 2019, 4, 690–699.

[8]

Lei, Z. D.; Xue, Y. C.; Chen, W. Q.; Qiu, W. H.; Zhang, Y.; Horike, S.; Tang, L. MOFs-based heterogeneous catalysts: New opportunities for energy-related CO2 conversion. Adv. Energy Mater. 2018, 8, 1801587.

[9]

Gurudayal; Bullock, J.; Srankó, D. F.; Towle, C. M.; Lum, Y.; Hettick, M.; Scott, M. C.; Javey, A.; Ager, J. Efficient solar-driven electrochemical CO2 reduction to hydrocarbons and oxygenates. Energy Environ. Sci. 2017, 10, 2222–2230.

[10]

Zheng, L. X.; Teng, F.; Ye, X. Y.; Zheng, H. J.; Fang, X. S. Photo/electrochemical applications of metal sulfide/TiO2 heterostructures. Adv. Energy Mater. 2020, 10, 1902355.

[11]

Weliwatte, N. S.; Minteer, S. D. Photo-bioelectrocatalytic CO2 reduction for a circular energy landscape. Joule 2021, 5, 2564–2592.

[12]

Ma, M.; Trześniewski, B. J.; Xie, J.; Smith, W. A. Selective and efficient reduction of carbon dioxide to carbon monoxide on oxide-derived nanostructured silver electrocatalysts. Angew. Chem., Int. Ed. 2016, 55, 9748–9752.

[13]

Tang, M. T.; Peng, H. J.; Lamoureux, P. S.; Bajdich, M.; Abild-Pedersen, F. From electricity to fuels: Descriptors for C1 selectivity in electrochemical CO2 reduction. Appl. Catal. B Environ. 2020, 279, 119384.

[14]

Nielsen, D. U.; Hu, X. M.; Daasbjerg, K.; Skrydstrup, T. Chemically and electrochemically catalysed conversion of CO2 to CO with follow-up utilization to value-added chemicals. Nat. Catal. 2018, 1, 244–254.

[15]

Zhu, M. H.; Ye, R. Q.; Jin, K.; Lazouski, N.; Manthiram, K. Elucidating the reactivity and mechanism of CO2 electroreduction at highly dispersed cobalt phthalocyanine. ACS Energy Lett. 2018, 3, 1381–1386.

[16]

Ci, C.; Carbó, J. J.; Neumann, R.; Graaf, C. D.; Poblet, J. M. Photoreduction mechanism of CO2 to CO catalyzed by a rhenium(I)-polyoxometalate hybrid compound. ACS Catal. 2016, 6, 6422–6428.

[17]

Gabardo, C. M.; Seifitokaldani, A.; Edwards, J. P.; Dinh, C. T.; Burdyny, T.; Kibria, M. G.; O’Brien, C. P.; Sargent, E. H; Sinton, D. Combined high alkalinity and pressurization enable efficient CO2 electroreduction to CO. Energy Environ. Sci. 2018, 11, 2531–2539.

[18]

Thevenon, A.; Rosas-Hernández, A.; Fontani Herreros, A. M.; Agapie, T.; Peters, J. C. Dramatic HER suppression on Ag electrodes via molecular films for highly selective CO2 to CO reduction. ACS Catal. 2021, 11, 4530–4537.

[19]

Kibria, M. G.; Dinh, C. T.; Seifitokaldani, A.; De Luna, P.; Burdyny, T.; Quintero-Bermudez, R.; Ross, M. B.; Bushuyev, O. S.; García de Arquer, F. P.; Yang, P. D. et al. A surface reconstruction route to high productivity and selectivity in CO2 electroreduction toward C2+ hydrocarbons. Adv. Mater. 2018, 30, 1804867.

[20]

Weng, Z.; Jiang, J. B.; Wu, Y. S.; Wu, Z. S.; Guo, X. T.; Materna, K. L.; Liu, W.; Batista, V. S.; Brudvig, G. W.; Wang, H. L. Electrochemical CO2 reduction to hydrocarbons on a heterogeneous molecular Cu catalyst in aqueous solution. J. Am. Chem. Soc. 2016, 138, 8076–8079.

[21]

Zhou, Y. S.; Che, F. L.; Liu, M.; Zou, C. Q.; Liang, Z. Q.; De Luna, P.; Yuan, H. F.; Li, J.; Wang, Z. Q.; Xie, H. P. et al. Dopant-induced electron localization drives CO2 reduction to C2 hydrocarbons. Nat. Chem. 2018, 10, 974–980.

[22]

Li, Y. F.; Cui, F.; Ross, M. B.; Kim, D.; Sun, Y. C.; Yang, P. D. Structure-sensitive CO2 electroreduction to hydrocarbons on ultrathin 5-fold twinned copper nanowires. Nano Lett. 2017, 17, 1312–1317.

[23]

Wang, Z. L.; She, X. J.; Yu, Q.; Zhu, X. W.; Li, H. M.; Xu, H. Minireview on the commonly applied copper-based electrocatalysts for electrochemical CO2 reduction. Energy Fuels 2021, 35, 8585–8601.

[24]

Wang, H. X.; Tzeng, Y. K.; Ji, Y. F.; Li, Y. B.; Li, J.; Zheng, X. L.; Yang, A. K.; Liu, Y. Y.; Gong, Y. J.; Cai, L. L. et al. Synergistic enhancement of electrocatalytic CO2 reduction to C2 oxygenates at nitrogen-doped nanodiamonds/Cu interface. Nat. Nanotechnol. 2020, 15, 131–137.

[25]

Wang, L.; Nitopi, S.; Wong, A. B.; Snider, J. L.; Nielander, A. C.; Morales-Guio, C. G.; Orazov, M.; Higgins, D. C.; Hahn, C.; Jaramillo, T. F. Electrochemically converting carbon monoxide to liquid fuels by directing selectivity with electrode surface area. Nat. Catal. 2019, 2, 702–708.

[26]

Kim, D.; Kley, C. S.; Li, Y. F.; Yang, P. D. Copper nanoparticle ensembles for selective electroreduction of CO2 to C2-C3 products. Proc. Natl. Acad. Sci. USA 2017, 114, 10560–10565.

[27]

Li, C. W.; Ciston, J.; Kanan, M. W. Electroreduction of carbon monoxide to liquid fuel on oxide-derived nanocrystalline copper. Nature 2014, 508, 504–507.

[28]

Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Nørskov, J. K.; Jaramillo, T. F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, 146.

[29]

Liu, M. X.; Xu, Y. K.; Meng, Y.; Wang, L. J.; Wang, H.; Huang, Y. C.; Onishi, N.; Wang, L.; Fan, Z. J.; Himeda, Y. Heterogeneous catalysis for carbon dioxide mediated hydrogen storage technology based on formic acid. Adv. Energy Mater. 2022, 12, 2200817.

[30]

Ju, W. B.; Jiang, F. Z.; Ma, H.; Pan, Z. Y.; Zhao, Y. B.; Pagani, F.; Rentsch, D.; Wang, J.; Battaglia, C. Electrocatalytic reduction of gaseous CO2 to CO on Sn/Cu-nanofiber-based gas diffusion electrodes. Adv. Energy Mater. 2019, 9, 1901514.

[31]

Li, T. F.; Lees, E. W.; Zhang, Z. S.; Berlinguette, C. P. Conversion of bicarbonate to formate in an electrochemical flow reactor. ACS Energy Lett. 2020, 5, 2624–2630.

[32]

Gu, Z. X.; Shen, H.; Shang, L. M.; Lv, X. M.; Qian, L. P.; Zheng, G. F. Nanostructured copper-based electrocatalysts for CO2 reduction. Small Methods 2018, 2, 1800121.

[33]

Cai, Z.; Wu, Y. S.; Wu, Z. S.; Yin, L. C.; Weng, Z.; Zhong, Y. R.; Xu, W. W.; Sun, X. M.; Wang, H. L. Unlocking bifunctional electrocatalytic activity for CO2 reduction reaction by win-win metal-oxide cooperation. ACS Energy Lett. 2018, 3, 2816–2822.

[34]

Birdja, Y. Y.; Pérez-Gallent, E.; Figueiredo, M. C.; Göttle, A. J.; Calle-Vallejo, F.; Koper, M. T. M. Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels. Nat. Energy 2019, 4, 732–745.

[35]

Bondue, C. J.; Graf, M.; Goyal, A.; Koper, M. T. M. Suppression of hydrogen evolution in acidic electrolytes by electrochemical CO2 reduction. J. Am. Chem. Soc. 2021, 143, 279–285.

[36]

Kortlever, R.; Shen, J.; Schouten, K. J. P.; Calle-Vallejo, F.; Koper, M. T. M. Catalysts and reaction pathways for the electrochemical reduction of carbon dioxide. J. Phys. Chem. Lett. 2015, 6, 4073–4082.

[37]

Zhao, K.; Nie, X. W.; Wang, H. Z.; Chen, S.; Quan, X.; Yu, H. T.; Choi, W.; Zhang, G. H.; Kim, B.; Chen, J. G. Selective electroreduction of CO2 to acetone by single copper atoms anchored on N-doped porous carbon. Nat. Commun. 2020, 11, 2455.

[38]

Zhang, X. L.; Sun, X. H.; Guo, S. X.; Bond, A. M.; Zhang, J. Formation of lattice-dislocated bismuth nanowires on copper foam for enhanced electrocatalytic CO2 reduction at low overpotential. Energy Environ. Sci. 2019, 12, 1334–1340.

[39]

Wu, Y. A.; McNulty, I.; Liu, C.; Lau, K. C.; Liu, Q.; Paulikas, A. P.; Sun, C. J.; Cai, Z. H.; Guest, J. R.; Ren, Y. et al. Facet-dependent active sites of a single Cu2O particle photocatalyst for CO2 reduction to methanol. Nat. Energy 2019, 4, 957–968.

[40]

Wang, Y. Z.; Zhang, Z. Y.; Mao, Y. C.; Wang, X. D. Two-dimensional nonlayered materials for electrocatalysis. Energy Environ. Sci. 2020, 13, 3993–4016.

[41]

Cheng, T.; Xiao, H.; Goddard, W. A. Full atomistic reaction mechanism with kinetics for CO reduction on Cu(100) from ab initio molecular dynamics free-energy calculations at 298 K. Proc. Natl. Acad. Sci. USA 2017, 114, 1795–1800.

[42]

Nam, D. H.; De Luna, P.; Rosas-Hernández, A.; Thevenon, A.; Li, F. W.; Agapie, T.; Peters, J. C.; Shekhah, O.; Eddaoudi, M.; Sargent, E. H. Molecular enhancement of heterogeneous CO2 reduction. Nat. Mater. 2020, 19, 266–276.

[43]

Corson, E. R.; Kas, R.; Kostecki, R.; Urban, J. J.; Smith, W. A.; McCloskey, B. D.; Kortlever, R. In situ ATR-SEIRAS of carbon dioxide reduction at a plasmonic silver cathode. J. Am. Chem. Soc. 2020, 142, 11750–11762.

[44]
Huang, J. E. ; Li, F. W. ; Ozden, A. ; Sedighian Rasouli, A. ; García de Arquer, F. P. ; Liu, S. J. ; Zhang, S. Z. ; Luo, M. C. ; Wang, X. ; Lum, Y. et al. CO2 electrolysis to multicarbon products in strong acid. Science 2021, 372, 1074–1078.
[45]

Zhang, W.; Huang, C. Q.; Xiao, Q.; Yu, L.; Shuai, L.; An, P. F.; Zhang, J.; Qiu, M.; Ren, Z. F.; Yu, Y. Atypical oxygen-bearing copper boosts ethylene selectivity toward electrocatalytic CO2 reduction. J. Am. Chem. Soc. 2020, 142, 11417–11427.

[46]

Vasilyev, D. V.; Dyson, P. J. The role of organic promoters in the electroreduction of carbon dioxide. ACS Catal. 2021, 11, 1392–1405.

[47]

Kattel, S.; Yan, B. H.; Yang, Y. X.; Chen, J. G.; Liu, P. Optimizing binding energies of key intermediates for CO2 hydrogenation to methanol over oxide-supported copper. J. Am. Chem. Soc. 2016, 138, 12440–12450.

[48]

Skafte, T. L.; Guan, Z. X.; Machala, M. L.; Gopal, C. B.; Monti, M.; Martinez, L.; Stamate, E.; Sanna, S.; Garrido Torres, J. A.; Crumlin, E. J. et al. Selective high-temperature CO2 electrolysis enabled by oxidized carbon intermediates. Nat. Energy 2019, 4, 846–855.

[49]

Chen, Z.; Gao, M. R.; Duan, N. Q.; Zhang, J. G.; Zhang, Y. Q.; Fan, T. T.; Zhang, J. W.; Dong, Y. Y.; Li, J. H.; Liu, Q. X. et al. Tuning adsorption strength of CO2 and its intermediates on tin oxide-based electrocatalyst for efficient CO2 reduction towards carbonaceous products. Appl. Catal. B Environ. 2020, 277, 119252.

[50]

Nguyen, H. L. Reticular materials for artificial photoreduction of CO2. Adv. Energy Mater. 2020, 10, 2002091.

[51]

Ross, M. B.; De Luna, P.; Li, Y. F.; Dinh, C. T.; Kim, D.; Yang, P. D.; Sargent, E. H. Designing materials for electrochemical carbon dioxide recycling. Nat. Catal. 2019, 2, 648–658.

[52]

Sun, R. Y.; Liao, Y. H.; Bai, S. T.; Zheng, M. Y.; Zhou, C.; Zhang, T.; Sels, B. F. Heterogeneous catalysts for CO2 hydrogenation to formic acid/formate: From nanoscale to single atom. Energy Environ. Sci. 2021, 14, 1247–1285.

[53]

Yang, D. R.; Ni, B.; Wang, X. Heterogeneous catalysts with well-defined active metal sites toward CO2 electrocatalytic reduction. Adv. Energy Mater. 2020, 10, 2001142.

[54]

Gu, J.; Hsu, C. S.; Bai, L. C.; Chen, H. M.; Hu, X. L. Atomically dispersed Fe3+ sites catalyze efficient CO2 electroreduction to CO. Science 2019, 364, 1091–1094.

[55]

Wang, T. T.; Wang, P. Y.; Zang, W. J.; Li, X.; Chen, D.; Kou, Z. K.; Mu, S. C.; Wang, J. Nanoframes of Co3O4-Mo2N heterointerfaces enable high-performance bifunctionality toward both electrocatalytic HER and OER. Adv. Funct. Mater. 2022, 32, 2107382.

[56]

Luo, W.; Zhang, Q.; Zhang, J.; Moioli, E.; Zhao, K.; Züttel, A. Electrochemical reconstruction of ZnO for selective reduction of CO2 to CO. Appl. Catal. B Environ. 2020, 273, 119060.

[57]

Choi, J.; Kim, M. J.; Ahn, S. H.; Choi, I.; Jang, J. H.; Ham, Y. S.; Kim, J. J.; Kim, S. K. Electrochemical CO2 reduction to CO on dendritic Ag-Cu electrocatalysts prepared by electrodeposition. Chem. Eng. J. 2016, 299, 37–44.

[58]

Kim, C.; Dionigi, F.; Beermann, V.; Wang, X. L.; Möller, T.; Strasser, P. Alloy nanocatalysts for the electrochemical oxygen reduction (ORR) and the direct electrochemical carbon dioxide reduction reaction (CO2RR). Adv. Mater. 2019, 31, 1805617.

[59]

Pu, J. L.; Nishikado, K.; Wang, N. N.; Nguyen, T. T.; Maki, T.; Qian, E. W. Core-shell nickel catalysts for the steam reforming of acetic acid. Appl. Catal. B Environ. 2018, 224, 69–79.

[60]

Zhu, Y. P.; Guo, C. X.; Zheng, Y.; Qiao, S. Z. Surface and interface engineering of noble-metal-free electrocatalysts for efficient energy conversion processes. Acc. Chem. Res. 2017, 50, 915–923.

[61]

Su, X.; Yang, X. F.; Huang, Y. Q.; Liu, B.; Zhang, T. Single-atom catalysis toward efficient CO2 conversion to CO and formate products. Acc. Chem. Res. 2019, 52, 656–664.

[62]

Fan, Q. K.; Zhang, X.; Ge, X. H.; Bai, L. C.; He, D. S.; Qu, Y. T.; Kong, C. C.; Bi, J. L.; Ding, D. W.; Cao, Y. Q. et al. Manipulating Cu nanoparticle surface oxidation states tunes catalytic selectivity toward CH4 or C2+ Products in CO2 electroreduction. Adv. Energy Mater. 2021, 11, 2101424.

[63]

Zhu, C. Y.; Zhang, Z. B.; Zhong, L. X.; Hsu, C. S.; Xu, X. Z.; Li, Y. Z.; Zhao, S. W.; Chen, S. H.; Yu, J. Y.; Chen, S. L. et al. Product-specific active site motifs of Cu for electrochemical CO2 reduction. Chem 2021, 7, 406–420.

[64]

Jia, Y. F.; Li, F.; Fan, K.; Sun, L. C. Cu-based bimetallic electrocatalysts for CO2 reduction. Adv. Powder Mater. 2022, 1, 100012.

[65]

Sun, Z. Y.; Hu, Y. N.; Zhou, D. N.; Sun, M. R.; Wang, S.; Chen, W. X. Factors influencing the performance of copper-bearing catalysts in the CO2 reduction system. ACS Energy Lett. 2021, 6, 3992–4022.

[66]

Kondinski, A. Metal-metal bonds in polyoxometalate chemistry. Nanoscale 2021, 13, 13574–13592.

[67]

Misra, A.; Kozma, K.; Streb, C.; Nyman, M. Beyond charge balance: Counter-cations in polyoxometalate chemistry. Angew. Chem., Int. Ed. 2020, 59, 596–612.

[68]

Liu, J. X.; Zhang, X. B.; Li, Y. L.; Huang, S. L.; Yang, G. Y. Polyoxometalate functionalized architectures. Coord. Chem. Rev. 2020, 414, 213260.

[69]

Ueda, T. Electrochemistry of polyoxometalates: From fundamental aspects to applications. ChemElectroChem 2018, 5, 823–838.

[70]

Ji, Y. C.; Huang, L. J.; Hu, J.; Streb, C.; Song, Y. F. Polyoxometalate-functionalized nanocarbon materials for energy conversion, energy storage and sensor systems. Energy Environ. Sci. 2015, 8, 776–789.

[71]

Huang, Y. C.; Ge, J. X.; Hu, J.; Zhang, J. W.; Hao, J.; Wei, Y. G. Nitrogen-doped porous molybdenum carbide and phosphide hybrids on a carbon matrix as highly effective electrocatalysts for the hydrogen evolution reaction. Adv. Energy Mater. 2018, 8, 1701601.

[72]

Huang, Y. C.; Hu, J.; Xu, H. X.; Bian, W.; Ge, J. X.; Zang, D. J.; Cheng, D. J.; Lv, Y. K.; Zhang, C.; Gu, J. et al. Fine tuning electronic structure of catalysts through atomic engineering for enhanced hydrogen evolution. Adv. Energy Mater. 2018, 8, 1800789.

[73]

Zang, D. J.; Huang, Y. C.; Li, Q.; Tang, Y. J.; Wei, Y. G. Cu dendrites induced by the Anderson-type polyoxometalate NiMo6O24 as a promising electrocatalyst for enhanced hydrogen evolution. Appl. Catal. B Environ. 2019, 249, 163–171.

[74]

Yu, F. Y.; Lang, Z. L.; Yin, L. Y.; Feng, K.; Xia, Y. J.; Tan, H. Q.; Zhu, H. T.; Zhong, J.; Kang, Z. H.; Li, Y. G. Pt-O bond as an active site superior to Pt0 in hydrogen evolution reaction. Nat. Commun. 2020, 11, 490.

[75]

Chen, J. J.; Symes, M. D.; Cronin, L. Highly reduced and protonated aqueous solutions of [P2W18O62]6− for on-demand hydrogen generation and energy storage. Nat. Chem. 2018, 10, 1042–1047.

[76]

Chen, L.; Chen, W. L.; Wang, X. L.; Li, Y. G.; Su, Z. M.; Wang, E. B. Polyoxometalates in dye-sensitized solar cells. Chem. Soc. Rev. 2019, 48, 260–284.

[77]

Cao, Y. W.; Chen, Q. Y.; Shen, C. R.; He, L. Polyoxometalate-based catalysts for CO2 conversion. Molecules 2019, 24, 2069.

[78]

Gu, J.; Chen, W.; Shan, G. G.; Li, G.; Sun, C.; Wang, X. L.; Su, Z. The roles of polyoxometalates in photocatalytic reduction of carbon dioxide. Mater. Today Energy 2021, 21, 100760.

[79]

Zhang, L.; Li, R.-H.; Li, X.-X.; Liu, J.; Guan, W.; Dong, L,-Z.; Li, S.-L.; Lan, Y.-Q. Molecular oxidation-reduction junctions for articicial photosynthetic overall reaction. Proc. Natl. Acad. Sci. USA 2022, 119, e2210550119.

[80]

Yang, H. Z.; Yang, D. R.; Zhou, Y.; Wang, X. Polyoxometalate interlayered zinc-metallophthalocyanine molecular layer sandwich as photocoupled electrocatalytic CO2 reduction catalyst. J. Am. Chem. Soc. 2021, 143, 13721–13730.

[81]

Haviv, E.; Shimon, L. J. W.; Neumann, R. Photochemical reduction of CO2 with visible light using a polyoxometalate as photoreductant. Chem.—Eur. J. 2017, 23, 92–95.

[82]

Girardi, M.; Platzer, D.; Griveau, S.; Bedioui, F.; Alves, S.; Proust, A.; Blanchard, S. Assessing the electrocatalytic properties of the {Cp*RhIII}2+-polyoxometalate derivative [H2PW11O39-{RhIIICp*(OH2)}]3- towards CO2 reduction. Eur. J. Inorg. Chem. 2019, 2019, 387–393.

[83]

Li, L.; Hua, Y.; Li, X. N.; Guo, Y.; Zhang, H. Reunderstanding the photoinduced charge transfer process of ammonium polyoxomolybdate. Dalton Trans. 2019, 48, 10683–10688.

[84]

Yu, H. J.; Haviv, E.; Neumann, R. Visible-Light photochemical reduction of CO2 to CO coupled to hydrocarbon dehydrogenation. Angew. Chem. 2020, 132, 6278–6282.

[85]

Stuckart, M.; Monakhov, K. Y. Polyoxometalates as components of supramolecular assemblies. Chem. Sci. 2019, 10, 4364–4376.

[86]

Gonzalez, J.; Guillen, E.; Laborda, E.; Molina, A. Quantitative analysis of the electrochemical performance of multi-redox molecular electrocatalysts. A mechanistic study of chlorate electrocatalytic reduction in presence of a molybdenium polyoxometalate. J. Catal. 2022, 413, 467–477.

[87]

Li, Z. H.; Li, Y. M.; Chen, Y. N.; Wang, Q. W.; Jadoon, M.; Yi, X. H.; Duan, X. Z.; Wang, X. H. Developing Dawson-type polyoxometalates used as highly efficient catalysts for lignocellulose transformation. ACS Catal. 2022, 12, 9213–9225.

[88]

Anyushin, A. V.; Kondinski, A.; Parac-Vogt, T. N. Hybrid polyoxometalates as post-functionalization platforms: From fundamentals to emerging applications. Chem. Soc. Rev. 2020, 49, 382–432.

[89]

Arán-Ais, R. M.; Gao, D. F.; Roldan Cuenya, B. Structure- and electrolyte-sensitivity in CO2 electroreduction. Acc. Chem. Res. 2018, 51, 2906–2917.

[90]

Lang, Z. L.; Miao, Jun.; Lan, Y. C.; Cheng, J. J.; Xu, X. Q.; Cheng, C. Polyoxometalates as electron and proton reservoir assist electrochemical CO2 reduction. APL Mater. 2020, 8, 120702.

[91]

Li, N.; Liu, J.; Dong, B. X.; Lan, Y. Q. Polyoxometalate-based compounds for photo- and electrocatalytic applications. Angew. Chem., Int. Ed. 2020, 59, 20779–20793.

[92]

Szczepankiewicz, S. H.; Ippolito, C. M.; Santora, B. P.; Van De Ven, T. J.; Ippolito, G. A.; Fronckowiak, L.; Wiatrowski, F.; Power, T.; Kozik, M. Interaction of carbon dioxide with transition-metal-substituted heteropolyanions in nonpolar solvents. Spectroscopic evidence for complex formation. Inorg. Chem. 1998, 37, 4344–4352.

[93]

Girardi, M.; Blanchard, S.; Griveau, S.; Simon, P.; Fontecave, M.; Bedioui, F.; Proust, A. Electro-assisted reduction of CO2 to CO and formaldehyde by (TOA)6[α-SiW11O39Co(_)] polyoxometalate. Eur. J. Inorg. Chem. 2015, 2015, 3642–3648.

[94]

Li, C. X.; Zha, B. J.; Li, J. J. A SiW11Mn-assisted indium electrocatalyst for carbon dioxide reduction into formate and acetate. J. CO2 Util. 2020, 38, 299–305.

[95]

Zha, B.; Li, C. X.; Li, J. J. Efficient electrochemical reduction of CO2 into formate and acetate in polyoxometalate catholyte with indium catalyst. J. Catal. 2020, 382, 69–76.

[96]

Guo, S. X.; Li, F. W.; Chen, L.; Macfarlane, D. R.; Zhang, J. Polyoxometalate-promoted electrocatalytic CO2 reduction at nanostructured silver in dimethylformamide. ACS Appl. Mater. Interfaces 2018, 10, 12690–12697.

[97]

Guo, S. X.; MacFarlane, D. R.; Zhang, J. Bioinspired electrocatalytic CO2 reduction by bovine serum albumin-capped silver nanoclusters mediated by [α-SiW12O40]4-. ChemSusChem 2016, 9, 80–87.

[98]

Solé-Daura, A.; Benseghir, Y.; Ha-Thi, M. H.; Fontecave, M.; Mialane, P.; Dolbecq, A.; Mellot-Draznieks, C. Origin of the boosting effect of polyoxometalates in photocatalysis: The case of CO2 reduction by a Rh-containing metal-organic framework. ACS Catal. 2022, 12, 9244–9255.

[99]

Du, J.; Lang, Z. L.; Ma, Y. Y.; Tan, H. Q.; Liu, B. L.; Wang, Y. H.; Kang, Z. H.; Li, Y. G. Polyoxometalate-based electron transfer modulation for efficient electrocatalytic carbon dioxide reduction. Chem. Sci. 2020, 11, 3007–3015.

[100]

Wang, Y. R.; Huang, Q.; He, C. T.; Chen, Y. F.; Liu, J.; Shen, F. C.; Lan, Y. Q. Oriented electron transmission in polyoxometalate-metalloporphyrin organic framework for highly selective electroreduction of CO2. Nat. Commun. 2018, 9, 4466.

[101]

Zang, D. J.; Li, Q.; Dai, G. Y.; Zeng, M. Y.; Huang, Y. C.; Wei, Y. G. Interface engineering of Mo8/Cu heterostructures toward highly selective electrochemical reduction of carbon dioxide into acetate. Appl. Catal. B Environ. 2021, 281, 119426.

[102]

Gurudayal; Beeman, J. W.; Bullock, J.; Wang, H.; Eichhorn, J.; Towle, C.; Javey, A.; Toma, F. M.; Mathews, N.; Ager, J. W. Si photocathode with Ag-supported dendritic Cu catalyst for CO2 reduction. Energy Environ. Sci. 2019, 12, 1068–1077.

[103]

Guo, S. E.; Zhang, H. Y.; Chen, Y.; Liu, Z. H.; Yu, B.; Zhao, Y. F.; Yang, Z. Z.; Han, B. X.; Liu, Z. M. Visible-light-driven photoreduction of CO2 to CH4 over N, O, P-containing covalent organic polymer submicrospheres. ACS Catal. 2018, 8, 4576–4581.

[104]

Nakajima, T.; Tamaki, Y.; Ueno, K.; Kato, E.; Nishikawa, T.; Ohkubo, K.; Yamazaki, Y.; Morimoto, T.; Ishitani, O. Photocatalytic reduction of low concentration of CO2. J. Am. Chem. Soc. 2016, 138, 13818–13821.

[105]

Khenkin, A. M.; Efremenko, I.; Weiner, L.; Martin, J. M. L.; Neumann, R. Photochemical reduction of carbon dioxide catalyzed by a ruthenium-substituted polyoxometalate. Chem.—Eur. J. 2010, 16, 1356–1364.

[106]

Zhao, X.; Zhou, J.; Sun, C. Y.; You, S. Q.; Wang, X. L.; Su, Z. M. A ruthenium/polyoxometalate for efficient CO2 photoreduction under visible light in diluted CO2. Nanotechnology 2020, 31, 255402.

[107]

Li, N.; Liu, J.; Liu, J. J.; Dong, L. Z.; Li, S. L.; Dong, B. X.; Kan, Y. H.; Lan, Y. Q. Self-assembly of a phosphate-centered polyoxo-titanium cluster : Discovery of the heteroatom keggin family. Angew. Chem., Int. Ed. 2019, 58, 17260–17264.

[108]

Xu, H.; You, S. Q.; Lang, Z. L.; Sun, Y.; Sun, C. Y.; Zhou, J.; Wang, X. L.; Kang, Z. H.; Su, Z. M. Highly efficient photoreduction of low-concentration CO2 to syngas by using a polyoxometalates/RuII composite. Chem.—Eur. J. 2020, 26, 2735–2740.

[109]

Du, J.; Ma, Y. Y.; Xin, X.; Na, H.; Zhao, Y. N.; Tan, H. Q.; Han, Z. G.; Li, Y. G.; Kang, Z. H. Reduced polyoxometalates and bipyridine ruthenium complex forming a tunable photocatalytic system for high efficient CO2 reduction. Chem. Eng. J. 2020, 398, 125518.

[110]

Benseghir, Y.; Solé-Daura, A.; Mialane, P.; Marrot, J.; Dalecky, L.; Béchu, S.; Frégnaux, M.; Gomez-Mingot, M.; Fontecave, M.; Mellot-Draznieks, C. et al. Understanding the photocatalytic reduction of CO2 with heterometallic molybdenum(V) phosphate polyoxometalates in aqueous media. ACS Catal. 2022, 12, 453–464.

[111]

Xie, S. L.; Liu, J.; Dong, L. Z.; Li, S. L.; Lan, Y. Q.; Su, Z. M. Hetero-metallic active sites coupled with strongly reductive polyoxometalate for selective photocatalytic CO2-to-CH4 conversion in water. Chem. Sci. 2019, 10, 185–190.

[112]

Huang, Q.; Liu, J.; Feng, L.; Wang, Q.; Guan, W.; Dong, L. Z.; Zhang, L.; Yan, L. K.; Lan, Y. Q.; Zhou, H. C. Multielectron transportation of polyoxometalate-grafted metalloporphyrin coordination frameworks for selective CO2-to-CH4 photoconversion. Natl. Sci. Rev. 2020, 7, 53–63.

[113]

Benseghir, Y.; Lemarchand, A.; Duguet, M.; Mialane, P.; Gomez-Mingot, M.; Roch-Marchal, C.; Pino, T.; Ha-Thi, M. H.; Haouas, M.; Fontecave, M. et al. Co-immobilization of a Rh catalyst and a keggin polyoxometalate in the UiO-67 Zr-based metal-organic framework: In depth structural characterization and photocatalytic properties for CO2 reduction. J. Am. Chem. Soc. 2020, 142, 9428–9438.

[114]

Fang, Z.; Deng, Z.; Wan, X. Y.; Li, Z. Y.; Ma, X.; Hussain, S.; Ye, Z. Z.; Peng, X. S. Keggin-type polyoxometalates molecularly loaded in Zr-ferrocene metal organic framework nanosheets for solar-driven CO2 cycloaddition. Appl. Catal. B Environ. 2021, 296, 120329.

[115]

Lu, M.; Zhang, M.; Liu, J.; Yu, T. Y.; Chang, J. N.; Shang, L. J.; Li, S. L.; Lan, Y. Q. Confining and highly dispersing single polyoxometalate clusters in covalent organic frameworks by covalent linkages for CO2 photoreduction. J. Am. Chem. Soc. 2022, 144, 1861–1871.

[116]

Zhou, J.; Chen, W. C.; Sun, C. Y.; Han, L.; Qin, C.; Chen, M. M.; Wang, X. L.; Wang, E. B.; Su, Z. M. Oxidative polyoxometalates modified graphitic carbon nitride for visible-light CO2 reduction. ACS Appl. Mater. Interfaces 2017, 9, 11689–11695.

[117]

Liu, Q. D.; Wang, X. Sub-nanometric materials: Electron transfer, delocalization, and beyond. Chem Catal. 2022, 2, 1257–1266.

[118]

Zhou, J.; Li, L. Y.; Gao, X. J.; Wang, H. Q. Clusterphene: A new two-dimensional structure from cluster self-assembly. Nano Res. 2022, 15, 5790–5791.

[119]

Marcandalli, G.; Monteiro, M. C. O.; Goyal, A.; Koper, M. T. M. Electrolyte effects on CO2 electrochemical reduction to CO. Acc. Chem. Res. 2022, 55, 1900–1911.

[120]

Wu, C. L.; Qiao, X. H.; Robertson, C. M.; Higgins, S. J.; Cai, C. X.; Nichols. R. J.; Vezzoli, A. A chemically soldered polyoxometalate single-molecule transistor. Angew. Chem. 2020, 132, 12127–12132.

[121]

Gao, C.; Wang, J.; Xu, H. X.; Xiong, Y. J. Coordination chemistry in the design of heterogeneous photocatalysts. Chem. Soc. Rev. 2017, 46, 2799–2823.

[122]

Chen, B.; Neumann, R. Coordination of carbon dioxide to the lewis acid site of a Zinc-substituted Polyoxometalate and formation of an adduct using a Polyoxometalate-2,4,6-trimethylpyridine frustrated lewis pair. Eur. J. Inorg. Chem. 2018, 2018, 791–794.

[123]

Fang, X. K.; Anderson, T. M.; Neiwert, W. A.; Hill, C. L. Yttrium polyoxometalates. Synthesis and characterization of a carbonate-encapsulated sandwich-type complex. Inorg. Inorg. Chem. 2003, 42, 8600–8602.

[124]

Cheng, W. W.; Xue, Y.-S.; Luo X.-M.; Xu, Y. A rare three-dimensional POM-based inorganic metal polymer bonded by CO2 with high catalytic performance for CO2 cycloaddition. Chem. Commun. 2018, 54, 12808–12811.

Polyoxometalates
Article number: 9140006
Cite this article:
Zang D, Wang H. Polyoxometalate-based nanostructures for electrocatalytic and photocatalytic CO2 reduction. Polyoxometalates, 2022, 1(1): 9140006. https://doi.org/10.26599/POM.2022.9140006

7162

Views

1901

Downloads

86

Crossref

Altmetrics

Received: 30 July 2022
Revised: 25 August 2022
Accepted: 02 September 2022
Published: 23 September 2022
© The Author(s) 2022. Polyoxometalates published by Tsinghua University Press.

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return