AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (26.1 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Old molybdenum blue for new application: {Mo72X30}/PANI/MWCNTs (X = Fe, V) ternary coaxial cable-like fibers for superior electromagnetic wave absorption

Peng He1,2,3Ling Ran1,2Rui Huang1,4Ruiting Hu1,4Runze Ma1,4Yani Li1,2,3Youcai Liang1,2Jun Yan1,2,3,4 ( )
College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources, Central South University, Changsha 410083, China
Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, Central South University, Changsha 410083, China
Hunan Provincial Key Laboratory of Chemical Power Sources, Central South University, Changsha 410083, China
Show Author Information

Graphical Abstract

Abstract

The systematic design of heterointerfaces has been a topic of considerable attention in electromagnetic absorption applications. For the first time, molybdenum blue/polyaniline/multiwalled carbon nanotubes ({Mo72X30}/PANI/MWCNTs, X = Fe, V) ternary coaxial cable-like fibers are systematically designed and synthesized via host–guest electrostatic and synergistic effect and employed as exceptional electromagnetic wave absorbers. The coaxial cable-like structure features an abundance of heterointerfaces between layers, which improves dipole polarization and interface polarization effect, and regulates conductive loss. In addition, the inclusion of polyoxometalates boosts magnetic losses dominated by eddy current losses and improves impedance matching. The optimal {Mo72V30}/PANI/MWCNTs exhibit higher electromagnetic wave absorption (−48.12 dB) at a thinner thickness (2.3 mm). At a thickness of 2.5 mm, {Mo72Fe30}/PANI/MWCNTs exhibit the maximum effective absorption bandwidth (6.16 GHz). In addition to expanding our understanding of the effect of heterointerfaces on electromagnetic absorption, this study demonstrates the potential utilization of polyoxometalate functional molecules in the electromagnetic wave absorption field.

Electronic Supplementary Material

Download File(s)
0008_ESM.pdf (1.5 MB)

References

[1]

Williams, E. Environmental effects of information and communications technologies. Nature 2011, 479, 354–358.

[2]

Sarycheva, A.; Polemi, A.; Liu, Y. Q.; Dandekar, K.; Anasori, B.; Gogotsi, Y. 2D titanium carbide (MXene) for wireless communication. Sci. Adv. 2018, 4, eaau0920.

[3]

Liang, L. Y.; Li, Q. M.; Yan, X.; Feng, Y. Z.; Wang, Y. M.; Zhang, H. B.; Zhou, X. P.; Liu, C. T.; Shen, C. Y.; Xie, X. L. Multifunctional magnetic Ti3C2Tx MXene/graphene aerogel with superior electromagnetic wave absorption performance. ACS Nano 2021, 15, 6622–6632.

[4]

Kashani, H.; Giroux, M.; Johnson, I.; Han, J. H.; Wang, C.; Chen, M. W. Unprecedented electromagnetic interference shielding from three-dimensional bi-continuous nanoporous grapheme. Matter 2019, 1, 1077–1087.

[5]

Wu, C.; Chen, Z. F.; Wang, M. L.; Cao, X.; Zhang, Y.; Song, P.; Zhang, T. Y.; Ye, X. L.; Yang, Y.; Gu, W. H. et al. Confining tiny MoO2 clusters into reduced graphene oxide for highly efficient low frequency microwave absorption. Small 2020, 16, 2001686.

[6]

Liang, J.; Chen, J.; Shen, H. Q.; Hu, K. T.; Zhao, B. N.; Kong, J. Hollow porous bowl-like nitrogen-doped cobalt/carbon nanocomposites with enhanced electromagnetic wave absorption. Chem. Mater. 2021, 33, 1789–1798.

[7]

Liang, L. L.; Gu, W. H.; Wu, Y.; Zhang, B. S.; Wang, G. H.; Yang, Y.; Ji, G. B. Heterointerface engineering in electromagnetic absorbers: New insights and opportunities. Adv. Mater. 2022, 34, 2106195.

[8]

Huang, Q. Q.; Wang, G. H.; Zhou, M.; Zheng, J.; Tang, S. L.; Ji, G. B. Metamaterial electromagnetic wave absorbers and devices: Design and 3D microarchitecture. J. Mater. Sci. Technol. 2022, 108, 90–101.

[9]

Sha, L. N.; Gao, P.; Wu, T. T.; Chen, Y. J. Chemical Ni-C bonding in Ni-carbon nanotube composite by a microwave welding method and its induced high-frequency radar frequency electromagnetic wave absorption. ACS Appl. Mater. Interfaces 2017, 9, 40412–40419.

[10]

Hu, H. H.; Zheng, Y.; Ren, K.; Wang, J. Y.; Zhang, Y. H.; Zhang, X. F.; Che, R. C.; Qin, G. W.; Jiang, Y. Position selective dielectric polarization enhancement in CNT based heterostructures for highly efficient microwave absorption. Nanoscale 2021, 13, 2324–2332.

[11]

Li, X. H.; Chen, W. L.; Tan, H. Q.; Li, F. R.; Li, J. P.; Li, Y. G.; Wang, E. B. Reduced state of the graphene oxide@polyoxometalate nanocatalyst achieving high-efficiency nitrogen fixation under light driving conditions. ACS Appl. Mater. Interfaces 2019, 11, 37927–37938.

[12]

He, P.; Li, X. H.; Wang, T.; Chen, W. C.; Zhang, H.; Chen, W. L. Keggin-type polyoxometalate/thiospinel octahedron heterostructures for photoelectronic devices. Inorg. Chem. Front. 2020, 7, 2621–2628.

[13]

Li, X. H.; He, P.; Wang, T.; Zhang, X. W.; Chen, W. L.; Li, Y. G. Keggin-type polyoxometalate-based ZIF-67 for enhanced photocatalytic nitrogen fixation. ChemSusChem 2020, 13, 2769–2778.

[14]

Long, D. L.; Cronin, L. Chapter seven-Advances in gigantic polyoxomolybdate chemistry. Adv. Inorg. Chem. 2021, 78, 227–267.

[15]

Grzhegorzhevskii, K. V.; Tonkushina, M. O.; Fokin, A. V.; Belova, K. G.; Ostroushko, A. A. Coordinative interaction between nitrogen oxides and iron-molybdenum POM Mo72Fe30. Dalton Trans. 2019, 48, 6984–6996.

[16]

Müller, A.; Serain, C. Soluble molybdenum blues-“des Pudels Kern”. Acc. Chem. Res. 2000, 33, 2–10.

[17]

Todea, A. M.; Merca, A.; Bögge, H.; Glaser, T.; Engelhardt, L.; Prozorov, R.; Luban, M.; Müller, A. Polyoxotungstates now also with pentagonal units: Supramolecular chemistry and tuning of magnetic exchange in {(M)M5}12V30 Keplerates (M = Mo, W). Chem. Commun. 2009, 23, 3351–3353.

[18]

Müller, A.; Luban, M.; Schröder, C.; Modler, R.; Kögerler, P.; Axenovich, M.; Schnack, J.; Canfield, P.; Bud'ko, S.; Harrison, N. Classical and quantum magnetism in giant Keplerate magnetic molecules. ChemPhysChem 2001, 2, 517–521.

[19]

He, P.; Ma, R. Z.; Li, C.; Ran, L.; Yuan, W. T.; Han, Y. Y.; Deng, L. W.; Yan, J. Molybdenum blue preassembly strategy to design bimetallic Fe0.54Mo0.73/Mo2C@C for tuneable and low-frequency electromagnetic wave absorption. Inorg. Chem. Front. 2022, 9, 1931–1942.

[20]

Huang, S. C.; Lin, C. C.; Hsu, C. T.; Guo, C. H.; Chen, T. Y.; Liao, Y. F.; Chen, H. Y. Keplerate-type polyoxometalate {Mo72Fe30} nanoparticle anodes for high-energy lithium-ion batteries. J. Mater. Chem. A 2020, 8, 21623–21633.

[21]

Zhang, N.; Chen, P. Z.; Chen, W. X.; Wang, Y. Multi-components matching construction of α-[SiW11Mn(H2O)O39]6−/biacid co-doped polyaniline wrapped interstice skeletal NiCo2O4 for high-performance electromagnetic wave absorption. Compos. Sci. Technol. 2021, 204, 108643.

[22]

Kuepper, K.; Neumann, M.; Al-Karawi, A. J. M.; Ghosh, A.; Walleck, S.; Glaser, T.; Gouzerh, P.; Müller, A. Immediate formation/precipitation of icosahedrally structured iron-molybdenum mixed oxides from solutions upon mixing simple iron(III) and molybdate salts. J. Clust. Sci. 2014, 25, 301–311.

[23]

Botar, B. ; Kögerler, P. ; Hill, C. L. [{(Mo)Mo5O21(H2O)3(SO4)}12(VO)30(H2O)20]36−: A molecular quantum spin icosidodecahedron. Chem. Commun. 2005, 25, 3138–3140.

[24]

Papagianni, G. G.; Stergiou, D. V.; Armatas, G. S.; Kanatzidis, M. G.; Prodromidis, M. I. Synthesis, characterization and performance of polyaniline-polyoxometalates (XM12, X = P, Si and M = Mo, W) composites as electrocatalysts of bromates. Sens. Actuators B Chem. 2012, 173, 346–353.

[25]

Tandekar, K.; Naulakha, P.; Supriya, S. Reversible redox activity of {Mo72Fe30} nano-polyoxometalate cluster in three crystalline forms. Inorg. Chim. Acta 2020, 511, 119729.

[26]

Xu, Z.; Du, Y. C.; Liu, D. W.; Wang, Y. H.; Ma, W. J.; Wang, Y.; Xu, P.; Han, X. J. Pea-like Fe/Fe3C nanoparticles embedded in nitrogen-doped carbon nanotubes with tunable dielectric/magnetic loss and efficient electromagnetic absorption. ACS Appl. Mater. Interfaces 2019, 11, 4268–4277.

[27]

Zhao, H.; Hou, L.; Bi, S. Y.; Lu, Y. X. Enhanced X-band electromagnetic-interference shielding performance of layer-structured fabric-supported polyaniline/cobalt-nickel coatings. ACS Appl. Mater. Interfaces 2017, 9, 33059–33070.

[28]

He, P.; Chen, W. L.; Li, J. P.; Zhang, H.; Li, Y. W.; Wang, E. B. Keggin and Dawson polyoxometalates as electrodes for flexible and transparent piezoelectric nanogenerators to efficiently utilize mechanical energy in the environment. Sci. Bull. 2020, 65, 35–44.

[29]

Peng, H. L.; Mo, Z. Y.; Liao, S. J.; Liang, H. G.; Yang, L. J.; Luo, F.; Song, H. Y.; Zhong, Y. L.; Zhang, B. Q. High performance Fe- and N-doped carbon catalyst with graphene structure for oxygen reduction. Sci. Rep. 2013, 3, 1765.

[30]

Zheng, T. T.; Jia, Z. R.; Zhan, Q. Q.; Ling, M. B.; Su, Y. D.; Wang, B. B.; Zhang, C. H.; Wu, G. L. Self-assembled multi-layered hexagonal-like MWCNTs/MnF2/CoO nanocomposite with enhanced electromagnetic wave absorption. Carbon 2022, 186, 262–272.

[31]

Liu, Z. P.; Liao, G. M.; Li, S. Y.; Pan, Y. Y.; Wang, X. Y.; Weng, Y. Y.; Zhang, X. H.; Yang, Z. H. Efficient encapsulation of conducting polyaniline chains inside carbon nanotubes: A new strategy to prepare endohedral CNT materials. J. Mater. Chem. A 2013, 1, 13321–13327.

[32]

Hu, J.; Jia, F. F.; Song, Y. F. Engineering high-performance polyoxometalate/PANI/MWNTs nanocomposite anode materials for lithium ion batteries. Chem. Eng. J. 2017, 326, 273–280.

[33]

Zhou, C. L.; Wang, X. X.; Luo, H.; Deng, L. W.; Wei, S.; Zheng, Y. W.; Jia, Q.; Liu, J. Q. Rapid and direct growth of bipyramid TiO2 from Ti3C2Tx MXene to prepare Ni/TiO2/C heterogeneous composites for high-performance microwave absorption. Chem. Eng. J. 2020, 383, 123095.

[34]

Chang, M.; Jia, Z. R.; He, S. Q.; Zhou, J. X.; Zhang, S.; Tian, M. L.; Wang, B. B.; Wu, G. L. Two-dimensional interface engineering of NiS/MoS2/Ti3C2Tx heterostructures for promoting electromagnetic wave absorption capability. Compos. Part B Eng. 2021, 225, 109306.

[35]

Hou, T. Q.; Jia, Z. R.; Dong, Y. H.; Liu, X. H.; Wu, G. L. Layered 3D structure derived from MXene/magnetic carbon nanotubes for ultra-broadband electromagnetic wave absorption. Chem. Eng. J. 2022, 431, 133919.

[36]

Liu, J. K.; Jia, Z. R.; Zhou, W. H.; Liu, X. H.; Zhang, C. H.; Xu, B. H.; Wu, G. L. Self-assembled MoS2/magnetic ferrite CuFe2O4 nanocomposite for high-efficiency microwave absorption. Chem. Eng. J. 2022, 429, 32253.

[37]

Di, X. C.; Wang, Y.; Fu, Y. Q.; Wu, X. M.; Wang, P. Wheat flour-derived nanoporous carbon@ZnFe2O4 hierarchical composite as an outstanding microwave absorber. Carbon 2021, 173, 174–184.

[38]

Wang, J. W.; Jia, Z. R.; Liu, X. H.; Dou, J. L.; Xu, B. H.; Wang, B. B.; Wu, G. L. Construction of 1D heterostructure NiCo@C/ZnO nanorod with enhanced microwave absorption. Nano-Micro Lett. 2021, 13, 175.

[39]

Liu, Y.; Liu, X. H.; E, X. Y.; Wang, B. B.; Jia, Z. R.; Chi, Q. G.; Wu, G. L. Synthesis of MnxOy@C hybrid composites for optimal electromagnetic wave absorption capacity and wideband absorption. J. Mater. Sci. Technol. 2022, 103, 157–164.

[40]

Qian, X.; Zhang, Y. H.; Wu, Z. C.; Zhang, R. X.; Li, X. H.; Wang, M.; Che, R. C. Multi-path electron transfer in 1D double-shelled Sn@Mo2C/C tubes with enhanced dielectric loss for boosting microwave absorption performance. Small 2021, 17, 2100283.

Polyoxometalates
Article number: 9140008
Cite this article:
He P, Ran L, Huang R, et al. Old molybdenum blue for new application: {Mo72X30}/PANI/MWCNTs (X = Fe, V) ternary coaxial cable-like fibers for superior electromagnetic wave absorption. Polyoxometalates, 2022, 1(2): 9140008. https://doi.org/10.26599/POM.2022.9140008

2574

Views

369

Downloads

13

Crossref

Altmetrics

Received: 26 July 2022
Revised: 31 August 2022
Accepted: 25 September 2022
Published: 01 November 2022
© The Author(s) 2022. Polyoxometalates published by Tsinghua University Press.

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return