AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (3 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Multistimuli-responsive circularly polarized luminescent material of achiral Eu-containing polyoxometalates and cellulose nanocrystals

Rong WangPeiyao YuJunyan TanYue ZhouJie Zhang ( )
Beijing National Laboratory for Molecular Science, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
Show Author Information

Graphical Abstract

Abstract

The stimuli-responsive circularly polarized luminescence (CPL) material was made using photonic cellulose nanocrystals (CNC) and achiral luminescent Eu-containing polyoxometalates Na9EuW10O36·32H2O (EuW10). The CPL of EuW10 with high dissymmetric factor glum ~ −0.37 was achieved based on the selective reflection property of CNC photonic films. With the increase of polyethylene glycol (PEG) content, the photonic bandgaps (PBG) of CNC/PEG/EuW12 composite films were redshifted, successfully achieving the chirality of EuW10 in various emission bands (5D07Fn, n = 1, 2, 3, 4). The CPL materials also showed excellent humidity responsiveness. The glum of the emission band was closely correlated to the PBG of composite films.

Electronic Supplementary Material

Download File(s)
0009_ESM.pdf (482.5 KB)

References

[1]

Wang, S.; Xie, S. Y.; Zeng, H.; Du, H. X.; Zhang, J.; Wan, X. H. Self-reporting activated ester-amine reaction for enantioselective multi-channel visual detection of chiral amines. Angew. Chem. 2022, 134, e202202268.

[2]

Cheng, X. X.; Miao, T. F.; Yin, L.; Zhang, W.; Zhu, X. L. Construction of supramolecular chirality in polymer systems: Chiral induction, transfer and application. Chin. J. Polym. Sci. 2021, 39, 1357–1375.

[3]

Zhang, B.; Guan, W. M.; Yin, F. F.; Wang, J. X.; Li, B.; Wu, L. X. Induced chirality and reversal of phosphomolybdate cluster via modulating its interaction with cyclodextrins. Dalton Trans. 2018, 47, 1388–1392.

[4]

Yuasa, J.; Ohno, T.; Tsumatori, H.; Shiba, R.; Kamikubo, H.; Kataoka, M.; Hasegawa, Y.; Kawai, T. Fingerprint signatures of lanthanide circularly polarized luminescence from proteins covalently labeled with a β-diketonate europium(III) chelate. Chem. Commun. 2013, 49, 4604–4606.

[5]

Sánchez-Carnerero, E. M.; Agarrabeitia, A. R.; Moreno, F.; Maroto, B. L.; Muller, G.; Ortiz, M. J.; de la Moya, S. Circularly polarized luminescence from simple organic molecules. Chem.—Eur. J. 2015, 21, 13488–13500.

[6]

Roose, J.; Tang, B. Z.; Wong, K. S. Circularly-polarized luminescence (CPL) from chiral AIE molecules and macrostructures. Small 2016, 12, 6495–6512.

[7]

Li, M.; Lu, H. Y.; Zhang, C.; Shi, L.; Tang, Z. Y.; Chen, C. F. Helical aromatic imide based enantiomers with full-color circularly polarized luminescence. Chem. Commun. 2016, 52, 9921–9924.

[8]

Jiang, Z. Y.; Wang, X. Q.; Ma, J. P.; Liu, Z. P. Aggregation-amplified circularly polarized luminescence from axial chiral boron difluoride complexes. Sci. China Chem. 2019, 62, 355–362.

[9]

Han, J. L.; Duan, P. F.; Li, X. G.; Liu, M. H. Amplification of circularly polarized luminescence through triplet-triplet annihilation-based photon upconversion. J. Am. Chem. Soc. 2017, 139, 9783–9786.

[10]

Liu, J. Z.; Su, H. M.; Meng, L. M.; Zhao, Y. H.; Deng, C. M.; Ng, J. C. Y.; Lu, P.; Faisal, M.; Lam, J. W. Y.; Huang, X. H. et al. What makes efficient circularly polarised luminescence in the condensed phase: Aggregation-induced circular dichroism and light emission. Chem. Sci. 2012, 3, 2737–2747.

[11]

Hayasaka, H.; Miyashita, T.; Tamura, K.; Akagi, K. Helically π-stacked conjugated polymers bearing photoresponsive and chiral moieties in side chains: Reversible photoisomerization-enforced switching between emission and quenching of circularly polarized fluorescence. Adv. Funct. Mater. 2010, 20, 1243–1250.

[12]
Cho, H. J.; Jeong, D. Y.; Moon, H.; Kim, T.; Chung, Y. K.; Lee, Y.; Lee, Z.; Huh, J.; You, Y.; Song, C. Unconventional assemblies of bisacylhydrazones: The role of water for circularly polarized luminescence. Aggregate, in press, DOI: 10.1002/agt2.168.
[13]

San Jose, B. A.; Matsushita, S.; Akagi, K. Lyotropic chiral nematic liquid crystalline aliphatic conjugated polymers based on disubstituted polyacetylene derivatives that exhibit high dissymmetry factors in circularly polarized luminescence. J. Am. Chem. Soc. 2012, 134, 19795–19807.

[14]

Wang, S.; Hu, D. P.; Guan, X. Y.; Cai, S. L.; Shi, G.; Shuai, Z. G.; Zhang, J.; Peng, Q.; Wan, X. H. Brightening up circularly polarized luminescence of monosubstituted polyacetylene by conformation control: Mechanism, switching, and sensing. Angew. Chem., Int. Ed. 2021, 60, 21918–21926.

[15]

Yu, J. M.; Sakamoto, T.; Watanabe, K.; Furumi, S.; Tamaoki, N.; Chen, Y.; Nakano, T. Synthesis and efficient circularly polarized light emission of an optically active hyperbranched poly(fluorenevinylene) derivative. Chem. Commun. 2011, 47, 3799–3801.

[16]

Lunkley, J. L.; Shirotani, D.; Yamanari, K.; Kaizaki, S.; Muller, G. Extraordinary circularly polarized luminescence activity exhibited by cesium tetrakis(3-heptafluoro-butylryl-(+)-camphorato) Eu(III) complexes in EtOH and CHCl3 solutions. J. Am. Chem. Soc. 2008, 130, 13814–13815.

[17]

Di Pietro, S.; Di Bari, L. The structure of MLn(Hfbc)4 and a key to high circularly polarized luminescence. Inorg. Chem. 2012, 51, 12007–12014.

[18]

Kumar, J.; Marydasan, B.; Nakashima, T.; Kawai, T.; Yuasa, J. Chiral supramolecular polymerization leading to eye differentiable circular polarization in luminescence. Chem. Commun. 2016, 52, 9885–9888.

[19]

Petoud, S.; Muller, G.; Moore, E. G.; Xu, J. D.; Sokolnicki, J.; Riehl, J. P.; Le, U. N.; Cohen, S. M.; Raymond, K. N. Brilliant Sm, Eu, Tb, and Dy chiral lanthanide complexes with strong circularly polarized luminescence. J. Am. Chem. Soc. 2007, 129, 77–83.

[20]

Okutani, K.; Nozaki, K.; Iwamura, M. Specific chiral sensing of amino acids using induced circularly polarized luminescence of bis(diimine)dicarboxylic acid europium(III) complexes. Inorg. Chem. 2014, 53, 5527–5537.

[21]

Shi, Y. H.; Duan, P. F.; Huo, S. W.; Li, Y. G.; Liu, M. H. Endowing perovskite nanocrystals with circularly polarized luminescence. Adv. Mater. 2018, 30, 1705011.

[22]

Naito, M.; Iwahori, K.; Miura, A.; Yamane, M.; Yamashita, I. Circularly polarized luminescent CdS quantum dots prepared in a protein nanocage. Angew. Chem., Int. Ed. 2010, 49, 7006–7009.

[23]

Shi, N.; Tan, J. Y.; Wan, X. H.; Guan, Y.; Zhang, J. Induced salt-responsive circularly polarized luminescence of hybrid assemblies based on achiral Eu-containing polyoxometalates. Chem. Commun. 2017, 53, 4390–4393.

[24]

Shi, N.; Wang, R.; Wang, X. S.; Tan. J. Y.; Guan, Y.; Li, Z. B.; Wan, X. H.; Zhang, J. Surface plasmon resonance-assisted circularly polarized luminescent hybrid assemblies of Eu-containing polyoxometalates. Chem. Commun. 2019, 55, 1136–1139.

[25]

Kargarzadeh, H.; Ahmad, I.; Abdullah, I.; Dufresne, A.; Zainudin, S. Y.; Sheltami, R. M. Effects of hydrolysis conditions on the morphology, crystallinity, and thermal stability of cellulose nanocrystals extracted from Kenaf Bast fibers. Cellulose 2012, 19, 855–866.

[26]

Gray, D. G. Recent advances in chiral nematic structure and iridescent color of cellulose nanocrystal films. Nanomaterials 2016, 6, 213.

[27]

Yao, K.; Meng, Q. J.; Bulone, V.; Zhou, Q. Flexible and responsive chiral nematic cellulose nanocrystal/poly(ethylene glycol) composite films with uniform and tunable structural color. Adv. Mater. 2017, 29, 1701323.

[28]

Zheng, H. Z.; Li, W. R.; Li, W.; Wang, X. J.; Tang, Z. Y.; Zhang, S. X. A.; Xu, Y. Uncovering the circular polarization potential of chiral photonic cellulose films for photonic applications. Adv. Mater. 2018, 30, 1705948.

[29]

Hirai, A.; Inui, O.; Horii, F.; Tsuji, M. Phase separation behavior in aqueous suspensions of bacterial cellulose nanocrystals prepared by sulfuric acid treatment. Langmuir 2009, 25, 497–502.

[30]

Schütz, C.; Agthe, M.; Fall, A. B.; Gordeyeva, K.; Guccini, V.; Salajková, M.; Plivelic, T. S.; Lagerwall, J. P. F.; Salazar-Alvarez, G.; Bergström, L. Rod packing in chiral nematic cellulose nanocrystal dispersions studied by small-angle X-ray scattering and laser diffraction. Langmuir 2015, 31, 6507–6513.

[31]

Qu, D.; Zheng, H. Z.; Jiang, H. J.; Xu, Y.; Tang, Z. Y. Chiral photonic cellulose films enabling mechano/chemo responsive selective reflection of circularly polarized light. Adv. Opt. Mater. 2019, 7, 1801395.

[32]

Cao, Y. Y.; Lewis, L.; Hamad, W. Y.; MacLachlan, M. J. Pressure-responsive hierarchical chiral photonic aerogels. Adv. Mater. 2019, 31, 1808186.

[33]

Tran, A.; Hamad, W. Y.; MacLachlan, M. J. Tactoid annealing improves order in self-assembled cellulose nanocrystal films with chiral nematic structures. Langmuir 2018, 34, 646–652.

[34]

Gu, M. Y.; Jiang, C. Y.; Liu, D. G.; Prempeh, N.; Smalyukh, I. I. Cellulose nanocrystal/poly(ethylene glycol) composite as an iridescent coating on polymer substrates: Structure-color and interface adhesion. ACS Appl. Mater. Interfaces 2016, 8, 32565–32573.

[35]

Wang, R.; Wan, X. H.; Zhang, J. Multi-stimuli-responsive induced chirality of polyoxometalates in natural polysaccharide hydrogels. Chem. Commun. 2019, 55, 4711–4714.

[36]

Zinna, F.; Di Bari, L. Lanthanide circularly polarized luminescence: Bases and applications. Chirality 2015, 27, 1–13.

[37]

Song, F. Y.; Wei, G.; Jiang, X. X.; Li, F.; Zhu, C. J.; Cheng, Y. X. Chiral sensing for induced circularly polarized luminescence using an Eu(III)-containing polymer and D- or L-proline. Chem. Commun. 2013, 49, 5772–5774.

[38]

Zheng, H. Z.; Ju, B.; Wang, X. J.; Wang, W. H.; Li, M. J.; Tang, Z. Y.; Zhang, S. X.-A.; Xu, Y. Circularly polarized luminescent carbon dot nanomaterials of helical superstructures for circularly polarized light detection. Adv. Opt. Mater. 2018, 6, 1801246.

Polyoxometalates
Article number: 9140009
Cite this article:
Wang R, Yu P, Tan J, et al. Multistimuli-responsive circularly polarized luminescent material of achiral Eu-containing polyoxometalates and cellulose nanocrystals. Polyoxometalates, 2022, 1(2): 9140009. https://doi.org/10.26599/POM.2022.9140009

2675

Views

409

Downloads

11

Crossref

Altmetrics

Received: 30 July 2022
Revised: 17 September 2022
Accepted: 06 October 2022
Published: 01 November 2022
© The Author(s) 2022. Polyoxometalates published by Tsinghua University Press.

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return