Journal Home > Volume 1 , Issue 2

The structural synthesis and catalytic application of polyoxovanadates (POVs), an important subfamily of polyoxometalates (POMs), have attracted significant attention, owing to their rich coordination chemistry and splendid redox properties. In this review, the advances in the past 10 years in the oxidative transformations catalyzed using all-inorganic POVs, organ functionalized POVs, and POV-based inorganic–organic hybrids have been summarized and are discussed in detail. In particular, we focus on the selective oxidation of organic molecules, including alkanes, alkenes, alcohols, sulfides, sulfur-mustard simulants, and organic dyes. For most oxidative transformations, the active V-peroxo species generated in the presence of hydrogen peroxide or tert-butyl hydroperoxide account for enhanced catalytic activities. In addition, the challenges and prospects in the development of POM-based catalysts are addressed.


menu
Abstract
Full text
Outline
About this article

Catalytic application of polyoxovanadates in the selective oxidation of organic molecules

Show Author's information Jie LiDi ZhangYingnan Chi( )Changwen Hu ( )
Key Laboratory of Cluster Science Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China

Abstract

The structural synthesis and catalytic application of polyoxovanadates (POVs), an important subfamily of polyoxometalates (POMs), have attracted significant attention, owing to their rich coordination chemistry and splendid redox properties. In this review, the advances in the past 10 years in the oxidative transformations catalyzed using all-inorganic POVs, organ functionalized POVs, and POV-based inorganic–organic hybrids have been summarized and are discussed in detail. In particular, we focus on the selective oxidation of organic molecules, including alkanes, alkenes, alcohols, sulfides, sulfur-mustard simulants, and organic dyes. For most oxidative transformations, the active V-peroxo species generated in the presence of hydrogen peroxide or tert-butyl hydroperoxide account for enhanced catalytic activities. In addition, the challenges and prospects in the development of POM-based catalysts are addressed.

Keywords: catalysis, organic transformation, polyoxovanadates, oxidation reaction

References(91)

[1]

Gouzerh, P.; Proust, A. Main-group element, organic, and organometallic derivatives of polyoxometalates. Chem. Rev. 1998, 98, 77–112.

[2]

Dolbecq, A.; Dumas, E.; Mayer, C. R.; Mialane, P. Hybrid organic-inorganic polyoxometalate compounds: From structural diversity to applications. Chem. Rev. 2010, 110, 6009–6048.

[3]

Omwoma, S.; Gore, C. T.; Ji, Y. C.; Hu, C. W.; Song, Y. F. Environmentally benign polyoxometalate materials. Coord. Chem. Rev. 2015, 286, 17–29.

[4]

Lechner, M.; Güttel, R.; Streb, C. Challenges in polyoxometalate-mediated aerobic oxidation catalysis: Catalyst development meets reactor design. Dalton Trans. 2016, 45, 16716–16726.

[5]

Wang, S. S.; Yang, G. Y. Recent advances in polyoxometalate-catalyzed reactions. Chem. Rev. 2015, 115, 4893–4962.

[6]

Odyakov, V. F.; Zhizhina, E. G.; Matveev, K. I. Redox potentials of molybdovanadophosphoric heteropoly acids in aqueous solutions. J. Mol. Catal. A: Chem. 2000, 158, 453–456.

[7]

Neumann, R. Activation of molecular oxygen, polyoxometalates, and liquid-phase catalytic oxidation. Inorg. Chem. 2010, 49, 3594–3601.

[8]

Mizuno, N.; Yamaguchi, K.; Kamata, K. Molecular design of polyoxometalate-based compounds for environmentally-friendly functional group transformations: From molecular catalysts to heterogeneous catalysts. Catal. Surv. Asia 2011, 15, 68–79.

[9]

Weinstock, I. A.; Schreiber, R. E.; Neumann, R. Dioxygen in polyoxometalate mediated reactions. Chem. Rev. 2018, 118, 2680–2717.

[10]

Khenkin, A. M.; Neumann, R. Low-temperature activation of dioxygen and hydrocarbon oxidation catalyzed by a phosphovanadomolybdate: Evidence for a Mars-van Kevelen type mechanism in a homogeneous liquid phase. Angew. Chem., Int. Ed. 2000, 39, 4088–4090.

DOI
[11]

Neumann, R.; Levin, M. Aerobic oxidative dehydrogenations catalyzed by the mixed-addenda heteropolyanion PV2Mo10O405–: A kinetic and mechanistic study. J. Am. Chem. Soc. 1992, 114, 7278–7286.

[12]

Khenkin, A. M.; Weiner, L.; Wang, Y.; Neumann, R. Electron and oxygen transfer in polyoxometalate, H5PV2Mo10O40, catalyzed oxidation of aromatic and alkyl aromatic compounds:  Evidence for aerobic Mars-van Krevelen-type reactions in the liquid homogeneous phase. J. Am. Chem. Soc. 2001, 123, 8531–8542.

[13]

Gaspar, A. R.; Gamelas, J. A. F.; Evtuguin, D. V.; Pascoal Neto, C. Alternatives for lignocellulosic pulp delignification using polyoxometalates and oxygen: A review. Green Chem. 2007, 9, 717–730.

[14]

Mizuno, N.; Kamata, K. Catalytic oxidation of hydrocarbons with hydrogen peroxide by vanadium-based polyoxometalates. Coord. Chem. Rev. 2011, 255, 2358–2370.

[15]

Evtuguin, D. V.; Pascoal Neto, C.; Rocha, J.; Pedrosa de Jesus, J. D. Oxidative delignification in the presence of molybdovanadophosphate heteropolyanions: Mechanism and kinetic studies. Appl. Catal. A:Gen 1998, 167, 123–139.

[16]

Gao, Y. Z.; Chi, Y. N.; Hu, C. W. Organic-functionalized, substituted polyoxovanadium and vanadoniobates: Synthesis, structure and application. Polyhedron 2014, 83, 242–258.

[17]

Hayashi, Y. Hetero and lacunary polyoxovanadate chemistry: Synthesis, reactivity and structural aspects. Coord. Chem. Rev. 2011, 255, 2270–2280.

[18]

Monakhov, K. Y.; Bensch, W.; Kögerler, P. Semimetal-functionalised polyoxovanadates. Chem. Soc. Rev. 2015, 44, 8443–8483.

[19]

Liu, X.; Zhou, J.; Amarante, T. R.; Almeida Paz, F. A.; Fu, L. S. Vanadoborates: Cluster-based architectures, preparation and properties. Dalton Trans. 2021, 50, 1550–1568.

[20]

Fuchs, J.; Mahjour, S.; Pickardt, J. Structure of the “true” metavanadate ion. Angew. Chem., Int. Ed. 1976, 15, 374–375.

[21]

Bensch, W.; Hug, P.; Reller, A.; Oswald, H. R. The crystal structure of Di (propan(1,3)diammonium) divanadate. Mater. Res. Bull. 1989, 24, 403–415.

[22]

Day, V. W.; Klemperer, W. G.; Yaghi, O. M. A new structure type in polyoxoanion chemistry: Synthesis and structure of the V5O143– anion. J. Am. Chem. Soc. 1989, 111, 4518–4519.

[23]

Hamilton, E. E.; Fanwick, P. E.; Wilker, J. J. The elusive vanadate (V3O9)3–:   Isolation, crystal structure, and nonaqueous solution behavior. J. Am. Chem. Soc. 2002, 124, 78–82.

[24]

Day, V. W.; Klemperer, W. G.; Yaghi, O. M. Synthesis and characterization of a soluble oxide inclusion complex, [CH3CN⊂(V12O324–)]. J. Am. Chem. Soc. 1989, 111, 5959–5961.

[25]

Chen, L.; Jiang, F. L.; Lin, Z. Z.; Zhou, Y. F.; Yue, C. Y.; Hong, M. C. A basket tetradecavanadate cluster with blue luminescence. J. Am. Chem. Soc. 2005, 127, 8588–8589.

[26]

Müller, A.; Penk, M.; Rohlfing, R.; Krickemeyer, E.; Döring, J. Topologically interesting cages for negative ions with extremely high “coordination number”: An unusual property of V-O clusters. Angew. Chem., Int. Ed. 1990, 29, 926–927.

[27]

Ishaque Khan, M.; Ayesh, S.; Doe dens, R. J.; Yu, M. H.; O'Connor, C. J. Synthesis and characterization of a polyoxovanadate cluster representing a new topology. Chem. Commun. 2005, 4658–4660

[28]

Müller, A.; Krickemeyer, E.; Penk, M.; Rohlfing, R.; Armatage, A.; Bögge, H. Template-controlled formation of cluster shells or a type of molecular recognition: Synthesis of [HV22O54(ClO4)]6– and [H2V18O44(N3)]5–. Angew. Chem., Int. Ed. 1991, 30, 1674–1677.

[29]

Müller, A.; Rohlfing, R.; Döring, J.; Penk, M. Formation of a cluster sheath around a central cluster by a “self-organization process”: The mixed valence polyoxovanadate [V34O82]10⊖. Angew. Chem., Int. Ed. 1991, 30, 588–590.

[30]

Johnson, G. K.; Schlemper, E. O. Existence and structure of the molecular ion 18-vanadate(IV). J. Am. Chem. Soc. 1978, 100, 3645–3646.

[31]

Day, V. W.; Klemperer, W. G.; Maltbie, D. J. Where are the protons in H3V10O283–. J. Am. Chem. Soc. 1987, 109, 2991–3002.

[32]

Hou, D.; Hagen, K. S.; Hill, C. L. Tridecavanadate, [V13O34]3–, a new high-potential isopolyvanadate. J. Am. Chem. Soc. 1992, 114, 5864–5866.

[33]

Forster, J.; Rösner, B.; Khusniyarov, M. M.; Streb, C. Tuning the light absorption of a molecular vanadium oxide system for enhanced photooxidation performance. Chem. Commun. 2011, 47, 3114–3116.

[34]

Hou, D.; Hagen, K. S.; Hill, C. L. Pentadecavanadate, V15O429–, a new highly condensed fully oxidized isopolyvanadate with kinetic stability in water. J. Chem. Soc. Chem. Commun. 1993, 426–428

[35]

Yoshihito, H.; Kumiko, F.; Tamaki, T.; Akira, U. Synthesis and structure of a new reduced isopolyvanadate, [V17O42]4–. Chem. Lett. 2000, 29, 770–771.

[36]

Chen, Q.; Zubieta, J. Synthesis and structural characterization of a polyoxovanadate coordination complex with a hexametalate core: [(n-C4H9)4N]2[V6O13{O2NC(CH2O)3}2]. Inorg. Chem. 1990, 29, 1456–1458.

[37]

Wang, J. L.; Liu, X. M.; Du, Z. Y.; Xu, Y. Organo-functionalized polyoxovanadates: Crystal architecture and property aspects. Dalton Trans. 2021, 50, 7871–7886.

[38]

Wang, X. Q.; Liu, L. M.; Zhang, G.; Jacobson, A. J. An extended chain structure formed by covalently linking polyoxovanadate cages with tetrahedral six rings. Chem. Commun. 2001, 2472–2473

[39]

Whitfield, T.; Wang, X.; Jacobson, A. J. Vanadogermanate cluster anions. Inorg. Chem. 2003, 42, 3728–3733.

[40]

Müller, A.; Döring, J. Topologisch und elektronisch bemerkenswerte "reduzierte" cluster des typs [V18O42(X)]n (X = SO4, VO4) mit T d-symmetrie und davon abgeleitete cluster [V(18–p)As2pO42(X)]m (X = SO3, SO4, H2O; p = 3, 4). Z. Anorg. Allg. Chem. 1991, 595, 251–274.

[41]

Yeung, C. S.; Dong, V. M. Catalytic dehydrogenative cross-coupling: Forming carbon-carbon bonds by oxidizing two carbon-hydrogen bonds. Chem. Rev. 2011, 111, 1215–1292.

[42]

Zhang, P. F.; Gong, Y. T.; Li, H. R.; Chen, Z. R.; Wang, Y. Solvent-free aerobic oxidation of hydrocarbons and alcohols with Pd@N-doped carbon from glucose. Nat. Commun. 2013, 4, 1593.

[43]

Stahl, S. S. Palladium-catalyzed oxidation of organic chemicals with O2. Science 2005, 309, 1824–1826.

[44]

Li, J. K.; Huang, X. Q.; Yang, S.; Ma, H. W.; Chi, Y. N.; Hu, C. W. Four alkoxohexavanadate-based Pd-polyoxovanadates as robust heterogeneous catalysts for oxidation of benzyl-alkanes. Inorg. Chem. 2015, 54, 1454–1461.

[45]

Huang, X. Q.; Li, J. K.; Shen, G. D.; Xin, N. N.; Lin, Z. G.; Chi, Y. N.; Dou, J. M.; Li, D. C.; Hu, C. W. Three Pd-decavanadates with a controllable molar ratio of Pd to decavanadate and their heterogeneous aerobic oxidation of benzylic C-H bonds. Dalton Trans. 2018, 47, 726–733.

[46]

Khan, M. I.; Aydemir, K.; Siddiqui, M. R. H.; Alwarthan, A. A.; Marshall, C. L. Oxidative dehydrogenation properties of novel nanostructured polyoxovanadate based materials. Catal. Lett. 2011, 141, 538–543.

[47]

Saalfrank, R. W.; Maid, H.; Scheurer, A. Supramolecular coordination chemistry: The synergistic effect of serendipity and rational design. Angew. Chem., Int. Ed. 2008, 47, 8794–8824.

[48]

Kastner, K.; Margraf, J. T.; Clark, T.; Streb, C. A Molecular placeholder strategy to access a family of transition-metal-functionalized vanadium oxide clusters. Chem.—Eur. J. 2014, 20, 12269–12273.

[49]

Kastner, K.; Forster, J.; Ida, H.; Newton, G. N.; Oshio, H.; Streb, C. Controlled reactivity tuning of metal-functionalized vanadium oxide clusters. Chem.—Eur. J. 2015, 21, 7686–7689.

[50]

Lechner, M.; Kastner, K.; Chan, C. J.; Güttel, R.; Streb, C. Aerobic oxidation catalysis by a molecular barium vanadium oxide. Chem.—Eur. J. 2018, 24, 4952–4956.

[51]

Dang, T. Y.; Li, R. H.; Tian, H. R.; Guan, W.; Lu, Y.; Liu, S. X. Highly efficient multi-site synergistic catalysis of a polyoxovanadate-based metal-organic framework for benzylic C-H bond oxidation. J. Mater. Chem. A 2022, 10, 16514–16523.

[52]

Mizuno, N.; Yamaguchi, K.; Kamata, K. Epoxidation of olefins with hydrogen peroxide catalyzed by polyoxometalates. Coord. Chem. Rev. 2005, 249, 1944–1956.

[53]

Kikukawa, Y.; Sakamoto, Y.; Hirasawa, H.; Kurimoto, Y.; Iwai, H.; Hayashi, Y. Synthesis and oxidation catalysis of a difluoride-incorporated polyoxovanadate and isolation of active vanadium alkylperoxo species. Catal. Sci. Technol. 2022, 12, 2438–2445.

[54]

Guo, H. Y.; Li, Z. F.; Zhao, D. C.; Hu, Y. Y.; Xiao, L. N.; Cui, X. B.; Guan, J. Q.; Xu, J. Q. The synthesis and characterization of three organic-inorganic hybrids based on different transition metal complexes and {As8V14O42(H2O)} clusters. CrystEngComm 2014, 16, 2251–2259.

[55]

Guo, H. Y.; Zhang, X.; Cui, X. B.; Huo, Q. S.; Xu, J. Q. Vanadoantimonates: From discrete clusters to high dimensional aggregates. CrystEngComm 2016, 18, 5130–5139.

[56]

Zhou, T.; Zhang, J.; Ma, Y. Y.; Gao, X. R.; Xue, Q. H.; Gao, Y. Z.; Han, Z. G. A bicadmium-substituted polyoxometalate network based on a vanadosilicate cluster for the selective oxidation of styrene to benzaldehyde. Inorg. Chem. 2020, 59, 5803–5807.

[57]

Shi, Y.; Zhou, T.; Di, J. Q.; Wang, W. H.; Ma, L.; Zhang, H.; Gao, Y. Z. Three Si-substituted polyoxovanadates as efficient catalysts for Knoevenagel condensation and selective oxidation of styrene to benzaldehyde. Dalton Trans. 2022, 51, 3304–3313.

[58]

Hou, D.; Kim, G. S.; Hagen, K. S.; Hill, C. L. Synthesis and characterization of a polyvanadate polyester involving a monodentate alcohol, [(n-C4H9)4N][V6O12(OCH3)7]. Inorg. Chim. Acta 1993, 211, 127–130.

[59]

Gu, Y. Q.; Li, Q.; Zang, D. J.; Huang, Y. C.; Yu, H.; Wei, Y. G. Light-induced efficient hydroxylation of benzene to phenol by quinolinium and polyoxovanadate-based supramolecular catalysts. Angew. Chem., Int. Ed. 2021, 60, 13310–13316.

[60]

Wang, S.; Liu, Y. W.; Zhang, Z.; Li, X. H.; Tian, H. R.; Yan, T. T.; Zhang, X.; Liu, S. M.; Sun, X. W.; Xu, L. et al. X. One-step template-free fabrication of ultrathin mixed-valence polyoxovanadate-incorporated metal-organic framework nanosheets for highly efficient selective oxidation catalysis in air. ACS Appl. Mater. Interfaces 2019, 11, 12786–12796.

[61]

Wang, K.; Xu, Q. F.; Ma, P. T.; Zhang, C.; Wang, J. P.; Niu, J. Y. Polyoxovanadate catalysts for oxidation of 1-phenyl ethanol: From the discrete [V4O12]4– and [V10O28]6– anions to the anionic [V6O17]n4n coordination polymer. CrystEngComm 2018, 20, 6273–6279.

[62]

Chakraborty, S.; Petel, B. E.; Schreiber, E.; Matson, E. M. Atomically precise vanadium-oxide clusters. Nanoscale Adv. 2021, 3, 1293–1318.

[63]
Kastner, K. ; Lechner, M. ; Weber, S. ; Streb, C. In situ assembly, de-metalation and induced repair of a copper-polyoxovanadate oxidation catalyst. ChemistrySelect 2017, 2, 5542–5544.
DOI
[64]

Campbell, M. L.; Sulejmanovic, D.; Schiller, J. B.; Turner, E. M.; Hwu, S. J.; Whitehead, D. C. Room-temperature catalytic oxidation of alcohols with the polyoxovanadate salt Cs5(V14As8O42Cl). Catal. Sci. Technol. 2016, 6, 3208–3213.

[65]

Campbell, M. L.; Sulejmanovic, D.; Schiller, J. B.; Turner, E. M.; Hwu, S. J.; Whitehead, D. C. Alcohol oxidations using reduced polyoxovanadates. Helv. Chim. Acta 2017, 100, e1600338.

[66]

Chen, B. K.; Huang, X. Q.; Wang, B.; Lin, Z. G.; Hu, J. F.; Chi, Y. N.; Hu, C. W. Three new imidazole-functionalized hexanuclear oxidovanadium clusters with exceptional catalytic oxidation properties for alcohols. Chem.—Eur. J. 2013, 19, 4408–4413.

[67]

Tian, H. R.; Liu, Y. W.; Zhang, Z.; Liu, S. M.; Dang, T. Y.; Li, X. H.; Sun, X. W.; Lu, Y.; Liu, S. X. A multicentre synergistic polyoxometalate-based metal-organic framework for one-step selective oxidative cleavage of β-O-4 lignin model compounds. Green Chem. 2020, 22, 248–255.

[68]

Rajendran, A.; Cui, T. Y.; Fan, H. X.; Yang, Z. F.; Feng, J.; Li, W. Y. A comprehensive review on oxidative desulfurization catalysts targeting clean energy and environment. J. Mater. Chem. A 2020, 8, 2246–2285.

[69]

Cao, J. P.; Xue, Y. S.; Li, N. F.; Gong, J. J.; Kang, R. K.; Xu, Y. Lewis acid dominant windmill-shaped V8 clusters: A bifunctional heterogeneous catalyst for CO2 cycloaddition and oxidation of sulfides. J. Am. Chem. Soc. 2019, 141, 19487–19497.

[70]

Wang, J. L.; Cao, J. P.; Du, Z. Y.; Liu, X. M.; Li, J. N.; Ping, Q. D.; Zang, T. T.; Xu, Y. Four novel Z-shaped hexanuclear vanadium oxide clusters as efficient heterogeneous catalysts for cycloaddition of CO2 and oxidative desulfurization reactions. Chin. Chem. Lett. 2023, 34, 106917.

[71]

Wang, K.; Niu, Y. J.; Zhao, D. Y.; Zhao, Y. X.; Ma, P. T.; Zhang, D. D.; Wang, J. P.; Niu, J. Y. The polyoxovanadate-based carboxylate derivative K6H[VV17VIV12(OH)4O60(OOC(CH2)4COO)8nH2O: Synthesis, crystal structure, and catalysis for oxidation of sulfides. Inorg. Chem. 2017, 56, 14053–14059.

[72]

Gan, H. M.; Qin, C.; Zhao, L.; Sun, C. Y.; Wang, X. L.; Su, Z. M. Self-assembled polyoxometalate-based metal-organic polyhedra as an effective heterogeneous catalyst for oxidation of sulfide. Cryst. Growth Des. 2021, 21, 1028–1034.

[73]

Yin, P. C.; Bayaguud, A.; Cheng, P.; Haso, F.; Hu, L.; Wang, J.; Vezenov, D.; Winans, R. E.; Hao, J.; Li, T. et al. Spontaneous stepwise self-assembly of a polyoxometalate-organic hybrid into catalytically active one-dimensional anisotropic structures. Chem.—Eur. J. 2014, 20, 9589–9595.

[74]

Kikukawa, Y.; Ogihara, K.; Hayashi, Y. Structure transformation among deca-, dodeca- and tridecavanadates and their properties for thioanisole oxidation. Inorganics 2015, 3, 295–308.

[75]

Li, J. K.; Dong, J.; Wei, C. P.; Yang, S.; Chi, Y. N.; Xu, Y. Q.; Hu, C. W. Controllable synthesis of lindqvist alkoxopolyoxovanadate clusters as heterogeneous catalysts for sulfoxidation of sulfides. Inorg. Chem. 2017, 56, 5748–5756.

[76]

Wan, R.; He, P. P.; Liu, Z.; Ma, X. Y.; Ma, P. T.; Singh, V.; Zhang, C.; Niu, J. Y.; Wang, J. P. A lacunary polyoxovanadate precursor and transition-metal-sandwiched derivatives for catalytic oxidation of sulfides. Chem.—Eur. J. 2020, 26, 8760–8766.

[77]

Li, J. K.; Wei, C. P.; Wang, Y. Y.; Zhang, M.; Lv, X. R.; Hu, C. W. Conversion of V6 to V10 cluster: Decavanadate-based Mn-polyoxovanadate as robust heterogeneous catalyst for sulfoxidation of sulfides. Inorg. Chem. Commun. 2018, 87, 5–7.

[78]

Huang, X. Q.; Gu, X. Y.; Qi, Y. Q.; Zhang, Y. R.; Shen, G. D.; Yang, B. C.; Duan, W. Z.; Gong, S. W.; Xue, Z. C.; Chen, Y. F. Decavanadate-based transition metal hybrids as bifunctional catalysts for sulfide oxidation and C-C bond construction. Chin. J. Chem. 2021, 39, 2495–2503.

[79]

Li, J. K.; Wei, C. P.; Guo, D. G. J.; Wang, C. C.; Han, Y. F.; He, G. F.; Zhang, J. P.; Huang, X. Q.; Hu, C. W. Inorganic-organic hybrid polyoxovanadates based on [V4O12]4– or [VO3]22– clusters: Controllable synthesis, crystal structures and catalytic properties in selective oxidation of sulfides. Dalton Trans. 2020, 49, 14148–14157.

[80]
Wang, X. ; Zhang, T. ; Li, Y. H. ; Lin, J. F. ; Li, H. ; Wang, X. L. In situ ligand-transformation-involved synthesis of inorganic-organic hybrid polyoxovanadates as efficient heterogeneous catalysts for the selective oxidation of sulfides. Inorg. Chem. 2020, 59, 17583–17590.
DOI
[81]

Lu, B. B.; Yang, J.; Liu, Y. Y.; Ma, J. F. A polyoxovanadate-resorcin[4]arene-based porous metal-organic framework as an efficient multifunctional catalyst for the cycloaddition of CO2 with epoxides and the selective oxidation of sulfides. Inorg. Chem. 2017, 56, 11710–11720.

[82]

Dang, T. Y.; Li, R. H.; Tian, H. R.; Wang, Q.; Lu, Y.; Liu, S. X. Tandem-like vanadium cluster chains in a polyoxovanadate-based metal-organic framework for efficient catalytic oxidation of sulfides. Inorg. Chem. Front. 2021, 8, 4367–4375.

[83]

Liu, Y. Y.; Moon, S. Y.; Hupp, J. T.; Farha, O. K. Dual-function metal-organic framework as a versatile catalyst for detoxifying chemical warfare agent simulants. ACS Nano 2015, 9, 12358–12364.

[84]

Davis, K. G.; Aspera, G. Exposure to liquid sulfur mustard. Ann. Emerg. Med. 2001, 37, 653–656.

[85]

Sun, X. R.; Dong, J.; Li, Z.; Liu, H. F.; Jing, X. T.; Chi, Y. N.; Hu, C. W. Mono-transition-metal-substituted polyoxometalate intercalated layered double hydroxides for the catalytic decontamination of sulfur mustard simulant. Dalton Trans. 2019, 48, 5285–5291.

[86]

Dong, J.; Hu, J. F.; Chi, Y. N.; Lin, Z. G.; Zou, B.; Yang, S.; Hill, C. L.; Hu, C. W. A polyoxoniobate-polyoxovanadate double-anion catalyst for simultaneous oxidative and hydrolytic decontamination of chemical warfare agent simulants. Angew. Chem., Int. Ed. 2017, 56, 4473–4477.

[87]

Tian, H. R.; Zhang, Z.; Dang, T. Y.; Liu, S. M.; Lu, Y.; Liu, S. X. Hollow lindqvist-like-shaped {V6} cluster-based metal-organic framework for the highly efficient detoxification of mustard gas simulant. Inorg. Chem. 2021, 60, 840–845.

[88]

Sullivan, K. P.; Neiwert, W. A.; Zeng, H. D.; Mehta, A. K.; Yin, Q. S.; Hillesheim, D. A.; Vivek, S.; Yin, P. C.; Collins-Wildman, D. L.; Weeks, E. R. et al. Polyoxometalate-based gelating networks for entrapment and catalytic decontamination. Chem. Commun. 2017, 53, 11480–11483.

[89]

Tian, H. R.; Zhang, Z.; Liu, S. M.; Dang, T. Y.; Li, X. H.; Lu, Y.; Liu, S. X. A novel polyoxovanadate-based Co-MOF: Highly efficient and selective oxidation of a mustard gas simulant by two-site synergetic catalysis. J. Mater. Chem. A 2020, 8, 12398–12405.

[90]

Wang, K.; He, Y. Z.; Zhao, Y. X.; Ma, P. T.; Wang, J. P. A propionate-functionalized polyoxovanadate K2[V10O16(OH)6(CH3CH2CO2)6] ·20H2O: As catalyst for degradation of methylene blue. J. Mol. Struct. 2019, 1195, 184–188.

[91]

Li, S. B.; Zhang, L.; Lu, B. R.; Yan, E. Y.; Wang, T. H.; Li, L.; Wang, J. X.; Yu, Y.; Mu, Q. D. A new polyoxovanadate-based metal-organic framework: Synthesis, structure and photo-/electro-catalytic properties. New J. Chem. 2018, 42, 7247–7253.

Publication history
Copyright
Rights and permissions

Publication history

Received: 04 August 2022
Revised: 05 October 2022
Accepted: 17 October 2022
Published: 30 November 2022
Issue date: December 2022

Copyright

© The Author(s) 2022. Polyoxometalates published by Tsinghua University Press.

Rights and permissions

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return