Journal Home > Volume 2 , Issue 1

As an important type of organic–inorganic hybrids, ionic and covalent polyoxometalate (POM) complexes with organic components have progressed rapidly over the past two decades. Due to the wide availability of organic building blocks and maneuverable combination styles, this field holds open opportunities now and in the near future. By abstracting the recent developments of POM complexes, some worthwhile topics are presented in this perspective. The important potentials of POM complexes are proposed to show in biological systems through ionic and covalent modification of biologically active molecules for immunosuppressive and therapeutic agents; in various functional materials with the incorporation of building and guest components for the construction of rigid/flexible nanostructures and frameworks; and in clean energy and environments via the combination of the photophysical and catalytic properties for chemical reactions with high efficiency.


menu
Abstract
Full text
Outline
About this article

Perspective of polyoxometalate complexes on flexible assembly and integrated potentials

Show Author's information Bao LiLixin Wu ( )
State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China

Abstract

As an important type of organic–inorganic hybrids, ionic and covalent polyoxometalate (POM) complexes with organic components have progressed rapidly over the past two decades. Due to the wide availability of organic building blocks and maneuverable combination styles, this field holds open opportunities now and in the near future. By abstracting the recent developments of POM complexes, some worthwhile topics are presented in this perspective. The important potentials of POM complexes are proposed to show in biological systems through ionic and covalent modification of biologically active molecules for immunosuppressive and therapeutic agents; in various functional materials with the incorporation of building and guest components for the construction of rigid/flexible nanostructures and frameworks; and in clean energy and environments via the combination of the photophysical and catalytic properties for chemical reactions with high efficiency.

Keywords: framework, polyoxometalate, bio-application, supramolecular complex, photothermal property

References(76)

[1]

Pope, M. T.; Müller, A. Polyoxometalate chemistry: An old field with new dimensions in several disciplines. Angew. Chem., Int. Ed. 1991, 30, 34–48.

[2]

Horn, M. R.; Singh, A.; Alomari, S.; Goberna-Ferrón, S.; Benages-Vilau, R.; Chodankar, N.; Motta, N.; Ostrikov, K.; MacLeod, J.; Sonar, P. et al. Polyoxometalates (POMs): From electroactive clusters to energy materials. Energy. Environ. Sci. 2021, 14, 1652–1700.

[3]

Zhang, J. W.; Huang, Y. C.; Li, G.; Wei, Y. G. Recent advances in alkoxylation chemistry of polyoxometalates: From synthetic strategies, structural overviews to functional applications. Coord. Chem. Rev. 2019, 378, 395–414.

[4]

Ma, P. T.; Hu, F.; Wang, J. P.; Niu, J. Y. Carboxylate covalently modified polyoxometalates: From synthesis, structural diversity to applications. Coord. Chem. Rev. 2019, 378, 281–309.

[5]

Li, B.; Li, W.; Li, H. L.; Wu, L. X. Ionic complexes of metal oxide clusters for versatile self-assemblies. Acc. Chem. Res. 2017, 50, 1391–1399.

[6]

Luo, J. C.; Sun, X. Y.; Yin, J. F.; Yin, P. C.; Liu, T. B. Supramolecular nanostructures constructed from cluster-based hybrid macromolecules. Giant 2020, 2, 100013.

[7]

Wei, H. B. ; Shi, N. ; Zhang, J. L. ; Guan, Y. ; Zhang, J. ; Wan, X. H. pH-responsive inorganic-organic hybrid supramolecular hydrogels with jellyfish-like switchable chromic luminescence. Chem. Commun 2014, 50, 9333–9335.

[8]

Zhu, Z. X.; Wei, M. F.; Li, B.; Wu, L. X. Constructing chiral polyoxometalate assemblies via supramolecular approaches. Dalton Trans. 2021, 50, 5080–5098.

[9]

Wang, S. S.; Yang, G. Y. Recent advances in polyoxometalate-catalyzed reactions. Chem. Rev. 2015, 115, 4893–4962.

[10]

Zhou, Y.; Zhang, G. H.; Li, B.; Wu, L. X. Two-dimensional supramolecular ionic frameworks for precise membrane separation of small nanoparticles. ACS Appl. Mater. Interfaces 2020, 12, 30761–30769.

[11]

Li, B.; Xuan, L. Y.; Wu, L. X. Polyoxometalate-containing supramolecular gels. Macromol. Rapid Commun. 2022, 43, 2200019.

[12]

Lamare, R.; Ruppert, R.; Boudon, C.; Ruhlmann, L.; Weiss, J. Porphyrins and polyoxometalate scaffolds. Chem.—Eur. J. 2021, 27, 16071–16081.

[13]

Liu, Q. D.; Wang, X. Polyoxometalate clusters: Sub-nanometer building blocks for construction of advanced materials. Matter 2020, 2, 816–841.

[14]

Li, X. X.; Zhen, N.; Liu, C. P.; Zhang, D.; Dong, J.; Chi, Y. N.; Hu, C. W. Controllable assembly of vanadium-containing polyoxoniobate-based materials and their electrocatalytic activity for selective benzyl alcohol oxidation. Molecules 2022, 27, 2862.

[15]

Ren, C. M.; Lu, Z. H.; Luo, B. L.; Yi, X. F.; Lin, L. F.; Xu, L. Deeply reduced empty Keggin clusters [MoIVxMVI12−xO40−xpyx] (x = 3, 6; M = Mo, W; py = pyridine): Synthesis, structures, and Lewis field catalysis. Inorg. Chem. Front. 2021, 8, 5178–5185.

[16]

Raee, E.; Liu, B. Q.; Yang, Y. Q.; Namani, T.; Cui, Y. P.; Sahai, N.; Li, X. P.; Liu, T. B. Side group of hydrophobic amino acids controls chiral discrimination among chiral counterions and metal-organic cages. Nano Lett. 2022, 22, 4421–4428.

[17]

Gao, B.; Li, B.; Wu, L. X. Layered supramolecular network of cyclodextrin triplets with azobenzene-grafting polyoxometalate for dye degradation and partner-enhancement. Chem. Commun. 2021, 57, 10512–10515.

[18]

Guan, W. M.; Wang, G. X.; Ding, J. B.; Li, B.; Wu, L. X. A supramolecular approach of modified polyoxometalate polymerization and visualization of a single polymer chain. Chem. Commun. 2019, 55, 10788–10791.

[19]

Zhu, Q. L.; Xu, Q. Metal-organic framework composites. Chem. Soc. Rev. 2014, 43, 5468–5512.

[20]

Hou, G. F.; Bi, L. H.; Li, B.; Wu, L. X. Reaction controlled assemblies of polyoxotungstates (-molybdates) and coordination polymers. Inorg. Chem. 2010, 49, 6474–6483.

[21]

Du, D. Y.; Qin, J. S.; Li, S. L.; Su, Z. M.; Lan, Y. Q. Recent advances in porous polyoxometalate-based metal-organic framework materials. Chem. Soc. Rev. 2014, 43, 4615–4632.

[22]

Sun, C. Y.; Liu, S. X.; Liang, D. D.; Shao, K. Z.; Ren, Y. H.; Su, Z. M. Highly stable crystalline catalysts based on a microporous metal-organic framework and polyoxometalates. J. Am. Chem. Soc. 2009, 131, 1883–1888.

[23]

Song, J.; Luo, Z.; Britt, D. K.; Furukawa, H.; Yaghi, O. M.; Hardcastle, K. I.; Hill, C. L. A multiunit catalyst with synergistic stability and reactivity: A polyoxometalate-metal organic framework for aerobic decontamination. J. Am. Chem. Soc. 2011, 133, 16839–16846.

[24]

Han, Q. X.; He, C.; Zhao, M.; Qi, B.; Niu, J. Y.; Duan, C. Y. Engineering chiral polyoxometalate hybrid metal-organic frameworks for asymmetric dihydroxylation of olefins. J. Am. Chem. Soc. 2013, 135, 10186–10189.

[25]

Liu, Y. W.; Liu, S. M.; He, D. F.; Li, N.; Ji, Y. J.; Zheng, Z. P.; Luo, F.; Liu, S. X.; Shi, Z.; Hu, C. W. Crystal facets make a profound difference in polyoxometalate-containing metal-organic frameworks as catalysts for biodiesel production. J. Am. Chem. Soc. 2015, 137, 12697–12703.

[26]

Zhang, Z.; Liu, Y. W.; Tian, H. R.; Ma, X. J.; Yue, Q.; Sun, Z. X.; Lu, Y.; Liu, S. X. Hierarchically ordered macro-microporous polyoxometalate-based metal-organic framework single crystals. ACS Nano 2021, 15, 16581–16588.

[27]

Duan, F. X.; Liu, X. T.; Qu, D.; Li, B.; Wu, L. X. Polyoxometalate-based ionic frameworks for highly selective CO2 capture and separation. CCS Chem. 2021, 3, 2676–2687.

[28]

Iwano, T.; Miyazawa, S.; Osuga, R.; Kondo, J. N.; Honjo, K.; Kitao, T.; Uemura, T.; Uchida, S. Confinement of poly(allylamine) in Preyssler-type polyoxometalate and potassium ion framework for enhanced proton conductivity. Commun. Chem. 2019, 2, 9.

[29]

Kotabe, T.; Ogasawara, Y.; Suzuki, K.; Uchida, S.; Mizuno, N.; Yamaguchi, K. Porous cubic cesium salts of silicododecatungstate(molybdate)/borododecatungstate blends: Synthesis and molecular adsorption properties. Inorg. Chem. 2018, 57, 8821–8830.

[30]

Tian, J.; Xu, Z. Y.; Zhang, D. W.; Wang, H.; Xie, S. H.; Xu, D. W.; Ren, Y. H.; Wang, H.; Liu, Y.; Li, Z. T. Supramolecular metal-organic frameworks that display high homogeneous and heterogeneous photocatalytic activity for H2 production. Nat. Commun. 2016, 7, 11580.

[31]

Yue, L.; Wang, S.; Zhou, D.; Zhang, H.; Li, B.; Wu, L. X. Flexible single-layer ionic organic-inorganic frameworks towards precise nano-size separation. Nat. Commun. 2016, 7, 10742.

[32]

Zhang, G. H.; Li, B. Y.; Zhou, Y.; Chen, X. F.; Li, B.; Lu, Z. Y.; Wu, L. X. Processing supramolecular framework for free interconvertible liquid separation. Nat. Commun. 2020, 11, 425.

[33]

Rhule, J. T.; Hill, C. L.; Judd, D. A.; Schinazi, R. F. Polyoxometalates in medicine. Chem. Rev. 1998, 98, 327–358.

[34]

Wang, G. X.; Guan, W. M.; Li, B.; Wu, L. X. Cluster polyanions and surface-covered complexes: From synergistic self-assembly to bio-functionalization. Curr. Opin. Colloid Interface Sci. 2018, 35, 91–103.

[35]

Bijelic, A.; Rompel, A. Ten good reasons for the use of the tellurium-centered Anderson-Evans polyoxotungstate in protein crystallography. Acc. Chem. Res. 2017, 50, 1441–1448.

[36]

Vandebroek, L.; Noguchi, H.; Kamata, K.; Tame, J. R. H.; Van Meervelt, L.; Parac-Vogt, T. N.; Voet, A. R. D. Hybrid assemblies of a symmetric designer protein and polyoxometalates with matching symmetry. Chem. Commun. 2020, 56, 11601–11604.

[37]

Xue, Y. R.; Wang, Y.; Chen, G.; Sun, B.; Li, B.; Wu, L. X.; Wu, Y. Q. A hybrid HPV capsid protein L1 with giant Mo-containing polyoxometalate improves the stability of virus-like particles and the anti-tumor effect of [Mo154]. Biomater. Sci. 2021, 9, 3875–3883.

[38]

Zhang, S. M.; Peng, B.; Xue, P. Y.; Kong, X. P.; Tang, Y.; Wu, L. X.; Lin, S. Y. Polyoxometalate-antioxidant peptide assembly materials with NIR-triggered photothermal behaviour and enhanced antibacterial activity. Soft Matter 2019, 15, 5375–5379.

[39]

Bijelic, A.; Aureliano, M.; Rompel, A. The antibacterial activity of polyoxometalates: Structures, antibiotic effects and future perspectives. Chem. Commun. 2018, 54, 1153–1169.

[40]

Ramezani-Aliakbari, M.; Soltanabadi, A.; Sadeghi-Aliabadi, H.; Varshosaz, J.; Yadollahi, B.; Hassanzadeh, F.; Rostami, M. Eudesmic acid-polyoxomolybdate organo-conjugate as novel anticancer agent. J. Mol. Struct. 2021, 1240, 130612.

[41]

Bijelic, A.; Dobrov, A.; Roller, A.; Rompel, A. Binding of a fatty acid-functionalized Anderson-type polyoxometalate to human serum albumin. Inorg. Chem. 2020, 59, 5243–5246.

[42]

Wang, Y. R.; Duan, F. X.; Liu, X. T.; Li, B. Cations modulated assembly of triol-ligand modified Cu-centered Anderson-Evans polyanions. Molecules 2022, 27, 2933.

[43]
Qu, D. ; Liu, X. T. ; Duan, F. X. ; Xue, R. ; Li, B. ; Wu, L. X. {VMo9O31[RC(CH2O)3]}6−: The first class of triol ligand covalently-decorated Keggin-type polyoxomolybdates. Dalton Trans. 2020, 49, 12950–12954.
DOI
[44]

Wang, J. L.; Liu, X. M.; Du, Z. Y.; Xu, Y. Organo-functionalized polyoxovanadates: Crystal architecture and property aspects. Dalton Trans. 2021, 50, 7871–7886.

[45]

Liu, D. J. K.; Zhang, G. H.; Gao, B.; Li, B.; Wu, L. X. From achiral to helical bilayer self-assemblies of a 1,3,5-triazine-2,4,6-triphenol-grafted polyanionic cluster: Countercation and solvent modulation. Dalton Trans. 2019, 48, 11623–11627.

[46]

Pardiwala, A.; Kumar, S.; Jangir, R. Insights into organic-inorganic hybrid molecular materials: Organoimido functionalized polyoxomolybdates. Dalton Trans. 2022, 51, 4945–4975.

[47]

Cameron, J. M.; Guillemot, G.; Galambos, T.; Amin, S. S.; Hampson, E.; Mall Haidaraly, K.; Newton, G. N.; Izzet, G. Supramolecular assemblies of organo-functionalised hybrid polyoxometalates: From functional building blocks to hierarchical nanomaterials. Chem. Soc. Rev. 2022, 51, 293–328.

[48]

Ramezani-Aliakbari, M.; Varshosaz, J.; Sadeghi-Aliabadi, H.; Hassanzadeh, F.; Rostami, M. Biotin-targeted nanomicellar formulation of an Anderson-type polyoxomolybdate: Synthesis and in vitro cytotoxicity evaluations. Langmuir 2021, 37, 6475–6489.

[49]

Tagliavini, V.; Honisch, C.; Serratì, S.; Azzariti, A.; Bonchio, M.; Ruzza, P.; Carraro, M. Enhancing the biological activity of polyoxometalate-peptide nano-fibrils by spacer design. RSC Adv. 2021, 11, 4952–4957.

[50]

Xie, X. M.; Wang, L.; Liu, X. H.; Du, Z. L.; Li, Y. W.; Li, B.; Wu, L. X.; Li, W. Light-powered and transient peptide two-dimensional assembly driven by trans-to-cis isomerization of azobenzene side chains. Chem. Commun. 2020, 56, 1867–1870.

[51]

Liu, X. H.; Xu, J.; Xie, X. M.; Ma, Z. Y.; Zheng, T. T.; Wu, L. X.; Li, B.; Li, W. Heteropoly acid-driven assembly of glutathione into redox-responsive underwater adhesive. Chem. Commun. 2020, 56, 11034–11037.

[52]

Ortiz, M.; Debela, A. M.; Svobodova, M.; Thorimbert, S.; Lesage, D.; Cole, R. B.; Hasenknopf, B.; O'Sullivan, C. K. PCR incorporation of polyoxometalate modified deoxynucleotide triphosphates and their application in molecular electrochemical sensing of Yersinia pestis. Chem.—Eur. J. 2017, 23, 10597–10603.

[53]

Li, J. F.; Chen, Z. J.; Zhou, M. C.; Jing, J. B.; Li, W.; Wang, Y.; Wu, L. X.; Wang, L. Y.; Wang, Y. Q.; Lee, M. Polyoxometalate-driven self-assembly of short peptides into multivalent nanofibers with enhanced antibacterial activity. Angew. Chem., Int. Ed. 2016, 55, 2592–2595.

[54]

Sun, G. Y.; Feng, J. H.; Wu, H. F.; Pei, F. K.; Fang, K.; Lei, H. Investigation of sandwiched gadolinium (III) complexes with tungstosilicates as potential MRI contrast agents. Magn. Reson. Imaging 2004, 22, 421–426.

[55]

Wang, Y. L.; Zhou, S. Y.; Kong, D. L.; Yang, H. S.; Chai, W. Q.; Kortz, U.; Wu, L. X. Self-assembly and alterable relaxivity of an organic cation-encapsulated gadolinium-containing polyoxometalate. Dalton Trans. 2012, 41, 10052–10059.

[56]

Zhou, T. T.; Kong, X. P.; Wan, G. F.; Li, B.; Wu, L. X. Polyoxometalate-polymer composites for MR imaging and combined photothermal-chemotherapy. Acta Polym. Sin. 2021, 52, 1032–1042.

[57]

Zhang, S. M.; Zheng, Y. M.; Fu, D. Y.; Li, W.; Wu, Y. Q.; Li, B.; Wu, L. X. Biocompatible supramolecular dendrimers bearing a gadolinium-substituted polyanionic core for MRI contrast agents. J. Mater. Chem. B 2017, 5, 4035–4043.

[58]

Zhou, T. T.; Wan, G. F.; Li, B.; Wu, L. X. Nanocomposites of ionic copolymer integrating Gd-containing polyoxometalate as a multiple platform for enhanced MRI and pH-response chemotherapy. J. Mater. Chem. B 2020, 8, 6390–6401.

[59]

Kong, X. P.; Wan, G. F.; Li, B.; Wu, L. X. Recent advances of polyoxometalates in multi-functional imaging and photothermal therapy. J. Mater. Chem. B 2020, 8, 8189–8206.

[60]

Xia, Z. Q.; Lin, C. G.; Yang, Y.; Wang, Y. K.; Wu, Z. P.; Song, Y. F.; Russell, T. P.; Shi, S. W. Polyoxometalate-surfactant assemblies: Responsiveness to orthogonal stimuli. Angew. Chem., Int. Ed. 2022, 61, e202203741.

[61]

Zhang, S. M.; Li, M.; Zhang, Y.; Wang, R. C.; Song, Y. K.; Zhao, W. P.; Lin, S. Y. A supramolecular complex based on a Gd-containing polyoxometalate and food-borne peptide for MRI/CT imaging and NIR-triggered photothermal therapy. Dalton Trans. 2021, 50, 8076–8083.

[62]

Chen, H. J.; Shao, L.; Li, Q.; Wang, J. F. Gold nanorods and their plasmonic properties. Chem. Soc. Rev. 2013, 42, 2679–2724.

[63]

Guo, Y. H.; Hu, C. W. Heterogeneous photocatalysis by solid polyoxometalates. J. Mol. Catal. A Chem. 2007, 262, 136–148.

[64]

Li, N.; Liu, J.; Dong, B. X.; Lan, Y. Q. Polyoxometalate-based compounds for photo- and electrocatalytic applications. Angew. Chem., Int. Ed. 2020, 59, 20779–20793.

[65]

Sullivan, K. P.; Wieliczko, M.; Kim, M.; Yin, Q. S.; Collins-Wildman, D. L.; Mehta, A. K.; Bacsa, J.; Lu, X. L.; Geletii, Y. V.; Hill, C. L. Speciation and dynamics in the [Co4V2W18O68]10−/Co(II)aq/CoOx catalytic water oxidation system. ACS Catal. 2018, 8, 11952–11959.

[66]

Yin, Q. S.; Hill, C. L. Water splitting: Passing the acid test. Nat. Chem. 2017, 10, 6–7.

[67]

Omwoma, S.; Gore, C. T.; Ji, Y. C.; Hu, C. W.; Song, Y. F. Environmentally benign polyoxometalate materials. Coord. Chem. Rev. 2015, 286, 17–29.

[68]

Dong, Y. J.; Hu, Q. Y.; Li, B. N.; Li, X. H.; Chen, M. X.; Zhang, M. Y.; Feng, Y.; Ding, Y. Aminated silicon dioxide enriching iron-containing polyoxometalate catalyst confined in CdS for efficient H2 evolution. Appl. Catal. B Environ. 2022, 304, 120998.

[69]

Kong, X. P.; Yang, Y. M.; Wan, G. F.; Chen, Q. Y.; Yu, H. M.; Li, B.; Wu, L. X. Charge-transfer complex combining reduced cluster with enhanced stability for combined near-infrared II photothermal therapy. Adv. Healthc. Mater. 2022, 11, 2102352.

[70]
Pope, M. T. Heteropoly and Isopoly Oxometalates; Springer: Berlin, 1983.
DOI
[71]

Chen, X. F.; Wei, M. F.; Yang, A. B.; Jiang, F. R.; Li, B.; Kholdeeva, O. A.; Wu, L. X. Near-infrared photothermal catalysis for enhanced conversion of carbon dioxide under mild conditions. ACS Appl. Mater. Interfaces 2022, 14, 5194–5202.

[72]

Chen, X. F.; Yang, A. B.; Wang, G. X.; Wei, M. F.; Liu, N.; Li, B.; Wu, L. X. Reinforced catalytic oxidation of polyoxometalate@charge transfer complex by on-site heating from photothermal conversion. Chem. Eng. J. 2022, 446, 137134.

[73]

Chen, X. F.; Zhang, G. H.; Li, B.; Wu, L. X. An integrated giant polyoxometalate complex for photothermally enhanced catalytic oxidation. Sci. Adv. 2021, 7, eabf8413.

[74]

Zhang, S. M.; Chen, H. B.; Zhang, G. H.; Kong, X. P.; Yin, S. Y.; Li, B.; Wu, L. X. An ultra-small thermosensitive nanocomposite with a Mo154-core as a comprehensive platform for NIR-triggered photothermal-chemotherapy. J. Mater. Chem. B 2018, 6, 241–248.

[75]

Zhou, T. T.; Wan, G. F.; Kong, X. P.; Li, B.; Wu, L. X. Biocompatible polymer nanocomposites integrating magnetic polyoxomolybdates for enhanced MRI and on-site activated photothermal properties. Macromol. Rapid Commun. 2020, 41, 2000468.

[76]

Gao, N.; Du, Z.; Guan, Y. J.; Dong, K.; Ren, J. S.; Qu, X. G. Chirality-selected chemical modulation of amyloid aggregation. J. Am. Chem. Soc. 2019, 141, 6915–6921.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 02 August 2022
Revised: 05 October 2022
Accepted: 29 October 2022
Published: 10 December 2022
Issue date: March 2023

Copyright

© The Author(s) 2023. Polyoxometalates published by Tsinghua University Press.

Acknowledgements

The authors acknowledge the financial support received from the National Natural Science Foundation of China (No. 91961117) and the Program for JLU Science and Technology Innovative Research Team (No. 2017TD-10).

Rights and permissions

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return