AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (16.3 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article | Open Access

Recent advances on the synthesis, structure, and properties of polyoxotantalates

Yuan GuanHui-Ping XiaoXin-Xiong Li ( )Shou-Tian Zheng ( )
Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated-Materials, College of Chemistry, Fuzhou University, Fuzhou 350108, China
Show Author Information

Graphical Abstract

Abstract

Polyoxotantalates (POTas) are an important branch of polyoxometalates (POMs) that remain largely undeveloped compared with other members of the POM family including polyoxovanadates, polyoxotungstates, polyoxomolybdates, and polyoxoniobates. Owing to their promising applications in diverse fields such as photo/electrocatalysis, ion conduction, environmental protection, and magnetism, the development of synthetic strategies for new POTas has attracted continuous interest over the past decades. This review summarizes the current status in the development of POTas, including their synthetic methods, crystal structures, physicochemical properties, and potential applications. Additionally, synthetic challenges and prospects are also discussed. It is hoped that this review will be of reference value for the further development of POTas.

References

[1]

Zhang, D. D.; Li, H.; Li, C.; Wang, Z. H.; Li, T.; Li, N.; Cheng, M. Y.; Wang, J. P.; Niu, J. Y.; Liu, T. B. A large molecular cluster with high proton release capacity. Chem. Commun. 2020, 56, 12849–12852.

[2]

Yang, G. P.; Zhang, X. L.; Liu, Y. F.; Zhang, D. D.; Li, K.; Hu, C. W. Self-assembly of Keggin-type U(VI)-containing tungstophosphates with a sandwich structure: An efficient catalyst for the synthesis of sulfonyl pyrazoles. Inorg. Chem. Front. 2021, 8, 4650–4656.

[3]

Cheng, M. Y.; Liu, Y. F.; Du, W. X.; Shi, J. W.; Li, J. H.; Wang, H. Y.; Li, K.; Yang, G. P.; Zhang, D. D. Two Dawson-type U(VI)-containing selenotungstates with sandwich structure and its high-efficiency catalysis for pyrazoles. Chin. Chem. Lett. 2022, 33, 3899–3902.

[4]

Cheng, M. Y.; Liu, Y. F.; Li, N.; Shi, J. W.; Du, W. X.; Zhang, D. D.; Yang, G. P.; Wang, G.; Niu, J. Y. Two novel telluroniobates with efficient catalytic activity for the imidation/amidation reaction. Chem. Commun. 2022, 58, 1167–1170.

[5]

Shimoyama, Y.; Ogiwara, N.; Weng, Z. W.; Uchida, S. Oxygen evolution reaction driven by charge transfer from a Cr complex to co-containing polyoxometalate in a porous ionic crystal. J. Am. Chem. Soc. 2022, 144, 2980–2986.

[6]

Xiao, H. P.; Hao, Y. S.; Li, X. X.; Xu, P.; Huang, M. D.; Zheng, S. T. A water-soluble antimony-rich polyoxometalate with broad-spectrum antitumor activities. Angew. Chem., Int. Ed. 2022, 61, e202210019.

[7]

Bontchev, R. P., Venturini, E. L., Nyman, M. Copper-linked hexaniobate lindqvist clusters-variations on a theme. Inorg. Chem. 2007, 46, 4483–4491.

[8]

Khan, M. I. Novel extended solids composed of transition metal oxide clusters. J. Solid State Chem. 2000, 152, 105–112.

[9]

Pope, M. T.; Müller, A. Polyoxometalate chemistry: An old field with new dimensions in several disciplines. Angew. Chem., Int. Ed. 1991, 30, 34–48.

[10]

Bi, L. H.; Reicke, M.; Kortz, U.; Keita, B.; Nadjo, L.; Clark, R. J. First structurally characterized palladium(II)-substituted polyoxoanion:   [Cs2Na(H2O)10Pd3(α-SbIIIW9O33)2]9–. Inorg. Chem. 2004, 43, 3915–3920.

[11]

Kortz, U.; Savelieff, M. G.; Bassil, B. S.; Keita, B.; Nadjo, L. Synthesis and characterization of iron(III)-substituted, dimeric polyoxotungstates, [Fe4(H2O)10(β-XW9O33)2]n (n = 6, X = AsIII, SbIII; n = 4, X = SeIV, TeIV). Inorg. Chem. 2002, 41, 783–789.

[12]
Laronze, N. ; Marrot, J. ; Hervé, G. Cation-directed synthesis of tungstosilicates. 1. Syntheses and structures of K10A-α-[SiW9O34]·24H2O, of the sandwich-type complex K10.75[Co(H2O)6]0.5[Co(H2O)4Cl]0.25A-α-[K2{Co(H2O)2}3(SiW9O34)2]·32H2O and of Cs15[K(SiW11O39)2]·39H2O. Inorg. Chem. 2003, 42, 5857–5862.
[13]

Zhu, Z. K.; Zhang, J.; Cong, Y. C.; Ge, R.; Li, Z.; Li, X. X.; Zheng, S. T. Two giant calixarene-like polyoxoniobate nanocups {Cu12Nb120} and {Cd16Nb128} built from mixed macrocyclic cluster motifs. Angew. Chem., Int. Ed. 2022, 61, e202113381.

[14]

Wu, Y. L.; Li, X. X.; Qi, Y. J.; Yu, H.; Jin, L.; Zheng, S. T. {Nb288O768(OH)48(CO3)12}:A macromolecular polyoxometalate with close to 300 niobium atoms. Angew Chem., Int. Ed. 2018, 57, 8572–8576.

[15]

Fang, X. K.; Kögerler, P.; Furukawa, Y.; Speldrich, M.; Luban, M. Molecular growth of a core-shell polyoxometalate. Angew. Chem., Int. Ed. 2011, 50, 5212–5216.

[16]

Gupta, S. K.; Gupta, A. K.; Yadav, R. K.; Singh, A.; Yadav, B. C. Highly efficient S-g-CN/Mo-368 catalyst for synergistically NADH regeneration under solar light. Photochem. Photobiol. 2022, 98, 160–168.

[17]

Pickhard, F.; Hart, H. Die kristallstrukturen von K8Ta6O19·16H2O und K7NaTa6O19·14H2O. Z. Anorg. Allg. Chem. 1997, 623, 1311–1316.

[18]

Nelson, W. H.; Tobias, R. S. Structure of the polyanions of the transition metals in aqueous solution: The hexatantalate. Inorg. Chem. 1963, 2, 985–992.

[19]

Anderson, T. M.; Rodriguez, M. A.; Bonhomme, F.; Bixler, J. N.; Alam, T. M.; Nyman, M. An aqueous route to [Ta6O19]8– and solid-state studies of isostructural niobium and tantalum oxide complexes. Dalton Trans 2007, 4517–4522

[20]

Abramov, P. A.; Abramova, A. M.; Peresypkina, E. V.; Gushchin, A. L.; Adonin, S. A.; Sokolov, M. N. New polyoxotantalate salt Na8[Ta6O19]·245H2O and its properties. J. Struct. Chem 2011, 52, 1012–1017.

[21]

Lindqvist, I.; Aronsson, B. The structure of the hexatantalate ion in 4K2O·3Ta2O5·16H2O. Ark. For Kemi 1953, 7, 49–52.

[22]

Nyman, M.; Anderson, T. M.; Provencio, P. P. Comparison of aqueous and non-aqueous soft-chemical syntheses of lithium niobate and lithium tantalate powders. Cryst. Growth Des. 2009, 9, 1036–1040.

[23]

Huang, P.; Qin, C.; Zhou, Y.; Hong, Y. M.; Wang, X. L.; Su, Z. M. Self-assembly and photocatalytic H2 evolution activity of two unprecedented polytantalotungstates based on the largest {Ta18} and {Ta18Yb2} clusters. Chem. Commun. 2016, 52, 13787–13790.

[24]

Nyman, M. Polyoxoniobate chemistry in the 21st century. Dalton Trans. 2011, 40, 8049–8058.

[25]

Fullmer, L. B.; Malmberg, C. E.; Fast, D. B.; Wills, L. A.; Cheong, P. H. Y.; Dolgos, M. R.; Nyman, M. Aqueous tantalum polyoxometalate reactivity with peroxide. Dalton Trans. 2017, 46, 8486–8493.

[26]

Monakhov, K. Y.; Bensch, W.; Kögerler, P. Semimetal-functionalised polyoxovanadates. Chem. Soc. Rev. 2015, 44, 8443–8483.

[27]

Zhao, H. Y.; Li, Y. Z.; Zhao, J. W.; Wang, L.; Yang, G. Y. State-of-the-art advances in the structural diversities and catalytic applications of polyoxoniobate-based materials. Coord. Chem. Rev. 2021, 443, 213966.

[28]

Liu, J. C.; Zhao, J. W.; Streb, C.; Song, Y. F. Recent advances on high-nuclear polyoxometalate clusters. Coord. Chem. Rev. 2022, 471, 214734.

[29]

Yu, H.; Zheng, S. T. Research advances of polyoxotantalates. Chin. Sci. Bull. 2018, 63, 3277–3285.

[30]

Liu, R. L.; Yu, Y. H.; Wang, H. W.; Liu, Y. Y.; Li, G. High and tunable proton conduction in six 3D-substituted imidazole dicarboxylate-based lanthanide-organic frameworks. Inorg. Chem. 2021, 60, 10808–10818.

[31]

Hegetschweiler, K.; Raber, T.; Reiss, G. J.; Frank, W.; Wörle, M.; Currao, A.; Nesper, R.; Kradolfer, T. A polyoxo-polyolato complex of tantalum (V) with a double adamantane-like [Ta7O12]11+ core. Angew. Chem., Int. Ed. 1997, 36, 1964–1966.

[32]

Hartl, H.; Pickhard, F.; Emmerling, F.; Röhr, C. Rubidium- und caesium-verbindungen mit dem isopolyanion [Ta6O19]8–—Synthesen, kristallstrukturen, thermische und schwingungsspektroskopische untersuchungen der oxotantalate A8[Ta6O19] · n H2O (A  =  Rb, Cs; n  =  0,  4,   14). Z. Anorg. Allg. Chem. 2001, 627, 2630–2638.

[33]

Shen, L.; Xu, Y. Q.; Gao, Y. Z.; Cui, F. Y.; Hu, C. W. 3D extended polyoxoniobates/tantalates solid structure: Preparation, characterization and photocatalytic properties. J. Mol. Struct. 2009, 934, 37–43.

[34]

Britvin, S. N.; Siidra, O. I.; Lotnyk, A.; Kienle, L.; Krivovichev, S. V.; Depmeier, W. The fluoride route to Lindqvist clusters: Synthesis and crystal structure of layered hexatantalate Na8Ta6O19·26H2O. Inorg. Chem. Commun. 2012, 25, 18–20.

[35]

Matsumoto, M.; Ozawa, Y.; Yagasaki, A. Which is the most basic oxygen in [Ta6O19]8−?—Synthesis and structural characterization of [H2Ta6O19]6–. Inorg. Chem. Commun. 2011, 14, 115–117.

[36]

Ban, T.; Yoshikawa, S.; Ohya, Y. Synthesis of layered tantalate nanocrystals by aqueous process at room temperature. CrystEngComm. 2012, 14, 7709–7714.

[37]

Matsumoto, M.; Ozawa, Y.; Yagasaki, A. Long hydrogen-bonded rod of molecular oxide: A hexatantalate tetramer. Inorg. Chem. 2012, 51, 5991–5993.

[38]

Matsumoto, M.; Ozawa, Y.; Yagasaki, A.; Zhe, Y. Decatantalate-the last member of the group 5 decametalate family. Inorg. Chem. 2013, 52, 7825–7827.

[39]

Besserguenev, A. V.; Dickman, M. H.; Pope, M. T. Robust, alkali-stable, triscarbonyl metal derivatives of hexametalate anions, [M6O19{M’(CO)3}n](8–n)– (M = Nb, Ta; M’ = Mn, Re; n = 1, 2). Inorg. Chem. 2001, 40, 2582–2586.

[40]

Guo, G. L.; Xu, Y. Q.; Chen, B. K.; Lin, Z. G.; Hu, C. W. Two novel polyoxotantalates formed by Lindqvist-type hexatantalate and Copper-amine complexes. Inorg. Chem. Commun. 2011, 14, 1448–1451.

[41]

Abramov, P. A.; Sokolov, M. N.; Floquet, S.; Haouas, M.; Taulelle, F.; Cadot, E.; Peresypkina, E. V.; Virovets, A. V.; Vicent, C.; Kompankov, N. B. et al. Coordination-induced condensation of [Ta6O19]8–: Synthesis and structure of [{(C6H6)Ru}2Ta6O19]4– and [{(C6H6)RuTa6O18}2(μ-O)]10–. Inorg. Chem. 2014, 53, 12791–12798.

[42]

Hu, P.; Wang, X. F.; Ma, Y.; Wang, Q. L.; Li, L. C.; Liao, D. Z. A new family of Ln-radical chains (Ln = Nd, Sm, Gd, Tb and Dy): Synthesis, structure, and magnetic properties. Dalton Trans. 2014, 43, 2234–2243.

[43]

Abramov, P. A.; Vicent, C.; Kompankov, N. B.; Gushchin, A. L.; Sokolov, M. N. Coordination of {C5Me5Ir}2+ to [M6O19]8– (M = Nb, Ta)—Analogies and differences between Rh and Ir, Nb and Ta. Eur. J. Inorg. Chem. 2016, 2016, 154–160.

[44]

Li, S. Z.; Chen, S. M.; Zhang, F. L.; Li, Z. Y.; Zhang, C.; Cao, G. X.; Zhai, B. Synthesis and characterization of two polyoxotantalates: A building block and its dimeric. Inorg. Chem. Commun. 2019, 106, 228–232.

[45]

Ma, Y. C.; Sun, J. J.; Li, C.; Li, N.; Ma, P. T.; Zhang, D. D.; Wang, G.; Niu, J. Y. Assembly of two hybrid organic-inorganic hexatantalate. Inorg. Chem. Commun. 2019, 101, 6–10.

[46]

Krause, D. C.; Mangelsen, S.; Näther, C.; Bensch, W. Synthesis, crystal structure and selected properties of K2[Ni(dien)2]{[Ni(dien)]2Ta6O19}·11H2O. Z. Naturforschm. B 2021, 76, 775–782.

[47]

Krause, D. C.; Mangelsen, S.; Näther, C.; Bensch, W. Synthesis and selected properties of new complex cation decorated polyoxotantalates. Cryst. Growth Des. 2021, 21, 7128–7138.

[48]

Li, Z.; Zhang, J.; Lin, L. D.; Liu, J. H.; Li, X. X.; Zheng, S. T. Inorganic-organic hybrid high-dimensional polyoxotantalates and their structural transformations triggered by water. Chem. Commun. 2019, 55, 11735–11738.

[49]

Son, J. H.; Casey, W. H. Titanium-substituted polyoxotantalate clusters exhibiting wide pH stabilities: [Ti2Ta8O28]8− and [Ti12Ta6O44]10−. Chem.—Eur. J. 2016, 22, 14155–14157.

[50]

Zhang, D. D.; Liang, Z. J.; Liu, S. Y.; Li, L. S.; Ma, P. T.; Zhao, S. F.; Wang, H. Y.; Wang, J. P.; Niu, J. Y. Discovery of heteropolytantalate: Synthesis and structure of two 6-peroxotantalo-4-phosphate clusters. Inorg. Chem. 2017, 56, 5537–5543.

[51]

Liang, Z. J.; Zhao, S. F.; Ma, P. T.; Zhang, C.; Sun, J. J.; Song, T. T.; Niu, J. Y.; Wang, J. P. A novel tetrameric polyoxotantalate aggregate: {Co8Ta24} featuring a high-nuclearity Co8 cluster. Inorg. Chem. 2018, 57, 12471–12474.

[52]

Liang, Z. J.; Wu, H. C.; Singh, V.; Qiao, Y. Y.; Li, M. M.; Ma, P. T.; Niu, J. Y.; Wang, J. P. Assembly of lanthanide-containing polyoxotantalate clusters with efficient photoluminescence properties. Inorg. Chem. 2019, 58, 13030–13036.

[53]

Du, W. X.; Cheng, M. Y.; Li, K.; Ma, Y. C.; Shi, J. W.; Zhang, D. D. Insight into hexanuclear peroxotantalum complexes: Synthesis, characterization, and efficient catalyst for amidation reaction. Tungsten 2022, 4, 158–167.

[54]

Li, X.; Zhao, H.; Li, Y. Y.; Yang, Y. Y.; Zhang, M. Y.; Liu, S. Y.; Ma, P. T.; Wang, J. P.; Niu, J. Y. Synthesis, structure and properties of three novel transition-metal-containing tantalum-phosphate clusters. Chin. Chem. Lett. 2022, 33, 4675–4678.

[55]

Du, W. X.; Liu, Y. F.; Sun, J. J.; Wang, H. Y.; Yang, G. P.; Zhang, D. D. Three rare-earth incorporating 6-peroxotantalo-4-selenates and catalytic activities for imidation reaction. Dalton Trans. 2022, 51, 9988–9993.

[56]

Filowitz, M.; Ho, R. K. C.; Klemperer, W. G.; Shum, W. Oxygen-17 nuclear magnetic resonance spectroscopy of polyoxometalates 1. Sensitivity and resolution. Inorg. Chem. 1979, 18, 93–103.

[57]

Putaj, P.; Lefebvre, F. Polyoxometalates containing late transition and noble metal atoms. Coord. Chem. Rev. 2011, 255, 1642–1685.

[58]

Izarova, N. V.; Pope, M. T.; Kortz, U. Noble metals in polyoxometalates. Angew. Chem., Int. Ed. 2012, 51, 9492–9510.

[59]

Sartorel, A.; Carraro, M.; Scorrano, G.; Zorzi, R. D.; Geremia, S.; McDaniel, N. D.; Bernhard, S.; Bonchio, M. Polyoxometalate embedding of a tetraruthenium(IV)-oxo-core by template-directed metalation of [γ-SiW10O36]8–: A totally inorganic oxygen-evolving catalyst. J. Am. Chem. Soc. 2008, 130, 5006–5007.

[60]

Walter, M. G.; Warren, E. L.; McKone, J. R.; Boettcher, S. W.; Mi, Q. X.; Santori, E. A.; Lewis, N. S. Solar water splitting cells. Chem. Rev. 2010, 110, 6446–6473.

[61]

Youngblood, W. J.; Lee, S. H. A.; Kobayashi, Y.; Hernandez-Pagan, E. A.; Hoertz, P. G.; Moore, T. A.; Moore, A. L.; Gust, D.; Mallouk, T. E. Photoassisted overall water splitting in a visible light-absorbing dye-sensitized photoelectrochemical cell. J. Am. Chem. Soc. 2009, 131, 926–927.

[62]

Li, S. J.; Liu, S. M.; Liu, S. X.; Liu, Y. W.; Tang, Q.; Shi, Z.; Ouyang, S. X.; Ye, J. H. {Ta12}/{Ta16} cluster-containing polytantalotungstates with remarkable photocatalytic H2 evolution activity. J Am. Chem. Soc. 2012, 134, 19716–19721.

[63]

Huang, P.; Wang, X. J.; Qi, J. J.; Wang, X. L.; Huang, M.; Wu, H. Y.; Qin, C.; Su, Z. M. Self-assembly and photocatalytic H2 evolution activity of two nanoscale polytantalotungstates based on unprecedented {Cr3Ta6} and {Cr4Ta12} clusters. J. Mater. Chem. A 2017, 5, 22970–22974.

[64]

Li, S. J.; Zhou, Y. F.; Peng, Q. P.; Wang, R. Y.; Feng, X. G.; Liu, S. X.; Ma, X. M.; Ma, N. N.; Zhang, J.; Chang, Y. et al. Controllable synthesis and catalytic performance of nanocrystals of rare-earth-polyoxometalates. Inorg. Chem. 2018, 57, 6624–6631.

[65]

Li, S. J.; Li, G.; Ji, P. P.; Zhang, J. W.; Liu, S. X.; Zhang, J.; Chen, X. N. A giant Mo/Ta/W ternary mixed-addenda polyoxometalate with efficient photocatalytic activity for primary amine coupling. ACS Appl. Mater. Interfaces 2019, 11, 43287–43293.

Polyoxometalates
Article number: 9140023
Cite this article:
Guan Y, Xiao H-P, Li X-X, et al. Recent advances on the synthesis, structure, and properties of polyoxotantalates. Polyoxometalates, 2023, 2(2): 9140023. https://doi.org/10.26599/POM.2023.9140023

3087

Views

706

Downloads

15

Crossref

Altmetrics

Received: 05 October 2022
Revised: 23 November 2022
Accepted: 25 December 2022
Published: 28 February 2023
© The Author(s) 2023. Polyoxometalates published by Tsinghua University Press.

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return