Graphical Abstract

Silver-modified polyniobotungstate based on Nb/W mixed-addendum polyoxometalate with formula Ag9[P2W15Nb3O62]·21H2O (Ag-Nb/W) was synthesized and then characterized by various analytical and spectral techniques. Ag-Nb/W was proven to be an efficient photocatalyst for the oxidative ring opening of 2-phenylimidazo[1,2-a]pyridine via the simultaneous cleavage of C–C and C–N bonds. Under visible light (430–440 nm) and with oxygen as an oxidant at room temperature, Ag-Nb/W can catalyze the rapid transformation of various 2-phenylimidazo[1,2-a]pyridine derivatives to produce the corresponding oxidative ring-opening product N-(pyridin-2-yl) amides in good isolated yields ranging from 65% to 78%. As a heterogeneous photocatalyst, Ag-Nb/W showed excellent sustainability and recyclability in the recycling experiments. Infrared (IR) spectroscopy and X-ray diffraction (XRD) analysis indicated that Ag-Nb/W could retain its integrity after catalysis. A possible mechanism involving the singlet oxygen for the catalytic reaction was proposed.
Pope, M. T.; Müller, A. Polyoxometalate chemistry: An old field with new dimensions in several disciplines. Angew. Chem., Int. Ed. 1991, 30, 34–48.
Long, D. L.; Tsunashima, R.; Cronin, L. Polyoxometalates: Building blocks for functional nanoscale systems. Angew. Chem., Int. Ed. 2010, 49, 1736–1758.
Zheng, S. T.; Yang, G. Y. Recent advances in paramagnetic-TM-substituted polyoxometalates (TM = Mn, Fe, Co, Ni, Cu). Chem. Soc. Rev. 2012, 41, 7623–7646.
Liu, J. C.; Wang, J. F.; Han, Q.; Shangguan, P.; Liu, L. L.; Chen, L. J.; Zhao, J. W.; Streb, C.; Song, Y. F. Multicomponent self-assembly of a giant heterometallic polyoxotungstate supercluster with antitumor activity. Angew. Chem., Int. Ed. 2021, 60, 11153–11157.
Yamase, T. Photo- and electrochromism of polyoxometalates and related materials. Chem. Rev. 1998, 98, 307–326.
Wang, S. S.; Yang, G. Y. Recent advances in polyoxometalate-catalyzed reactions. Chem. Rev. 2015, 115, 4893–4962.
Yang, G. P.; Li, K.; Hu, C. W. Recent advances in uranium-containing polyoxometalates. Inorg. Chem. Front. 2022, 9, 5408.
Lόpez, X.; Carbό, J. J.; Bo, C.; Poblet, J. M. Structure, properties and reactivity of polyoxometalates: A theoretical perspective. Chem. Soc. Rev. 2012, 41, 7537–7571.
Liu, Y.; Tang, C. S.; Cheng, M.; Chen, M.; Chen, S.; Lei, L.; Chen, Y. S.; Yi, H.; Fu, Y. K.; Li, L. Polyoxometalate@metal-organic framework composites as effective photocatalysts. ACS Catal. 2021, 11, 13374–13396.
Zhang, M.; Li, H. J.; Zhang, J. H.; Lv, H. J.; Yang, G. Y. Research advances of light-driven hydrogen evolution using polyoxometalate-based catalysts. Chin. J. Catal. 2021, 42, 855–871.
Li, S. J.; Liu, S. M.; Liu, S. X.; Liu, Y. W.; Tang, Q.; Shi, Z.; Ouyang, S. X.; Ye, J. H. {Ta12}/{Ta16} cluster-containing polytantalotungstates with remarkable photocatalytic H2 evolution activity. J. Am. Chem. Soc. 2012, 134, 19716–19721.
Zhang, M.; Xin, X.; Feng, Y. Q.; Zhang, J. H.; Lv, H. J.; Yang, G. Y. Coupling Ni-substituted polyoxometalate catalysts with water-soluble CdSe quantum dots for ultraefficient photogeneration of hydrogen under visible light. Appl. Catal. B Environ. 2022, 303, 120893.
Li, X. X.; Zhang, L.; Liu, J.; Yuan, L.; Wang, T.; Wang, J. Y.; Dong, L. Z.; Huang, K.; Lan, Y. Q. Design of crystalline reduction-oxidation cluster-based catalysts for artificial photosynthesis. JACS Au 2021, 1, 1288–1295.
Li, X. X.; Zhang, L.; Yuan, L.; Wang, T.; Dong, L. Z.; Huang, K.; Liu, J.; Lan, Y. Q. Constructing crystalline redox catalyst to achieve efficient CO2 photoreduction reaction in water vapor. Chem. Eng. J. 2022, 442, 136157.
Yao, S. J.; Li, N.; Liu, J.; Dong, L. Z.; Liu, J. J.; Xin, Z. F.; Li, D. S.; Li, S. L.; Lan, Y. Q. Ferrocene-functionalized crystalline biomimetic catalysts for efficient CO2 photoreduction. Inorg. Chem. 2022, 61, 2167–2173.
Gu, J.; Chen, W.; Shan, G. G.; Li, G.; Sun, C.; Wang, X. L.; Su, Z. The roles of polyoxometalates in photocatalytic reduction of carbon dioxide. Mater. Today Energy 2021, 21, 100760.
Lan, J.; Wang, Y.; Huang, B.; Xiao, Z. C.; Wu, P. F. Application of polyoxometalates in photocatalytic degradation of organic pollutants. Nanoscale Adv. 2021, 3, 4646–4658.
Lai, S. Y.; Ng, K. H.; Cheng, C. K.; Nur, H.; Nurhadi, M.; Arumugam, M. Photocatalytic remediation of organic waste over keggin-based polyoxometalate materials: A review. Chemosphere 2021, 263, 128244.
Li, H. L.; Zhang, M.; Lian, C.; Lang, Z. L.; Lv, H. J.; Yang, G. Y. Ring-shaped polyoxometalate built by {Mn4PW9} and PO4 units for efficient visible-light-driven hydrogen evolution. CCS Chem. 2021, 3, 2095–2103.
Xia, Z. N.; Wang, L. B.; Zhang, Q.; Li, F. Y.; Xu, L. Fast degradation of phenol over porphyrin-polyoxometalate composite photocatalysts under visible light. Polyoxometalates 2022, 1, 9140001.
Zang, D. J.; Wang, H. Q. Polyoxometalate-based nanostructures for electrocatalytic and photocatalytic CO2 reduction. Polyoxometalates 2022, 1, 9140006.
Yang, L.; Zhang, Z.; Zhang, C. N.; Li, S.; Liu, G. C.; Wang, X. L. An excellent multifunctional photocatalyst with a polyoxometalate-viologen framework for CEES oxidation, Cr(VI) reduction and dye decolorization under different light regimes. Inorg. Chem. Front. 2022, 9, 4824–4833.
Qin, K. J.; Zang, D. J.; Wei, Y. G. Polyoxometalates based compounds for green synthesis of aldehydes and ketones. Chin. Chem. Lett., in press, https://doi.org/10.1016/j.cclet.2022.107999.
Hiskia, A.; Mylonas, A.; Papaconstantinou, E. Comparison of the photoredox properties of polyoxometallates and semiconducting particles. Chem. Soc. Rev. 2001, 30, 62–69.
Suzuki, K.; Mizuno, N.; Yamaguchi, K. Polyoxometalate photocatalysis for liquid-phase selective organic functional group transformations. ACS Catal. 2018, 8, 10809–10825.
Streb, C.; Kastner, K.; Tucher, J. Polyoxometalates in photocatalysis. Phys. Sci. Rev. 2019, 4, 20170177.
Li, H. F.; Yang, M. N.; Yuan, Z. L.; Sun, Y. H.; Ma, P. T.; Niu, J. Y.; Wang, J. P. Construction of one Ru2W12-cluster and six lacunary Keggin tungstoarsenate leading to the larger Ru-containing polyoxometalate photocatalyst. Chin. Chem. Lett. 2022, 33, 4664–4668.
Ravelli, D.; Protti, S.; Fagnoni, M. Decatungstate anion for photocatalyzed “window ledge” reactions. Acc. Chem. Res. 2016, 49, 2232–2242.
Lykakis, I. N.; Tanielian, C.; Seghrouchni, R.; Orfanopoulos, M. Mechanism of decatungstate photocatalyzed oxygenation of aromatic alcohols: Part II. Kinetic isotope effects studies. J. Mol. Catal. A Chem. 2007, 262, 176–184.
Liu, Y.-F.; Hu, C.-W.; Yang, G.-P. Recent advances in polyoxometalates acid-catalyzed organic reactions. Chin. Chem. Lett., in press, https://doi.org/10.1016/j.cclet.2022.108097.
Huang, X. Q.; Liu, S.; Liu, G.; Tao, Y. W.; Wang, C. R.; Zhang, Y. L.; Li, Z.; Wang, H. W.; Zhou, Z.; Shen, G. D. et al. An unprecedented 2-fold interpenetrated lvt open framework built from Zn6 ring seamed trivacant polyoxotungstates used for photocatalytic synthesis of pyridine derivatives. Appl. Catal. B Environ. 2023, 323, 122134.
Gu, Y. Q.; Li, Q.; Zang, D. J.; Huang, Y. C.; Yu, H.; Wei, Y. G. Light-induced efficient hydroxylation of benzene to phenol by quinolinium and polyoxovanadate-based supramolecular catalysts. Angew. Chem., Int. Ed. 2021, 60, 13310–13316.
Ma, Y. B.; Gao, F.; Xiao, W. R.; Li, N.; Li, S. J.; Yu, B.; Chen, X. N. Two transition-metal-modified Nb/W mixed-addendum polyoxometalates for visible-light-mediated aerobic benzylic C-H oxidations. Chin. Chem. Lett. 2022, 33, 4395–4399.
Ryu, I.; Tani, A.; Fukuyama, T.; Ravelli, D.; Montanaro, S.; Fagnoni, M. Efficient C-H/C-N and C-H/C-CO-N conversion via decatungstate-photoinduced alkylation of diisopropyl azodicarboxylate. Org. Lett. 2013, 15, 2554–2557.
Li, S. J.; Li, G.; Ji, P. P.; Zhang, J. W.; Liu, S. X.; Zhang, J.; Chen, X. N. A giant Mo/Ta/W ternary mixed-addenda polyoxometalate with efficient photocatalytic activity for primary amine coupling. ACS Appl. Mater. Interfaces 2019, 11, 43287–43293.
Sarver , P. J.; Bacauanu , V.; Schultz , D. M.; DiRocco, D. A.; Lam, Y. H.; Sherer, E. C.; MacMillan, D. W. C. The merger of decatungstate and copper catalysis to enable aliphatic C(sp3)-H trifluoromethylation. Nat. Chem. 2020, 12, 459–467.
Jiao, J. C.; Yan, X. M.; Xing, S. Z.; Zhang, T.; Han, Q. X. Design of a polyoxometalate-based metal-organic framework for photocatalytic C(sp3)-H oxidation of toluene. Inorg. Chem. 2022, 61, 2421–2427.
Zhao, W. Z.; Zeng, X. H.; Huang, L.; Qiu, S. Q.; Xie, J. Y.; Yu, H.; Wei, Y. G. Oxidative dehydrogenation of hydrazines and diarylamines using a polyoxomolybdate-based iron catalyst. Chem. Commun. 2021, 57, 7677–7680.
Nodwell, M. B.; Yang, H.; Čolović, M.; Yuan, Z. L.; Merkens, H.; Martin, R. E.; Bénard, F.; Schaffer, P.; Britton, R. 18F-fluorination of unactivated C-H bonds in branched aliphatic amino acids: Direct synthesis of oncological positron emission tomography imaging agents. J. Am. Chem. Soc. 2017, 139, 3595–3598.
Chen, F.; Wang, T.; Jiao, N. Recent advances in transition-metal-catalyzed functionalization of unstrained carbon-carbon bonds. Chem. Rev. 2014, 114, 8613–8661.
Souillart, L.; Cramer, N. Catalytic C-C bond activations via oxidative addition to transition metals. Chem. Rev. 2015, 115, 9410–9464.
Yang, G. P.; Li, K.; Liu, W.; Zeng, K.; Liu, Y. F. Copper-catalyzed aerobic oxidative C-C bond cleavage of simple ketones for the synthesis of amides. Org. Biomol. Chem. 2020, 18, 6958–6964.
Chen, W. M.; Xie, X.; Zhang, J.; Qu, J.; Luo, C.; Lai, Y. Z.; Jiang, F.; Yu, H.; Wei, Y. G. Oxidative carbon-carbon bond cleavage of 1,2-diols to carboxylic acids/ketones by an inorganic-ligand supported iron catalyst. Green Chem. 2021, 23, 9140–9146.
Tang, C. H.; Jiao, N. Copper-catalyzed aerobic oxidative C-C bond cleavage for C-N bond formation: From ketones to amides. Angew. Chem., Int. Ed. 2014, 53, 6528–6532.
Ritu; Sharma, C.; Kumar, S.; Jain, N. Singlet oxygen mediated dual C-C and C-N bond cleavage in visible light. Org. Biomol. Chem. 2020, 18, 2921–2928.
Dreis, A. M.; Douglas, C. J. Catalytic carbon-carbon σ bond activation: An intramolecular carbo-acylation reaction with acylquinolines. J. Am. Chem. Soc. 2009, 131, 412–413.
Yan, K. L.; Yang, D. S.; Wei, W.; Li, G. Q.; Sun, M. Y.; Zhang, Q. Y.; Tian, L. J.; Wang, H. Metal-free TBHP-mediated oxidative ring openings of 2-arylimidazopyridines via regioselective cleavage of C-C and C-N bonds. RSC Adv. 2015, 5, 100102–100105.
Chen, Z. W.; Wen, X. W.; Qian, Y. P.; Liang, P.; Liu, B. T.; Ye, M. Ce(III)-catalyzed highly efficient synthesis of pyridyl benzamides from aminopyridines and nitroolefins without external oxidants. Org. Biomol. Chem. 2018, 16, 1247–1251.
Xu, F. Z.; Wang, Y. Y.; Xun, X. W.; Huang, Y.; Jin, Z. C.; Song, B. A.; Wu, J. Diverse oxidative C(sp2)-N bond cleavages of aromatic fused imidazoles for synthesis of α-ketoamides and N-(pyridin-2-yl)arylamides. J. Org. Chem. 2019, 84, 8411–8422.
Gong, J.; Chen, Y. G.; Qu, L. Y.; Liu, Q. Preparation and characterization of new peroxyniobium-containing phosphotungstates with Dawson structures. Polyhedron 1996, 15, 2273–2277.
Romand, M.; Roubin, M.; Deloume, J. P. ESCA studies of some copper and silver selenides. J. Electron Spectrosc. Relat. Phenom. 1978, 13, 229–242.
Kuznetsova, A. A.; Volchek, V. V.; Yanshole, V. V.; Fedorenko, A. D.; Kompankov, N. B.; Kokovkin, V. V.; Gushchin, A. L.; Abramov, P. A.; Sokolov, M. N. Coordination of Pt(IV) by {P8W48} macrocyclic inorganic cavitand: Structural, solution, and electrochemical studies. Inorg. Chem. 2022, 61, 14560–14567.