Graphical Abstract

The exploration of high-efficiency photocatalysts to drive the conversion of highly toxic heavy metal hexavalent chromium (Cr(VI)) in wastewater to low-toxic trivalent chromium (Cr(III)) is of great significance for purifying water that contains emerging contaminants. Herein, four hourglass-type phosphomolybdate-based hybrid networks—(H2bpe)2[M(H2O)3]2{M[P4Mo6O31H7]2}·8H2O (M = Mn for 1, Co for 2) and (Hbpe)(H2bpe)Na[M(H2O)3]2{M[P4Mo6O31H7]2}·9H2O (M = Mn for 3, Co for 4; {M[P4Mo6O31H7]2}8− (abbr. M{P4Mo6}2); bpe = 1,2-di(4-pyridyl)ethylene)—were hydrothermally synthesized as heterogeneous photocatalysts for Cr(VI) reduction. A structural analysis showed that the four hybrids 1–4 exhibited two-dimensional inorganic sheet-like structures with a 3,6-connected kgd topology built of hourglass phosphomolybdate clusters having different central metal ions, which further interacted with organic bpe cations via abundant hydrogen-bonding interactions to extend the structure to a three-dimensional (3D) supramolecular network. The four hybrids displayed excellent redox properties and wide visible-light absorption. When used as heterogeneous photocatalysts, hybrids 1–4 exhibited excellent photocatalytic activity for Cr(VI) reduction under 10 W white light irradiation, with reduction rates of 91% for 1, 74% for 2, 90% for 3, and 71% for 4, respectively, within 80 min. The Cr(VI) reduction reaction over hybrids 1–4 followed the pseudo first-order kinetics model with reaction rate constants k of 0.0237 min−1 for 1, 0.0143 min−1 for 2, 0.0221 min−1 for 3 and 0.0134 min−1 for 4, respectively. The Mn{P4Mo6}2-based hybrids 1 and 3 showed better photocatalytic performance than the Co{P4Mo6}2-based hybrids 2 and 4, along with excellent recycle stability. This mechanism study shows that the different central metals M in the M{P4Mo6}2 cluster have a considerable impact on photocatalytic performance due to their regulation effect on the electronic structure. This work provides evidence for the important role of the central metal in hourglass-type phosphomolybdate in the regulation of photocatalytic performance, and it brings inspiration for the design of highly efficient photocatalysts based on polyoxometalates.
Bansod, B.; Kumar, T.; Thakur, R.; Rana, S.; Singh, I. A review on various electrochemical techniques for heavy metal ions detection with different sensing platforms. Biosens. Bioelectron. 2017, 94, 443–455.
Saidur, M. R.; Aziz, A. R. A.; Basirun, W. J. Recent advances in DNA-based electrochemical biosensors for heavy metal ion detection: A review. Biosens. Bioelectron. 2017, 90, 125–139.
Wang, X. X.; Qi, Y. X.; Shen, Y.; Yuan, Y.; Zhang, L. D.; Zhang, C. Y.; Sun, Y. H. A ratiometric electrochemical sensor for simultaneous detection of multiple heavy metal ions based on ferrocene-functionalized metal-organic framework. Sens. Actuators B: Chem. 2020, 310, 127756.
Bashir, M. S.; Ramzan, N.; Najam, T.; Abbas, G.; Gu, X. L.; Arif, M.; Qasim, M.; Bashir, H.; Shah, S. S. A.; Sillanpää, M. Metallic nanoparticles for catalytic reduction of toxic hexavalent chromium from aqueous medium: A state-of-the-art review. Sci. Total Environ. 2022, 829, 154475.
Jin, M. T.; Yuan, H.; Liu, B.; Peng, J. J.; Xu, L. P.; Yang, D. Z. Review of the distribution and detection methods of heavy metals in the environment. Anal. Methods 2020, 12, 5747–5766.
Fu, Y.; Wang, L. L.; Peng, W. Y.; Fan, Q. Y.; Li, Q. C.; Dong, Y. X.; Liu, Y. J.; Boczkaj, G.; Wang, Z. H. Enabling simultaneous redox transformation of toxic chromium(VI) and arsenic(III) in aqueous media—A review. J. Hazard. Mater. 2021, 417, 126041.
Lai, Y. J.; Tseng, W. L. Role of 5-thio-(2-nitrobenzoic acid)-capped gold nanoparticles in the sensing of chromium(VI): Remover and sensor. Analyst 2011, 136, 2712–2717.
Qian, J.; Zhou, J. M.; Wang, L. L.; Wei, L.; Li, Q.; Wang, D. B.; Wang, Q. L. Direct Cr (VI) bio-reduction with organics as electron donor by anaerobic sludge. Chem. Eng. J. 2017, 309, 330–338.
Stern, C. M.; Jegede, T. O.; Hulse, V. A.; Elgrishi, N. Electrochemical reduction of Cr(VI) in water: Lessons learned from fundamental studies and applications. Chem. Soc. Rev. 2021, 50, 1642–1667.
Ye, Z. X.; Yin, X. B.; Chen, L. F.; He, X. Y.; Lin, Z. M.; Liu, C. C.; Ning, S. Y.; Wang, X. P.; Wei, Y. Z. An integrated process for removal and recovery of Cr(VI) from electroplating wastewater by ion exchange and reduction-precipitation based on a silica-supported pyridine resin. J. Clean. Prod. 2019, 236, 117631.
Gong, K. N.; Wang, W. J.; Yan, J. S.; Han, Z. G. Highly reduced molybdophosphate as a noble-metal-free catalyst for the reduction of chromium using formic acid as a reducing agent. J. Mater. Chem. A 2015, 3, 6019–6027.
Xin, X.; Tian, X. R.; Yu, H. T.; Han, Z. G. Synthesis of hybrid phosphomolybdates and application as highly stable and effective catalyst for the reduction of Cr(VI). Inorg. Chem. 2018, 57, 11474–11481.
Wang, C. C.; Du, X. D.; Li, J.; Guo, X. X.; Wang, P.; Zhang, J. Photocatalytic Cr(VI) reduction in metal-organic frameworks: A mini-review. Appl. Catal. B: Environ. 2016, 193, 198–216.
Kathiravan, M. N.; Karthick, R.; Muthukumar, K. Ex situ bioremediation of Cr(VI) contaminated soil by Bacillus sp. :Batch and continuous studies. Chem. Eng. J. 2011, 169, 107–115.
Hu, B. W.; Song, Y. Z.; Wu, S. Y.; Zhu, Y. L.; Sheng, G. D. Slow released nutrient-immobilized biochar: A novel permeable reactive barrier filler for Cr(VI) removal. J. Mol. Liq. 2019, 286, 110876.
Acharya, R.; Naik, B.; Parida, K. Cr(VI) remediation from aqueous environment through modified-TiO2-mediated photocatalytic reduction. Beilstein J. Nanotechnol. 2018, 9, 1448–1470.
Zhang, X.-J.; Ma, Y.-Y.; Bi, H.-X.; Yin, X.-Y.; Song, H.; Liu, M.-H.; Han, Z.-G. Wheel-shaped molybdenum(V) cobalt-phosphate cluster as a highly sensitive bifunctional photoelectrochemical sensor for the trace determination of Cr(VI) and tetracycline. Inorg. Chem. Front 2022, 9, 6457–6467.
Gu, Y. Q.; Li, Q.; Zang, D. J.; Huang, Y. C.; Yu, H.; Wei, Y. G. Light-induced efficient hydroxylation of benzene to phenol by quinolinium and polyoxovanadate-based supramolecular catalysts. Angew. Chem., Int. Ed. 2021, 60, 13310–13316.
Zhu, Y. T.; Huang, Y. C.; Li, Q.; Zang, D. J.; Gu, J.; Tang, Y. J.; Wei, Y. G. Polyoxometalate-based photoactive hybrid: Uncover the first crystal structure of covalently linked hexavanadate-porphyrin molecule. Inorg. Chem. 2020, 59, 2575–2583.
Li, X. Q.; Hong, Z.; Kang, S. Z.; Qin, L. X.; Li, G. D.; Mu, J. Photocatalytic degradation activity of TiO2 nanotubes for Cr(VI). Adv. Mater. Res 2013, 864–867, 715–718.
Yuan, G. Q.; Li, F. L.; Li, K. Z.; Liu, J.; Li, J. Y.; Zhang, S. W.; Jia, Q. L.; Zhang, H. J. Research progress on photocatalytic reduction of Cr(VI) in polluted water. Bull. Chem. Soc. Japan. 2021, 94, 1142–1155.
Bi, H. X.; Hou, L.; Yin, X. Y.; Ma, Y. Y.; Han, Z. G. Central metals to guide the bandgap of hourglass-type polyoxometalate hybrids as photocatalyst for the reduction of Cr(VI). Cryst. Growth Des. 2022, 22, 738–746.
Guo, H. L.; Wang, Y. K.; Qu, X. J.; Li, H. Y.; Yang, W.; Bai, Y.; Dang, D. B. Three-dimensional interpenetrating frameworks based on {P4Mo6} tetrameric clusters and filled with in situ generated alkyl viologens. Inorg. Chem. 2020, 59, 16430–16440.
Chen, C. R.; Zeng, H. Y.; Xu, S.; Shen, J. C.; Hu, G.; Zhu, R. L.; Du, J. Z.; Sun, Y. X. Facile fabrication of CdS/ZnAlO heterojunction with enhanced photocatalytic activity for Cr(VI) reduction under visible light. Appl. Clay Sci. 2018, 165, 197–204.
Wang, J. W.; Qiu, F. G.; Wang, P.; Ge, C. J.; Wang, C. C. Boosted bisphenol A and Cr(VI) cleanup over Z-scheme WO3/MIL-100(Fe) composites under visible light. J. Clean. Prod. 2021, 279, 123408.
Wang, C. C.; Ren, X. Y.; Wang, P.; Chang, C. The state of the art review on photocatalytic Cr(VI) reduction over MOFs-based photocatalysts: From batch experiment to continuous operation. Chemosphere 2022, 303, 134949.
He, J.; Zhou, H. L.; Peng, Q. M.; Wang, Y. T.; Chen, Y. J.; Yan, Z. Y.; Wang, J. Q. UiO-66 with confined dyes for adsorption and visible-light photocatalytic reduction of aqueous Cr(VI). Inorg. Chem. Commun. 2022, 140, 109441.
Zhang, J. W.; Huang, Y. C.; Li, G.; Wei, Y. G. Recent advances in alkoxylation chemistry of polyoxometalates: From synthetic strategies, structural overviews to functional applications. Coord. Chem. Rev. 2019, 378, 395–414.
Li, J.; Zhang, D.; Chi, Y. N.; Hu, C. W. Catalytic application of polyoxovanadates in the selective oxidation of organic molecules. Polyoxometalates 2022, 1, 9140012.
Zhang, H. Y.; Zhao, W. L.; Li, H. Q.; Zhuang, Q. H.; Sun, Z. Q.; Cui, D. Y.; Chen, X. J.; Guo, A.; Ji, X.; An, S. et al. Latest progress in covalently modified polyoxometalates-based molecular assemblies and advanced materials. Polyoxometalates 2022, 1, 9140011.
Shi, J. Y.; Gupta, R. K.; Deng, Y. K.; Sun, D.; Wang, Z. Recent advances in the asymmetrical templation effect of polyoxometalate in silver clusters. Polyoxometalates 2022, 1, 9140010.
Li, L.; Zhao, Y.; Wang, J. J.; Chen, H. H.; Li, H. Y.; Wang, J. J.; Wang, Y. Y.; Bai, Y.; Dang, D. B. The [CuI4Cl4] cluster of a coordination complex based on polypyridyl ligand for heterogeneous Fenton-like MB degradation without illumination and electrocatalytic reduction of H2O2 and K2Cr2O7. Dyes Pigm. 2022, 207, 110763.
Xing, X. X.; Guo, H. L.; He, T. M.; An, X.; Li, H. P.; Zhu, W. S.; Li, H. M.; Pang, J. Y.; Dang, D. B.; Bai, Y. Tungstovanadate-based ionic liquid catalyst [C2(MIM)2]2VW12O40 used in deep desulfurization for ultraclean fuel with simultaneous recovery of the sulfone product. ACS Sustainable Chem. Eng. 2022, 10, 11533–11543.
Li, H. Y.; Pan, H.; Fan, Y. H.; Bai, Y.; Dang, D. B. Syntheses, crystal structures, and properties of four polyoxometalate-based metal-organic frameworks based on Ag(I) and 4,4′-dipyridine-N,N′-dioxide. Polyoxometalates 2022, 1, 9140007.
Yin, X. Y.; Zhang, Y. Q.; Ma, Y. Y.; He, J. Y.; Song, H.; Han, Z. G. Bifunctional sensors based on phosphomolybdates for detection of inorganic hexavalent chromium and organic tetracycline. Inorg. Chem. 2022, 61, 13174–13183.
Benseghir, Y.; Solé-Daura, A.; Mialane, P.; Marrot, J.; Dalecky, L.; Béchu, S.; Frégnaux, M.; Gomez-Mingot, M.; Fontecave, M.; Mellot-Draznieks, C. et al. Understanding the photocatalytic reduction of CO2 with heterometallic molybdenum(V) phosphate polyoxometalates in aqueous media. ACS Catal. 2022, 12, 453–464.
Du, J.; Ma, Y. Y.; Xin, X.; Na, H.; Zhao, Y. N.; Tan, H. Q.; Han, Z. G.; Li, Y. G.; Kang, Z. H. Reduced polyoxometalates and bipyridine ruthenium complex forming a tunable photocatalytic system for high efficient CO2 reduction. Chem. Eng. J. 2020, 398, 125518.
Zhu, W.; Yang, X. Y.; Li, Y. H.; Li, J. P.; Wu, D.; Gao, Y.; Yi, F. Y. A novel porous molybdophosphate-based FeII,III-MOF showing selective dye degradation as a recyclable photocatalyst. Inorg. Chem. Commun. 2014, 49, 159–162.
Zhang, Y. Q.; Zhou, L. Y.; Ma, Y. Y.; Dastafkan, K.; Zhao, C.; Wang, L. Z.; Han, Z. G. Stable monovalent aluminum(I) in a reduced phosphomolybdate cluster as an active acid catalyst. Chem. Sci. 2021, 12, 1886–1890.
Lin, B. Z.; Liu, X. Z.; Xu, B. H.; Wang, Q. Q.; Xiao, Z. J. Two new molybdenum(V) phosphates containing sandwich-shaped clusters with zero- and three-dimensional structures. Solid State Sci. 2008, 10, 1517–1524.
Niu, J. Q.; An, W. T.; Zhang, X. J.; Ma, Y. Y.; Han, Z. G. Ultra-trace determination of hexavalent chromium in a wide pH range triggered by heterometallic Cu-Mn centers modified reduced phosphomolybdate hybrids. Chem. Eng. J. 2021, 418, 129408.
Hou, L.; Zhang, Y. Q.; Ma, Y. Y.; Wang, Y. L.; Hu, Z. F.; Gao, Y. Z.; Han, Z. G. Reduced phosphomolybdate hybrids as efficient visible-light photocatalysts for Cr(VI) reduction. Inorg. Chem. 2019, 58, 16667–16675.
Han, L.; Zhong, Y. L.; Su, Y.; Wang, L. T.; Zhu, L. S.; Fei, X. F.; Dong, Y. Z.; Hong, G.; Zhou, Y. T.; Fang, D. Nanocomposites based on 3D macroporous biomass carbon with SnS2 nanosheets hierarchical structure for efficient removal of hexavalent chromium. Chem. Eng. J. 2019, 369, 1138–1149.
Shi, H. F.; Yu, Y. C.; Zhang, Y.; Feng, X. J.; Zhao, X. Y.; Tan, H. Q.; Khan, S. U.; Li, Y. G.; Wang, E. B. Polyoxometalate/TiO2/Ag composite nanofibers with enhanced photocatalytic performance under visible light. Appl. Catal. B: Environ. 2018, 221, 280–289.
Gan, H. H.; Liu, J.; Zhang, H. N.; Qian, Y. X.; Jin, H. X.; Zhang, K. F. Enhanced photocatalytic removal of hexavalent chromium and organic dye from aqueous solution by hybrid bismuth titanate Bi4Ti3O12/Bi2Ti2O7. Res. Chem. Intermed. 2018, 44, 2123–2138.
Bi, H. X.; Yin, X. Y.; Zhang, X. J.; Ma, Y. Y.; Han, Z. G. Efficient visible-light-driven reduction of hexavalent chromium catalyzed by conjugated organic species modified hourglass-type phosphomolybdate hybrids. CrystEngComm 2022, 24, 1002–1009.
Arslanoğlu, H.; Altundoğan, H. S.; Tümen, F. Photocatalytic reduction of Cr(VI) from aqueous solutions with formic acid in the presence of bauxite: kinetics and mechanism. Trans. Indian Inst. Met. 2021, 74, 3075–3084.
Liu, C. X.; Fang, W. C.; Song, Y. T.; Li, F. Y.; Sun, Z. X.; Xu, L. Fabrication of CdS/P2MoxW18−x nanospheres with type II heterostructure for photocatalytic reduction of hexavalent chromium. Mater. Sci. Semicond. Process. 2020, 120, 105276.