AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (10.1 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Photoactive hourglass-type M{P4Mo6}2 networks for efficient removal of hexavalent chromium

Xiao-Yu YinHao-Xue BiHao SongJing-Yan HeYuan-Yuan Ma ( )Ting-Ting FangZhan-Gang Han ( )
Hebei Key Laboratory of Organic Functional Molecules, National Demonstration Center for Experimental Chemistry Education, Hebei Key Laboratory of Inorganic Nanomaterials, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, China
Show Author Information

Graphical Abstract

Abstract

The exploration of high-efficiency photocatalysts to drive the conversion of highly toxic heavy metal hexavalent chromium (Cr(VI)) in wastewater to low-toxic trivalent chromium (Cr(III)) is of great significance for purifying water that contains emerging contaminants. Herein, four hourglass-type phosphomolybdate-based hybrid networks—(H2bpe)2[M(H2O)3]2{M[P4Mo6O31H7]2}·8H2O (M = Mn for 1, Co for 2) and (Hbpe)(H2bpe)Na[M(H2O)3]2{M[P4Mo6O31H7]2}·9H2O (M = Mn for 3, Co for 4; {M[P4Mo6O31H7]2}8− (abbr. M{P4Mo6}2); bpe = 1,2-di(4-pyridyl)ethylene)—were hydrothermally synthesized as heterogeneous photocatalysts for Cr(VI) reduction. A structural analysis showed that the four hybrids 14 exhibited two-dimensional inorganic sheet-like structures with a 3,6-connected kgd topology built of hourglass phosphomolybdate clusters having different central metal ions, which further interacted with organic bpe cations via abundant hydrogen-bonding interactions to extend the structure to a three-dimensional (3D) supramolecular network. The four hybrids displayed excellent redox properties and wide visible-light absorption. When used as heterogeneous photocatalysts, hybrids 14 exhibited excellent photocatalytic activity for Cr(VI) reduction under 10 W white light irradiation, with reduction rates of 91% for 1, 74% for 2, 90% for 3, and 71% for 4, respectively, within 80 min. The Cr(VI) reduction reaction over hybrids 14 followed the pseudo first-order kinetics model with reaction rate constants k of 0.0237 min−1 for 1, 0.0143 min−1 for 2, 0.0221 min−1 for 3 and 0.0134 min−1 for 4, respectively. The Mn{P4Mo6}2-based hybrids 1 and 3 showed better photocatalytic performance than the Co{P4Mo6}2-based hybrids 2 and 4, along with excellent recycle stability. This mechanism study shows that the different central metals M in the M{P4Mo6}2 cluster have a considerable impact on photocatalytic performance due to their regulation effect on the electronic structure. This work provides evidence for the important role of the central metal in hourglass-type phosphomolybdate in the regulation of photocatalytic performance, and it brings inspiration for the design of highly efficient photocatalysts based on polyoxometalates.

Electronic Supplementary Material

Download File(s)
POM-0027-checkcif-hybrid1.pdf (238.1 KB)
POM-0027-checkcif-hybrid2.pdf (230.2 KB)
POM-0027-checkcif-hybrid3.pdf (168.8 KB)
POM-0027-checkcif-hybrid4.pdf (162.8 KB)
POM-0027-hybrid1.cif (745.5 KB)
POM-0027-hybrid2.cif (384.6 KB)
POM-0027-hybrid3.cif (782.7 KB)
POM-0027-hybrid4.cif (763.3 KB)
POM-0027_ESM.pdf (1.5 MB)

References

[1]

Bansod, B.; Kumar, T.; Thakur, R.; Rana, S.; Singh, I. A review on various electrochemical techniques for heavy metal ions detection with different sensing platforms. Biosens. Bioelectron. 2017, 94, 443–455.

[2]

Saidur, M. R.; Aziz, A. R. A.; Basirun, W. J. Recent advances in DNA-based electrochemical biosensors for heavy metal ion detection: A review. Biosens. Bioelectron. 2017, 90, 125–139.

[3]

Wang, X. X.; Qi, Y. X.; Shen, Y.; Yuan, Y.; Zhang, L. D.; Zhang, C. Y.; Sun, Y. H. A ratiometric electrochemical sensor for simultaneous detection of multiple heavy metal ions based on ferrocene-functionalized metal-organic framework. Sens. Actuators B: Chem. 2020, 310, 127756.

[4]

Bashir, M. S.; Ramzan, N.; Najam, T.; Abbas, G.; Gu, X. L.; Arif, M.; Qasim, M.; Bashir, H.; Shah, S. S. A.; Sillanpää, M. Metallic nanoparticles for catalytic reduction of toxic hexavalent chromium from aqueous medium: A state-of-the-art review. Sci. Total Environ. 2022, 829, 154475.

[5]

Jin, M. T.; Yuan, H.; Liu, B.; Peng, J. J.; Xu, L. P.; Yang, D. Z. Review of the distribution and detection methods of heavy metals in the environment. Anal. Methods 2020, 12, 5747–5766.

[6]

Fu, Y.; Wang, L. L.; Peng, W. Y.; Fan, Q. Y.; Li, Q. C.; Dong, Y. X.; Liu, Y. J.; Boczkaj, G.; Wang, Z. H. Enabling simultaneous redox transformation of toxic chromium(VI) and arsenic(III) in aqueous media—A review. J. Hazard. Mater. 2021, 417, 126041.

[7]

Lai, Y. J.; Tseng, W. L. Role of 5-thio-(2-nitrobenzoic acid)-capped gold nanoparticles in the sensing of chromium(VI): Remover and sensor. Analyst 2011, 136, 2712–2717.

[8]

Qian, J.; Zhou, J. M.; Wang, L. L.; Wei, L.; Li, Q.; Wang, D. B.; Wang, Q. L. Direct Cr (VI) bio-reduction with organics as electron donor by anaerobic sludge. Chem. Eng. J. 2017, 309, 330–338.

[9]

Stern, C. M.; Jegede, T. O.; Hulse, V. A.; Elgrishi, N. Electrochemical reduction of Cr(VI) in water: Lessons learned from fundamental studies and applications. Chem. Soc. Rev. 2021, 50, 1642–1667.

[10]

Ye, Z. X.; Yin, X. B.; Chen, L. F.; He, X. Y.; Lin, Z. M.; Liu, C. C.; Ning, S. Y.; Wang, X. P.; Wei, Y. Z. An integrated process for removal and recovery of Cr(VI) from electroplating wastewater by ion exchange and reduction-precipitation based on a silica-supported pyridine resin. J. Clean. Prod. 2019, 236, 117631.

[11]

Gong, K. N.; Wang, W. J.; Yan, J. S.; Han, Z. G. Highly reduced molybdophosphate as a noble-metal-free catalyst for the reduction of chromium using formic acid as a reducing agent. J. Mater. Chem. A 2015, 3, 6019–6027.

[12]

Xin, X.; Tian, X. R.; Yu, H. T.; Han, Z. G. Synthesis of hybrid phosphomolybdates and application as highly stable and effective catalyst for the reduction of Cr(VI). Inorg. Chem. 2018, 57, 11474–11481.

[13]

Wang, C. C.; Du, X. D.; Li, J.; Guo, X. X.; Wang, P.; Zhang, J. Photocatalytic Cr(VI) reduction in metal-organic frameworks: A mini-review. Appl. Catal. B: Environ. 2016, 193, 198–216.

[14]

Kathiravan, M. N.; Karthick, R.; Muthukumar, K. Ex situ bioremediation of Cr(VI) contaminated soil by Bacillus sp. :Batch and continuous studies. Chem. Eng. J. 2011, 169, 107–115.

[15]

Hu, B. W.; Song, Y. Z.; Wu, S. Y.; Zhu, Y. L.; Sheng, G. D. Slow released nutrient-immobilized biochar: A novel permeable reactive barrier filler for Cr(VI) removal. J. Mol. Liq. 2019, 286, 110876.

[16]

Acharya, R.; Naik, B.; Parida, K. Cr(VI) remediation from aqueous environment through modified-TiO2-mediated photocatalytic reduction. Beilstein J. Nanotechnol. 2018, 9, 1448–1470.

[17]

Zhang, X.-J.; Ma, Y.-Y.; Bi, H.-X.; Yin, X.-Y.; Song, H.; Liu, M.-H.; Han, Z.-G. Wheel-shaped molybdenum(V) cobalt-phosphate cluster as a highly sensitive bifunctional photoelectrochemical sensor for the trace determination of Cr(VI) and tetracycline. Inorg. Chem. Front 2022, 9, 6457–6467.

[18]

Gu, Y. Q.; Li, Q.; Zang, D. J.; Huang, Y. C.; Yu, H.; Wei, Y. G. Light-induced efficient hydroxylation of benzene to phenol by quinolinium and polyoxovanadate-based supramolecular catalysts. Angew. Chem., Int. Ed. 2021, 60, 13310–13316.

[19]

Zhu, Y. T.; Huang, Y. C.; Li, Q.; Zang, D. J.; Gu, J.; Tang, Y. J.; Wei, Y. G. Polyoxometalate-based photoactive hybrid: Uncover the first crystal structure of covalently linked hexavanadate-porphyrin molecule. Inorg. Chem. 2020, 59, 2575–2583.

[20]

Li, X. Q.; Hong, Z.; Kang, S. Z.; Qin, L. X.; Li, G. D.; Mu, J. Photocatalytic degradation activity of TiO2 nanotubes for Cr(VI). Adv. Mater. Res 2013, 864–867, 715–718.

[21]

Yuan, G. Q.; Li, F. L.; Li, K. Z.; Liu, J.; Li, J. Y.; Zhang, S. W.; Jia, Q. L.; Zhang, H. J. Research progress on photocatalytic reduction of Cr(VI) in polluted water. Bull. Chem. Soc. Japan. 2021, 94, 1142–1155.

[22]

Bi, H. X.; Hou, L.; Yin, X. Y.; Ma, Y. Y.; Han, Z. G. Central metals to guide the bandgap of hourglass-type polyoxometalate hybrids as photocatalyst for the reduction of Cr(VI). Cryst. Growth Des. 2022, 22, 738–746.

[23]

Guo, H. L.; Wang, Y. K.; Qu, X. J.; Li, H. Y.; Yang, W.; Bai, Y.; Dang, D. B. Three-dimensional interpenetrating frameworks based on {P4Mo6} tetrameric clusters and filled with in situ generated alkyl viologens. Inorg. Chem. 2020, 59, 16430–16440.

[24]

Chen, C. R.; Zeng, H. Y.; Xu, S.; Shen, J. C.; Hu, G.; Zhu, R. L.; Du, J. Z.; Sun, Y. X. Facile fabrication of CdS/ZnAlO heterojunction with enhanced photocatalytic activity for Cr(VI) reduction under visible light. Appl. Clay Sci. 2018, 165, 197–204.

[25]

Wang, J. W.; Qiu, F. G.; Wang, P.; Ge, C. J.; Wang, C. C. Boosted bisphenol A and Cr(VI) cleanup over Z-scheme WO3/MIL-100(Fe) composites under visible light. J. Clean. Prod. 2021, 279, 123408.

[26]

Wang, C. C.; Ren, X. Y.; Wang, P.; Chang, C. The state of the art review on photocatalytic Cr(VI) reduction over MOFs-based photocatalysts: From batch experiment to continuous operation. Chemosphere 2022, 303, 134949.

[27]

He, J.; Zhou, H. L.; Peng, Q. M.; Wang, Y. T.; Chen, Y. J.; Yan, Z. Y.; Wang, J. Q. UiO-66 with confined dyes for adsorption and visible-light photocatalytic reduction of aqueous Cr(VI). Inorg. Chem. Commun. 2022, 140, 109441.

[28]

Zhang, J. W.; Huang, Y. C.; Li, G.; Wei, Y. G. Recent advances in alkoxylation chemistry of polyoxometalates: From synthetic strategies, structural overviews to functional applications. Coord. Chem. Rev. 2019, 378, 395–414.

[29]

Li, J.; Zhang, D.; Chi, Y. N.; Hu, C. W. Catalytic application of polyoxovanadates in the selective oxidation of organic molecules. Polyoxometalates 2022, 1, 9140012.

[30]

Zhang, H. Y.; Zhao, W. L.; Li, H. Q.; Zhuang, Q. H.; Sun, Z. Q.; Cui, D. Y.; Chen, X. J.; Guo, A.; Ji, X.; An, S. et al. Latest progress in covalently modified polyoxometalates-based molecular assemblies and advanced materials. Polyoxometalates 2022, 1, 9140011.

[31]

Shi, J. Y.; Gupta, R. K.; Deng, Y. K.; Sun, D.; Wang, Z. Recent advances in the asymmetrical templation effect of polyoxometalate in silver clusters. Polyoxometalates 2022, 1, 9140010.

[32]

Li, L.; Zhao, Y.; Wang, J. J.; Chen, H. H.; Li, H. Y.; Wang, J. J.; Wang, Y. Y.; Bai, Y.; Dang, D. B. The [CuI4Cl4] cluster of a coordination complex based on polypyridyl ligand for heterogeneous Fenton-like MB degradation without illumination and electrocatalytic reduction of H2O2 and K2Cr2O7. Dyes Pigm. 2022, 207, 110763.

[33]

Xing, X. X.; Guo, H. L.; He, T. M.; An, X.; Li, H. P.; Zhu, W. S.; Li, H. M.; Pang, J. Y.; Dang, D. B.; Bai, Y. Tungstovanadate-based ionic liquid catalyst [C2(MIM)2]2VW12O40 used in deep desulfurization for ultraclean fuel with simultaneous recovery of the sulfone product. ACS Sustainable Chem. Eng. 2022, 10, 11533–11543.

[34]

Li, H. Y.; Pan, H.; Fan, Y. H.; Bai, Y.; Dang, D. B. Syntheses, crystal structures, and properties of four polyoxometalate-based metal-organic frameworks based on Ag(I) and 4,4′-dipyridine-N,N′-dioxide. Polyoxometalates 2022, 1, 9140007.

[35]

Yin, X. Y.; Zhang, Y. Q.; Ma, Y. Y.; He, J. Y.; Song, H.; Han, Z. G. Bifunctional sensors based on phosphomolybdates for detection of inorganic hexavalent chromium and organic tetracycline. Inorg. Chem. 2022, 61, 13174–13183.

[36]

Benseghir, Y.; Solé-Daura, A.; Mialane, P.; Marrot, J.; Dalecky, L.; Béchu, S.; Frégnaux, M.; Gomez-Mingot, M.; Fontecave, M.; Mellot-Draznieks, C. et al. Understanding the photocatalytic reduction of CO2 with heterometallic molybdenum(V) phosphate polyoxometalates in aqueous media. ACS Catal. 2022, 12, 453–464.

[37]

Du, J.; Ma, Y. Y.; Xin, X.; Na, H.; Zhao, Y. N.; Tan, H. Q.; Han, Z. G.; Li, Y. G.; Kang, Z. H. Reduced polyoxometalates and bipyridine ruthenium complex forming a tunable photocatalytic system for high efficient CO2 reduction. Chem. Eng. J. 2020, 398, 125518.

[38]

Zhu, W.; Yang, X. Y.; Li, Y. H.; Li, J. P.; Wu, D.; Gao, Y.; Yi, F. Y. A novel porous molybdophosphate-based FeII,III-MOF showing selective dye degradation as a recyclable photocatalyst. Inorg. Chem. Commun. 2014, 49, 159–162.

[39]

Zhang, Y. Q.; Zhou, L. Y.; Ma, Y. Y.; Dastafkan, K.; Zhao, C.; Wang, L. Z.; Han, Z. G. Stable monovalent aluminum(I) in a reduced phosphomolybdate cluster as an active acid catalyst. Chem. Sci. 2021, 12, 1886–1890.

[40]

Lin, B. Z.; Liu, X. Z.; Xu, B. H.; Wang, Q. Q.; Xiao, Z. J. Two new molybdenum(V) phosphates containing sandwich-shaped clusters with zero- and three-dimensional structures. Solid State Sci. 2008, 10, 1517–1524.

[41]

Niu, J. Q.; An, W. T.; Zhang, X. J.; Ma, Y. Y.; Han, Z. G. Ultra-trace determination of hexavalent chromium in a wide pH range triggered by heterometallic Cu-Mn centers modified reduced phosphomolybdate hybrids. Chem. Eng. J. 2021, 418, 129408.

[42]

Hou, L.; Zhang, Y. Q.; Ma, Y. Y.; Wang, Y. L.; Hu, Z. F.; Gao, Y. Z.; Han, Z. G. Reduced phosphomolybdate hybrids as efficient visible-light photocatalysts for Cr(VI) reduction. Inorg. Chem. 2019, 58, 16667–16675.

[43]

Han, L.; Zhong, Y. L.; Su, Y.; Wang, L. T.; Zhu, L. S.; Fei, X. F.; Dong, Y. Z.; Hong, G.; Zhou, Y. T.; Fang, D. Nanocomposites based on 3D macroporous biomass carbon with SnS2 nanosheets hierarchical structure for efficient removal of hexavalent chromium. Chem. Eng. J. 2019, 369, 1138–1149.

[44]

Shi, H. F.; Yu, Y. C.; Zhang, Y.; Feng, X. J.; Zhao, X. Y.; Tan, H. Q.; Khan, S. U.; Li, Y. G.; Wang, E. B. Polyoxometalate/TiO2/Ag composite nanofibers with enhanced photocatalytic performance under visible light. Appl. Catal. B: Environ. 2018, 221, 280–289.

[45]

Gan, H. H.; Liu, J.; Zhang, H. N.; Qian, Y. X.; Jin, H. X.; Zhang, K. F. Enhanced photocatalytic removal of hexavalent chromium and organic dye from aqueous solution by hybrid bismuth titanate Bi4Ti3O12/Bi2Ti2O7. Res. Chem. Intermed. 2018, 44, 2123–2138.

[46]

Bi, H. X.; Yin, X. Y.; Zhang, X. J.; Ma, Y. Y.; Han, Z. G. Efficient visible-light-driven reduction of hexavalent chromium catalyzed by conjugated organic species modified hourglass-type phosphomolybdate hybrids. CrystEngComm 2022, 24, 1002–1009.

[47]

Arslanoğlu, H.; Altundoğan, H. S.; Tümen, F. Photocatalytic reduction of Cr(VI) from aqueous solutions with formic acid in the presence of bauxite: kinetics and mechanism. Trans. Indian Inst. Met. 2021, 74, 3075–3084.

[48]

Liu, C. X.; Fang, W. C.; Song, Y. T.; Li, F. Y.; Sun, Z. X.; Xu, L. Fabrication of CdS/P2MoxW18−x nanospheres with type II heterostructure for photocatalytic reduction of hexavalent chromium. Mater. Sci. Semicond. Process. 2020, 120, 105276.

Polyoxometalates
Article number: 9140027
Cite this article:
Yin X-Y, Bi H-X, Song H, et al. Photoactive hourglass-type M{P4Mo6}2 networks for efficient removal of hexavalent chromium. Polyoxometalates, 2023, 2(2): 9140027. https://doi.org/10.26599/POM.2023.9140027

3049

Views

620

Downloads

33

Crossref

Altmetrics

Received: 01 December 2022
Revised: 04 February 2023
Accepted: 23 February 2023
Published: 23 March 2023
© The Author(s) 2023. Polyoxometalates published by Tsinghua University Press.

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return