AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (6.2 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Synthesis and characterization of Ag(I) alkynyl nanoclusters utilizing MoVI-anchored thiacalix[4]arene metalloligands: Application in electrocatalytic CO2 reduction

Shang-Qian LiLiang-Jun LiYi-Qi TianWen-Lei MuRu-Xin MengJun Yan ( )Chao Liu ( )
College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
Show Author Information

Graphical Abstract

Abstract

The utilization of metalloligands as building blocks for assembling heteronuclear metallocages or heterometallic coordination polymers has garnered increasing attention, yet its utilization for assembling Ag(I) alkynyl nanoclusters remains limited. In this study, we present the synthesis of two new Ag(I) alkynyl nanoclusters, namely, Mo2Ag8 and Mo2Ag12, employing a MoVIO2R-anchored (R = O or OEt) thiacalix[4]arene (TC4A) as a metalloligand. Through detailed structural analyses, their distinct sandwich geometries were revealed. Mo2Ag8 features a square Ag4(tBuC≡C)4 core enclosed between two {MoAg2–TC4A} units, with two MoO2(OEt) units suspended on each side. Mo2Ag12 features a hexagonal Ag6(tBuC≡C)6 core sandwiched between two {MoAg3–TC4A} units, with two MO3 units acting as oxygen anion templates, directly interacting with Ag(I) ions. In addition, we demonstrated the electrocatalytic application of Ag–Mo bimetallic clusters for CO2 reduction. The catalytic analysis results show that the binding mode of MO3 units considerably influences the electrochemical CO2 reduction activity and competitive hydrogen evolution reaction activity of the clusters. Notably, Mo2Ag12 achieved an impressive Faradaic efficiency of 60.85% for CO production at a voltage of −0.8 V (vs. RHE).

Electronic Supplementary Material

Download File(s)
0038_ESM1.pdf (4.7 MB)
0038_ESM2_checkcif.pdf (245.2 KB)
0038_ESM3_cif.cif (3 MB)

References

[1]

Jin, R. C.; Zeng, C. J.; Zhou, M.; Chen, Y. X. Atomically precise colloidal metal nanoclusters and nanoparticles: Fundamentals and opportunities. Chem. Rev. 2016, 116, 10346–10413.

[2]

Jin, S.; Zou, X. J.; Xiong, L.; Du, W. J.; Wang, S. X.; Pei, Y.; Zhu, M. Z. Bonding of two 8-electron superatom clusters. Angew. Chem., Int. Ed. 2018, 130, 17010–17014.

[3]

Wang, Z. Y.; Wang, M. Q.; Li, Y. L.; Luo, P.; Jia, T. T.; Huang, R. W.; Zang, S. Q.; Mak, T. C. W. Atomically precise site-specific tailoring and directional assembly of superatomic silver nanoclusters. J. Am. Chem. Soc. 2018, 140, 1069–1076.

[4]

Xie, Y. P.; Jin, J. L.; Lu, X.; Mak, T. C. W. High-nuclearity silver thiolate clusters constructed with phosphonates. Angew. Chem., Int. Ed. 2015, 54, 15176–15180.

[5]

Li, G.; Lei, Z.; Wang, Q. M. Luminescent molecular Ag-S nanocluster [Ag62S13(SBu t )32](BF4)4. J. Am. Chem. Soc. 2010, 132, 17678–17679.

[6]

Yan, J. Z.; Teo, B. K.; Zheng, N. F. Surface chemistry of atomically precise coinage-metal nanoclusters: From structural control to surface reactivity and catalysis. Acc. Chem. Res. 2018, 51, 3084–3093.

[7]

Yao, Q. F.; Chen, T. K.; Yuan, X.; Xie, J. P. Toward total synthesis of thiolate-protected metal nanoclusters. Acc. Chem. Res. 2018, 51, 1338–1348.

[8]

Hu, F.; Luyang, H. W.; He, R. L.; Guan, Z. J.; Yuan, S. F.; Wang, Q. M. Face-centered cubic silver nanoclusters consolidated with tetradentate formamidinate ligands. J. Am. Chem. Soc. 2022, 144, 19365–19371.

[9]

Biswas, S.; Das, A. K.; Manna, S. S.; Pathak, B.; Mandal, S. Template-assisted alloying of atom-precise silver nanoclusters: A new approach to generate cluster functionality. Chem. Sci. 2022, 13, 11394–11404.

[10]

Jing, X. M.; Fu, F. Y.; Wang, R. J.; Xin, X.; Qin, L.; Lv, H. J.; Yang, G. Y. Robust enantiomeric two-dimensional assembly of atomically precise silver clusters. ACS Nano 2022, 16, 15188–15196.

[11]

Yuan, S. F.; Guan, Z. J.; Wang, Q. M. Identification of the active species in bimetallic cluster catalyzed hydrogenation. J. Am. Chem. Soc. 2022, 144, 11405–11412.

[12]

Wei, X.; Chu, K.; Adsetts, J. R.; Li, H.; Kang, X.; Ding, Z. F.; Zhu, M. Z. Nanocluster transformation induced by SbF6 anions toward boosting photochemical activities. J. Am. Chem. Soc. 2022, 144, 20421–20433.

[13]

Ma, X. H.; Si, Y. B.; Luo, L. L.; Wang, Z. Y.; Zang, S. Q.; Mak, T. C. W. Directional doping and cocrystallizing an open-shell Ag39 superatom via precursor engineering. ACS Nano 2022, 16, 5507–5514.

[14]

Liu, W. D.; Wang, J. Q.; Yuan, S. F.; Chen, X.; Wang, Q. M. Chiral superatomic nanoclusters Ag47 induced by the ligation of amino acids. Angew. Chem., Int. Ed. 2021, 60, 11430–11435.

[15]

Wang, Y. X.; Zhang, J.; Su, H. F.; Cui, X. Q.; Wei, C. Y.; Li, H.; Zhang, X. M. Photochemical synthesis of atomically precise Ag nanoclusters. ACS Nano 2023, 17, 11607–11615.

[16]

Qu, M.; Li, H.; Xie, L. H.; Yan, S. T.; Li, J. R.; Wang, J. H.; Wei, C. Y.; Wu, Y. W.; Zhang, X. M. Bidentate phosphine-assisted synthesis of an all-alkynyl-protected Ag74 nanocluster. J. Am. Chem. Soc. 2017, 139, 12346–12349.

[17]

Jin, S.; Wang, S. X.; Song, Y. B.; Zhou, M.; Zhong, J.; Zhang, J.; Xia, A. D.; Pei, Y.; Chen, M.; Li, P. et al. Crystal structure and optical properties of the [Ag62S12(SBut)32]2+ nanocluster with a complete face-centered cubic kernel. J. Am. Chem. Soc. 2014, 136, 15559–15565.

[18]

Kang, X.; Zhu, M. Z. Tailoring the photoluminescence of atomically precise nanoclusters. Chem. Soc. Rev. 2019, 48, 2422–2457.

[19]

He, W. M.; Zhou, Z.; Han, Z.; Li, S.; Zhou, Z.; Ma, L. F.; Zang, S. Q. Ultrafast size expansion and turn-on luminescence of atomically precise silver clusters by hydrogen sulfide. Angew. Chem., Int. Ed. 2021, 60, 8505–8509.

[20]

Luo, X. M.; Gong, C. H.; Pan, F. F.; Si, Y. B.; Yuan, J. W.; Asad, M.; Dong, X. Y.; Zang, S. Q.; Mak, T. C. W. Small symmetry-breaking triggering large chiroptical responses of Ag70 nanoclusters. Nat. Commun. 2022, 13, 1177.

[21]

Luo, X. M.; Huang, S.; Luo, P.; Ma, K.; Wang, Z. Y.; Dong, X. Y.; Zang, S. Q. Snapshots of key intermediates unveiling the growth from silver ions to Ag70 nanoclusters. Chem. Sci. 2022, 13, 11110–11118.

[22]

Li, Y.; Luo, X. M.; Luo, P.; Zang, Q. X.; Wang, Z. Y.; Zang, S. Q. Cocrystallization of two negatively charged dimercaptomaleonitrile-stabilized silver nanoclusters. ACS Nano 2023, 17, 5834–5841.

[23]

Schein, S.; Gayed, J. M. Fourth class of convex equilateral polyhedron with polyhedral symmetry related to fullerenes and viruses. Proc. Natl. Acad. Sci. USA 2014, 111, 2920–2925.

[24]

Chen, Z. Y.; Tam, D. Y. S.; Mak, T. C. W. Chloride assisted supramolecular assembly of a luminescent gigantic cluster: [Ag216S56Cl7(C≡CPh)98(H2O)12] with pseudo- T h skeleton and five-shell arrangement. Nanoscale 2017, 9, 8930–8937.

[25]

Zhao, M.; Zhu, X. Y.; Li, Y. Z.; Chang, J. N.; Li, M, X.; Ma, L. H.; Guo, X. Y. A Lindqvist-type [W6O19]2− organic-inorganic compound: Synthesis, characterization, antibacterial activity and preliminary studies on the mechanism of action. Tungsten 2022, 4, 121–129.

[26]

Wang, Q. M.; Lin, Y. M.; Liu, K. G. Role of anions associated with the formation and properties of silver clusters. Acc. Chem. Res. 2015, 48, 1570–1579.

[27]

Xie, Y. P.; Jin, J. L.; Duan, G. X.; Lu, X.; Mak, T. C. W. High-nuclearity silver (I) chalcogenide clusters: A novel class of supramolecular assembly. Coord. Chem. Rev. 2017, 331, 54–72.

[28]

Su, Y. M.; Wang, Z.; Tung, C. H.; Sun, D.; Schein, S. Keplerate Ag192 cluster with 6 silver and 14 chalcogenide octahedral and tetrahedral shells. J. Am. Chem. Soc. 2021, 143, 13235–13244.

[29]

Pei, W. Y.; Xu, G. H.; Yang, J.; Wu, H.; Chen, B. L.; Zhou, W.; Ma, J. F. Versatile assembly of metal-coordinated calix[4]resorcinarene cavitands and cages through ancillary linker tuning. J. Am. Chem. Soc. 2017, 139, 7648–7656.

[30]

Han, H. T.; Kan, L.; Li, P.; Zhang, G. S.; Li, K. Y.; Liao, W. P.; Liu, Y. L.; Chen, W.; Hu, C. T. 4. 8 nm Concave {M72} (M = Co, Ni, Fe) metal-organic polyhedra capped by 18 calixarenes. Sci. China Chem. 2021, 64, 426–431.

[31]

Bi, Y. F.; Wang, X. T.; Liao, W. P.; Wang, X. F.; Wang, X. W.; Zhang, H. J.; Gao, S. A {Co32} nanosphere supported by p-tert-butylthiacalix[4]arene. J. Am. Chem. Soc. 2009, 131, 11650–11651.

[32]

Liu, M.; Liao, W. P.; Hu, C. H.; Du, S. C.; Zhang, H. J. Calixarene-based nanoscale coordination cages. Angew. Chem., Int. Ed. 2012, 51, 1585–1588.

[33]

Wang, S. T.; Gao, X. H.; Hang, X. X.; Zhu, X. F.; Han, H. T.; Liao, W. P.; Chen, W. Ultrafine Pt nanoclusters confined in a calixarene-based {Ni24} coordination cage for high-efficient hydrogen evolution reaction. J. Am. Chem. Soc. 2016, 138, 16236–16239.

[34]

Tian, Y. Q.; Cui, Y. S.; Zhu, J. H.; Xu, C. Q.; Yi, X. Y.; Li, J.; Liu, C. Ancillary ligand-regulated Ti(IV)-based metallocalixarene coordination cages for photocatalytic H2 evolution. Chem. Commun. 2022, 58, 9034–9037.

[35]

Hang, X. X.; Liu, B.; Zhu, X. F.; Wang, S. T.; Han, H. T.; Liao, W. P.; Liu, Y. L.; Hu, C. H. Discrete {Ni40} coordination cage: A calixarene-based Johnson-type (J17) hexadecahedron. J. Am. Chem. Soc. 2016, 138, 2969–2972.

[36]

Shi, C.; Zhang, M.; Hang, X. X.; Bi, Y. F.; Huang, L. L.; Zhou, K.; Xu, Z. H.; Zheng, Z. P. Assembly of thiacalix[4]arene-supported high-nuclearity Cd24 cluster with enhanced photocatalytic activity. Nanoscale. 2018, 10, 14448–14454.

[37]

Bi, Y. F.; Xu, G. C.; Liao, W. P.; Du, S. C.; Deng, R. P.; Wang, B. W. Calixarene-supported hexadysprosium cluster showing single molecule magnet behavior. Sci. China Chem. 2012, 55, 967–972.

[38]

Bi, Y. F.; Du, S. C.; Liao, W. P. Thiacalixarene-based nanoscale polyhedral coordination cages. Coord. Chem. Rev, 2014, 276, 61–72.

[39]

Guan, Z. J.; Zeng, J. L.; Nan, Z. A.; Wan, X. K.; Lin, Y. M.; Wang, Q. M. Thiacalix[4]arene: New protection for metal nanoclusters. Sci. Adv. 2016, 2, e1600323.

[40]

Guan, Z. J.; Hu, F.; Yuan, S. F.; Nan, Z. A.; Lin, Y. M.; Wang, Q. M. The stability enhancement factor beyond eight-electron shell closure in thiacalix[4]arene-protected silver clusters. Chem. Sci. 2019, 10, 3360–3365.

[41]

Wang, Z.; Su, H. F.; Gong, Y. W.; Qu, Q. P.; Bi, Y. F.; Tung, C. H.; Sun, D.; Zheng, L. S. A hierarchically assembled 88-nuclei silver-thiacalix[4]arene nanocluster. Nat. Commun. 2020, 11, 308.

[42]

Li, S. Q.; Dai, L. F.; Tian, Y. Q.; Yi, Y. X.; Yan, J.; Liu, C. Polymolybdate-guided assembly of a thiacalix[4]arene-protected Ag nanocluster for electrocatalytic CO2 reduction. Chem. Commun. 2023, 59, 575–578.

[43]

Li, L. J.; Luo, Y. T.; Tian, Y. Q.; Wang, P.; Yi, X. Y.; Yan, J.; Pei, Y.; Liu, C. Unveiling the remarkable stability and catalytic activity of a 6-electron superatomic Ag30 nanocluster for CO2 electroreduction. Inorg. Chem. 2023, 62, 14377–14384.

[44]

Tian, Y. Q.; Mu, W. L.; Wu, L. L.; Yi, X. Y.; Yan, J.; Liu, C. Stepwise assembly of thiacalix[4]arene-protected Ag/Ti bimetallic nanoclusters: Accurate identification of catalytic Ag sites in CO2 electroreduction. Chem. Sci., in press. doi: 10.1039/D3SC02793G.

[45]

Wang, Z.; Alkan, F.; Aikens, C. M.; Kurmoo, M.; Zhang, Z. Y.; Song, K. P.; Tung, C. H.; Sun, D. An ultrastable 155-nuclei silver nanocluster protected by thiacalix[4]arene and cyclohexanethiol for photothermal conversion. Angew. Chem., Int. Ed. 2022, 61, e202206742.

[46]

Wang, Z.; Li, M. D.; Shi, J. Y.; Su, H. F.; Liu, J. W.; Feng, L.; Gao, Z. Y.; Xue, Q. W.; Tung, C. H.; Sun, D. et al. In situ capture of a ternary supramolecular cluster in a 58-nuclei silver supertetrahedron. CCS Chem. 2022, 4, 1788–1795.

[47]

Wang, Z.; Su, H. F.; Tung, C. H.; Sun, D.; Zheng, L. S. Deciphering synergetic core-shell transformation from [Mo6O22@Ag44] to [Mo8O28@Ag50]. Nat. Commun. 2018, 9, 4407.

[48]

Liu, H.; Song, C. Y.; Huang, R. W.; Zhang, Y.; Xu, H.; Li, M. J.; Zang, S. Q.; Gao, G. G. Acid-base-triggered structural transformation of a polyoxometalate core inside a dodecahedrane-like silver thiolate shell. Angew. Chem., Int. Ed. 2016, 55, 3699–3703.

[49]

Li, K.; Lin, X. L.; Zeng, K.; Gao, X. F.; Cen, W.; Liu, Y. F.; Yang, G. P. Effect of Na(I)-H2O clusters on self-assembly of sandwich-type U(VI)-containing silicotungstates and the efficient catalytic activity for the synthesis of substituted phenylsulfonyl-1 H-pyrazoles. Tungsten 2022, 4, 149–157.

[50]

Liu, Y. F.; Zeng, G. D.; Cheng, Y. T.; Chen, L.; Liu, Y. H.; Wei, Y. G.; Yang, G. P. A H4SiW12O40-catalyzed three-component tandem reaction for the synthesis of 3, 3-disubstituted isoindolinones. Chin. Chem. Lett., in press, DOI: 10.1016/j.cclet.2023.108480.

[51]

Wang, Z.; Li, L.; Feng, L.; Gao, Z. Y.; Tung, C. H.; Zheng, L. S.; Sun, D. Solvent-controlled condensation of [Mo2O5(PTC4A)2]6− metalloligand in stepwise assembly of hexagonal and rectangular Ag18 nanoclusters. Angew. Chem., Int. Ed. 2022, 134, e202200823.

[52]

Wang, Z.; Qu, Q. P.; Su, H. F.; Huang, P.; Gupta, R. K.; Liu, Q. Y.; Tung, C. H.; Sun, D.; Zheng, L. S. A novel 58-nuclei silver nanowheel encapsulating a subvalent Ag64+ kernel. Sci. China Chem. 2020, 63, 16–20.

[53]

Su, Y. M.; Ji, B. Q.; Wang, Z.; Zhang, S. S.; Feng, L.; Gao, Z. Y.; Li, Y. W.; Tung, C. H.; Sun, D.; Zheng, L. S. Anionic passivation layer-assisted trapping of an icosahedral Ag13 kernel in a truncated tetrahedral Ag89 nanocluster. Sci. China Chem. 2021, 64, 1482–1486.

[54]

Wang, Z.; Su, H. F.; Zhuang, G. L.; Kurmoo, M.; Tung, C. H.; Sun, D.; Zheng, L. S. Carbonate-water supramolecule trapped in silver nanoclusters encapsulating unprecedented Ag11 kernel. CCS Chem. 2020, 2, 663–672.

[55]

Shi, J. Y.; Gupta, R. K.; Deng, Y. K.; Sun, D.; Wang, Z. Recent advances in the asymmetrical templation effect of polyoxometalate in silver clusters. Polyoxometalates 2022, 1, 9140010.

[56]

Gao, M. Y.; Wang, K.; Sun, Y. Y.; Li, D. J.; Song, B. Q.; Andaloussi, Y. H.; Zaworotko, M. J.; Zhang, J.; Zhang, L. Tetrahedral geometry induction of stable Ag-Ti nanoclusters by flexible trifurcate TiL3 metalloligand. J. Am. Chem. Soc. 2020, 142, 12784–12790.

[57]

Wang, Z.; Su, H. F.; Zhang, L. P.; Dou, J. M.; Tung, C. H.; Sun, D.; Zheng, L. S. Stepwise assembly of Ag42 nanocalices based on a MoVI-anchored thiacalix[4]arene metalloligand. ACS Nano 2022, 16, 4500–4507.

[58]

Iki, N.; Kabuto, C.; Fukushima, T.; Kumagai, H.; Takeya, H.; Miyanari, S.; Miyashi, T.; Miyano, S. Synthesis of p- tert-butylthiacalix-[4]arene and its inclusion property. Tetrahedron 2000, 56, 1437–1443.

[59]

Zhang, J.; Wang, T.; Liu, P.; Liao, Z. Q.; Liu, S. H.; Zhuang, X. D.; Chen, M. W.; Zschech, E.; Feng, X. L. Efficient hydrogen production on MoNi4 electrocatalysts with fast water dissociation kinetics. Nat. Commun. 2017, 8, 15437.

Polyoxometalates
Article number: 9140038
Cite this article:
Li S-Q, Li L-J, Tian Y-Q, et al. Synthesis and characterization of Ag(I) alkynyl nanoclusters utilizing MoVI-anchored thiacalix[4]arene metalloligands: Application in electrocatalytic CO2 reduction. Polyoxometalates, 2024, 3(1): 9140038. https://doi.org/10.26599/POM.2023.9140038

1081

Views

209

Downloads

5

Crossref

Altmetrics

Received: 19 July 2023
Revised: 08 September 2023
Accepted: 26 September 2023
Published: 17 October 2023
© The Author(s) 2023. Published by Tsinghua University Press.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the original author(s) and the source, provide a link to the license, and indicate if changes were made. See http://creativecommons.org/licenses/by/4.0/

Return