PDF (5.5 MB)
Collect
Submit Manuscript
Research Article | Open Access

Hydrothermal synthesis, structure, and catalytic properties of a (4,6)-connected framework constructed from Keggin-type polyoxometalate units and tetranuclear copper complexes

Jia-Yu SunZi-Lan WangZhong Zhang ()Guo-Cheng LiuXiu-Li Wang ()
College of Chemistry and Materials Engineering, Bohai University, Jinzhou 121013, China
Show Author Information

Graphical Abstract

View original image Download original image

Abstract

Under hydrothermal conditions, a Keggin-type polyoxometalate-based metal–organic complex, H4{[Cu4(EDDP)2(H2O)5]1.5(SiW12O40)}∙7.5H2O (CuW-EDDP, H4EDDP = ethylene-diamine-N,N'-dipropionic acid), was synthesized by reacting Na10[A-α-SiW9O34]·18H2O and CuCl2·2H2O in the presence of H4EDDP ligands and characterized by powder and single-crystal X-ray diffraction, infrared spectroscopy, elemental analysis, and thermogravimetry. Interestingly, CuW-EDDP exhibited a three-dimensional structure with (4,6)-connected constructed from [SiW12O40]4− units and tetranuclear Cu complexes [Cu4(EDDP)2(H2O)5]. As an effective heterogeneous catalyst, CuW-EDDP exhibited excellent performance, good reusability, and structural stability in the selective oxidation of methyl phenyl sulfide with high conversion (100%) and selectivity (98%) within 30 min. Furthermore, the catalytic activity of CuW-EDDP in the oxidation of other sulfide derivatives was investigated.

Electronic Supplementary Material

Download File(s)
POMC-2023-0039_ESM1.pdf (1.6 MB)
POMC-2023-0039_ESM2-checkcif.pdf (148.2 KB)
POMC-2023-0039_ESM3-cif.cif (555.6 KB)

References

[1]

Yu, M. Y.; Guo, T. T.; Shi, X. C.; Yang, J.; Xu, X. X.; Ma, J. F.; Yu, Z. T. Polyoxometalate-bridged Cu(I)- and Ag(I)-thiacalix[4]arene dimers for heterogeneous catalytic oxidative desulfurization and azide-alkyne “click” reaction. Inorg. Chem. 2019, 58, 11010–11019.

[2]

Dai, C. N.; Zhang, J.; Huang, C. P.; Lei, Z. G. Ionic liquids in selective oxidation: Catalysts and solvents. Chem. Rev. 2017, 117, 6929–6983.

[3]

Zhang, Z.; Wang, Y. L.; Liu, Y.; Huang, S. L.; Yang, G. Y. Three ring-shaped Zr(IV)-substituted silicotungstates: Syntheses, structures and their properties. Nanoscale 2020, 12, 18333–18341.

[4]

Buru, C. T.; Wasson, M. C.; Farha, O. K. H5PV2Mo10O40 polyoxometalate encapsulated in NU-1000 metal-organic framework for aerobic oxidation of a mustard gas simulant. ACS Appl. Nano Mater. 2020, 3, 658–664.

[5]

Huang, L.; Wang, S. S.; Zhao, J. W.; Cheng, L.; Yang, G. Y. Synergistic combination of multi-ZrIV cations and lacunary Keggin germanotungstates leading to a gigantic Zr24-cluster-substituted polyoxometalate. J. Am. Chem. Soc. 2014, 136, 7637–7642.

[6]

Zheng, S. T.; Yang, G. Y. Recent advances in paramagnetic-TM-substituted polyoxometalates (TM = Mn, Fe, Co, Ni, Cu). Chem. Soc. Rev. 2012, 41, 7623–7646.

[7]

Zhang, Z.; Li, W. L.; Wang, Y. L.; Yang, G. Y. Syntheses, structures, and electrochemical properties of three new acetate-functionalized zirconium-substituted germanotungstates: From dimer to tetramer. Inorg. Chem. 2019, 58, 2372–2378.

[8]

Yang, K.; Ying, Y. X.; Cui, L. L.; Sun, G. C.; Luo, H.; Hu, Y. Y.; Zhao, J. W. Stable aqueous Zn-Ag and Zn-polyoxometalate hybrid battery driven by successive Ag+ cation and polyoxoanion redox reactions. Energy Stor. Mater. 2021, 34, 203–210.

[9]

Liu, J. C.; Wang, J. F.; Han, Q.; Shangguan, P.; Liu, L. L.; Chen, L. J.; Zhao, J. W.; Streb, C.; Song, Y. F. Multicomponent self-assembly of a giant heterometallic polyoxotungstate supercluster with antitumor activity. Angew. Chem., Int. Ed. 2021, 60, 11153–11157.

[10]

Lin, J. M.; Li, N.; Yang, S. P.; Jia, M. J.; Liu, J.; Li, X. M.; An, L.; Tian, Q. W.; Dong, L. Z.; Lan, Y. Q. Self-assembly of giant Mo240 hollow opening dodecahedra. J. Am. Chem. Soc. 2020, 142, 13982–13988.

[11]

Wu, Y. L.; Li, X. X.; Qi, Y. J.; Yu, H.; Jin, L.; Zheng, S. T. {Nb288O768(OH)48(CO3)12}: A macromolecular polyoxometalate with close to 300 niobium atoms. Angew. Chem., Int. Ed. 2018, 57, 8572–8576.

[12]

Li, S. R.; Liu, W. D.; Long, L. S.; Zheng, L. S.; Kong, X. J. Recent advances in polyoxometalate-based lanthanide-oxo clusters. Polyoxometalates 2023, 2, 9140022.

[13]

Ding, J. H.; Liu, Y. F.; Tian, Z. T.; Lin, P. J.; Yang, F.; Li, K.; Yang, G. P.; Wei, Y. G. Uranyl-silicotungstate containing hybrid building units {α-SiW9} and {γ-SiW10} with excellent catalytic activities in the three-component synthesis of dihydropyrimidin-2(1 H)-ones. Inorg. Chem. Front. 2023, 10, 3195–3201.

[14]
Li, H. L.; Lian, C.; Yang, G. Y. A new 4-Ti-added polyoxometalate. Tungsten, DOI: 10.1007/s42864-023-00221-5.
[15]

Yin, X. Y.; Bi, H. X.; Song, H.; He, J. Y.; Ma, Y. Y.; Fang, T. T.; Han, Z. G. Photoactive hourglass-type M{P4Mo6}2 networks for efficient removal of hexavalent chromium. Polyoxometalates 2023, 2, 9140027.

[16]

Zhang, Y. Q.; Zhou, L. Y.; Ma, Y. Y.; Dastafkan, K.; Zhao, C.; Wang, L. Z.; Han, Z. G. Stable monovalent aluminum(I) in a reduced phosphomolybdate cluster as an active acid catalyst. Chem. Sci. 2021, 12, 1886–1890.

[17]

Zhang, Z.; Wang, Y. L.; Li, H. L.; Sun, K. N.; Yang, G. Y. Syntheses, structures and properties of three organic-inorganic hybrid polyoxotungstates constructed from {Ni6PW9} building blocks: From isolated clusters to 2-D layers. CrystEngComm 2019, 21, 2641–2647.

[18]

Liu, Y. N.; Li, L. N.; Meng, S.; Wang, J.; Xu, Q.; Ma, P. T.; Wang, J. P.; Niu, J. Y. Fabrication of polyoxometalate-based metal−organic frameworks integrating paddlewheel Rh2(OAc)4 for visible-light-driven oxidative coupling of amines. Inorg. Chem. 2023, 62, 12954–12964.

[19]

Yang, L.; Zhang, Z.; Zhang, C. N.; Li, S.; Liu, G. C.; Wang, X. L. An excellent multifunctional photocatalyst with a polyoxometalate-viologen framework for CEES oxidation, Cr(VI) reduction and dye decolorization under different light regimes. Inorg. Chem. Front. 2022, 9, 4824–4833.

[20]

Zhang, Y.; Wang, X.; Wang, Y.; Xu, N.; Wang, X. L. Anderson-type polyoxometalate-based sandwich complexes bearing a new “V”-like bis-imidazole-bis-amide ligand as electrochemical sensors and catalysts for sulfide oxidation. Polyoxometalates 2022, 1, 9140004.

[21]

Ge, S. H.; Cui, L. P.; Yu, K.; Wang, M. L.; Wang, C. M.; Guo, L. X.; Zhou, B. B. A bi-As-capped and tetra-V-substituted arsenomolybdate: Synthesis, structure, capacitive and electrocatalytic properties. Tungsten 2023, 5, 270–276.

[22]

Li, J. H.; Wang, X. L.; Song, G.; Lin, H. Y.; Wang, X.; Liu, G. C. Various Anderson-type polyoxometalate-based metal-organic complexes induced by diverse solvents: Assembly, structures and selective adsorption for organic dyes. Dalton Trans. 2020, 49, 1265–1275.

[23]

Zheng, S. T.; Zhang, J.; Yang, G. Y. Designed synthesis of POM-organic frameworks from {Ni6PW9} building blocks under hydrothermal conditions. Angew. Chem., Int. Ed. 2008, 47, 3909–3913.

[24]

Zhang, S. M.; Wang, Y.; Ma, Y. Y.; Li, Z. B.; Du, J.; Han, Z. G. Three-dimensional silver-containing polyoxotungstate frameworks for photocatalytic aerobic oxidation of benzyl alcohol. Inorg. Chem. 2022, 61, 20596–20607.

[25]

An, W. T.; Zhang, X. J.; Niu, J. Q.; Ma, Y. Y.; Han, Z. G. Unusual hexa-nuclear cadmium cluster functionalized phosphomolybdate as effective photoelectrochemical sensor for trace Cr(VI) detection. Chin. Chem. Lett. 2022, 33, 4400–4404.

[26]

Wang, Y.; Liu, Z. X.; Zhao, X. P.; Ma, Y. Y.; Zhang, S. M.; Cui, W. J.; Du, J.; Han, Z. G. Polyoxometalate-encapsulated metal-organic frameworks with diverse cages for the C-H bond oxidation of alkylbenzenes. Chin. J. Struct. Chem. 2023, 42, 100011.

[27]

Chen, Y. H.; An, H. Y.; Chang, S. Z.; Li, Y. Q.; Zhu, Q. S.; Luo, H. Y.; Huang, Y. H. A POM-based porous supramolecular framework for efficient sulfide-sulfoxide transformations with a low molar O/S ratio. Inorg. Chem. Front. 2022, 9, 3282–3294.

[28]

Martín-Caballero, J.; Wéry, J. A. S.; Reinoso, S.; Artetxe, B.; San Felices, L.; El Bakkali, B.; Trautwein, G.; Alcañiz-Monge, J.; Vilas, J. L.; Gutiérrez-Zorrilla, J. M. A robust open framework formed by decavanadate clusters and copper(II) complexes of macrocyclic polyamines: Permanent microporosity and catalytic oxidation of cycloalkanes. Inorg. Chem. 2016, 55, 4970–4979.

[29]

Liu, Y. N.; Ji, K. H.; Wang, J.; Li, H. F.; Zhu, X. Y.; Ma, P. T.; Niu, J. Y.; Wang, J. P. Enhanced carrier separation in visible-light-responsive polyoxometalate-based metal-organic frameworks for highly efficient oxidative coupling of amines. ACS Appl. Mater. Interfaces 2022, 14, 27882–27890.

[30]

Yang, G. P.; Luo, X. X.; Liu, Y. F.; Li, K.; Wu, X. L. [Co33-O)]-based metal-organic frameworks as advanced anode materials in K- and Na-ion batteries. ACS Appl Mater. Interfaces 2021, 13, 46902–46908.

[31]

Zhou, W. L.; Zheng, Y. P.; Yuan, G.; Peng. J. Three polyoxometalates-based organic-inorganic hybrids decorated with Cu-terpyridine complexes exhibiting dual functional electro-catalytic behaviors. Dalton Trans. 2019, 48, 2598–2605.

[32]

Zhao, J. W.; Zhang, J.; Zheng, S. T.; Yang, G. Y. Combination between lacunary polyoxometalates and high-nuclear transition metal clusters under hydrothermal conditions: First (3,6)-connected framework constructed from sandwich-type polyoxometalate building blocks containing a novel {Cu8} cluster. Chem. Comm. 2008, 570–572.

[33]

Li, K.; Liu, Y. F.; Lin, X. L.; Yang, G. P. Copper-containing polyoxometalate-based metal-organic frameworks as heterogeneous catalysts for the synthesis of N-heterocycles. Inorg. Chem. 2022, 61, 6934–6942.

[34]

Li, Y. W.; Guo, L. Y.; Su, H. F.; Jagodič, M.; Luo, M.; Zhou, X. Q.; Zeng, S. Y.; Tung, C. H.; Sun, D.; Zheng, L. S. Two unprecedented POM-based inorganic-organic hybrids with concomitant heteropolytungstate and molybdate. Inorg. Chem. 2017, 56, 2481–2489.

[35]

Wang, Q. Z.; Xu, B. J.; Wang, Y. Y.; Wang, H.; Hu, X.; Ma, P. T.; Niu, J. Y.; Wang, J. P. Polyoxometalate-incorporated framework as a heterogeneous catalyst for selective oxidation of C–H bonds of alkylbenzenes. Inorg. Chem. 2021, 60, 7753–7761.

[36]

Wang, X. L.; Zhang, J. Y.; Chang, Z. H.; Zhang, Z.; Wang, X.; Lin, H. Y.; Cui, Z. W. α-γ-Type [Mo8O26]4−-containing metal-organic complex possessing efficient catalytic activity toward the oxidation of thioether Derivatives. Inorg. Chem. 2021, 60, 3331–3337.

[37]
Téazéa, A.; Hervéa, G.; Finke, R. G.; Lyon, D. K. α-, β-, and γ-Dodecatungstosilicic acids: Isomers and related lacunary compounds. In Inorganic Syntheses; Ginsberg, A. P., Ed.; Inorganic Syntheses, Inc.: Hoboken, 1990; pp 85–96.
[38]

Wang, X. X.; Wang, J. J.; Geng, Z. K.; Qian, Z.; Han, Z. G. Phosphomolybdate assembly as a low-cost catalyst for the reduction of toxic Cr(VI) in aqueous solution. Dalton Trans. 2017, 46, 7917–7925.

[39]

Wang, X.; Lin, J. F.; Li, H.; Wang, C. Y.; Wang, X. L. Carbazole-based bis-imidazole ligand-involved synthesis of inorganic-organic hybrid polyoxometalates as electrochemical sensors for detecting bromate and efficient catalysts for selective oxidation of thioether. RSC Adv. 2022, 12, 4437–4445.

[40]

Zhang, J. Y.; Zhang, Y. C.; Wang, X. L.; Chang, Z. H.; Zhang, Z.; Li, H. Y.; Cui, Z. W. Polyoxometalate-based CuII/CoII complexes tuned using various metal-pyrazole loops: Design, diverse architectures and catalytic activity toward the oxidation of thioether derivatives. CrystEngComm 2022, 24, 3172–3178.

[41]

Wang, C. J.; Wang, T. T.; Lan, Q.; Yao, S.; Wu, H. L.; Zhou, Y. Y.; Zhang, Z. M.; Wang, E. B. Polyoxometalate-based supramolecular architecture constructed from a purely inorganic 1D chain and a metal-organic layer with efficient catalytic activity. RSC Adv. 2016, 6, 15513–15517.

[42]

Son, J. H.; Park, D. H.; Keszler, D. A.; Casey, W. H. Acid-stable peroxoniobophosphate clusters to make patterned films. Chem.—Eur. J. 2015, 21, 6727–6731.

[43]

Dong, J.; Hu, J. F.; Chi, Y. N.; Lin, Z. G.; Zou, B.; Yang, S.; Hill, C. L.; Hu, C. W. A polyoxoniobate-polyoxovanadate double-anion catalyst for simultaneous oxidative and hydrolytic decontamination of chemical warfare agent simulants. Angew. Chem., Int. Ed. 2017, 56, 4473–4477.

[44]

Zhen, N.; Dong, J.; Lin, Z. G.; Li, X. X.; Chi, Y. N.; Hu, C. W. Self-assembly of polyoxovanadate-capped polyoxoniobates and their catalytic decontamination of sulfur mustard simulants. Chem. Commun. 2020, 56, 13967–13970.

[45]

Li, X.; Yang, X. Y.; Sha, J. Q.; Han, T.; Du, C. J.; Sun, Y. J.; Lan, Y. Q. POMOF/SWNT nanocomposites with prominent peroxidase-mimicking activity for L-cysteine “on-off switch” colorimetric biosensing. ACS Appl. Mater. Interfaces 2019, 11, 16896–16904.

[46]

Chang, S. Z.; Chen, Y. H.; An, H. Y.; Zhu, Q. S.; Luo, H. Y.; Xu, T. Q. Highly efficient synthesis of p-benzoquinones catalyzed by robust two-dimensional POM-based coordination polymers. ACS Appl. Mater. Interfaces 2021, 13, 21261–21271.

[47]

Grandcolas, M.; Cottineau, T.; Louvet, A.; Keller, N.; Keller, V. Solar light-activated photocatalytic degradation of gas phase diethylsulfide on WO3-modified TiO2 nanotubes. Appl. Catal. B Environ. 2013, 138–139, 128–140.

[48]

Yu, M. Y.; Yang, J.; Guo, T. T.; Ma, J. F. Efficient catalytic oxidative desulfurization toward thioether and sulfur mustard stimulant by polyoxomolybdate-resorcin[4]arene-based metal-organic materials. Inorg. Chem. 2020, 59, 4985–4994.

[49]

Zhang, C. D.; Liu, S. X.; Sun, C. Y.; Ma, F. J.; Su, Z. M. Assembly of organic-inorganic hybrid materials based on Dawson-type polyoxometalate and multinuclear copper-Phen complexes with unique magnetic properties. Cryst. Growth Des. 2009, 9, 3655–3660.

Polyoxometalates
Article number: 9140039
Cite this article:
Sun J-Y, Wang Z-L, Zhang Z, et al. Hydrothermal synthesis, structure, and catalytic properties of a (4,6)-connected framework constructed from Keggin-type polyoxometalate units and tetranuclear copper complexes. Polyoxometalates, 2024, 3(1): 9140039. https://doi.org/10.26599/POM.2023.9140039
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return