AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (5.5 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Hydrothermal synthesis, structure, and catalytic properties of a (4,6)-connected framework constructed from Keggin-type polyoxometalate units and tetranuclear copper complexes

Jia-Yu SunZi-Lan WangZhong Zhang ( )Guo-Cheng LiuXiu-Li Wang ( )
College of Chemistry and Materials Engineering, Bohai University, Jinzhou 121013, China
Show Author Information

Graphical Abstract

Abstract

Under hydrothermal conditions, a Keggin-type polyoxometalate-based metal–organic complex, H4{[Cu4(EDDP)2(H2O)5]1.5(SiW12O40)}∙7.5H2O (CuW-EDDP, H4EDDP = ethylene-diamine-N,N'-dipropionic acid), was synthesized by reacting Na10[A-α-SiW9O34]·18H2O and CuCl2·2H2O in the presence of H4EDDP ligands and characterized by powder and single-crystal X-ray diffraction, infrared spectroscopy, elemental analysis, and thermogravimetry. Interestingly, CuW-EDDP exhibited a three-dimensional structure with (4,6)-connected constructed from [SiW12O40]4− units and tetranuclear Cu complexes [Cu4(EDDP)2(H2O)5]. As an effective heterogeneous catalyst, CuW-EDDP exhibited excellent performance, good reusability, and structural stability in the selective oxidation of methyl phenyl sulfide with high conversion (100%) and selectivity (98%) within 30 min. Furthermore, the catalytic activity of CuW-EDDP in the oxidation of other sulfide derivatives was investigated.

Electronic Supplementary Material

Download File(s)
POMC-2023-0039_ESM1.pdf (1.6 MB)
POMC-2023-0039_ESM2-checkcif.pdf (148.2 KB)
POMC-2023-0039_ESM3-cif.cif (555.6 KB)

References

[1]

Yu, M. Y.; Guo, T. T.; Shi, X. C.; Yang, J.; Xu, X. X.; Ma, J. F.; Yu, Z. T. Polyoxometalate-bridged Cu(I)- and Ag(I)-thiacalix[4]arene dimers for heterogeneous catalytic oxidative desulfurization and azide-alkyne “click” reaction. Inorg. Chem. 2019, 58, 11010–11019.

[2]

Dai, C. N.; Zhang, J.; Huang, C. P.; Lei, Z. G. Ionic liquids in selective oxidation: Catalysts and solvents. Chem. Rev. 2017, 117, 6929–6983.

[3]

Zhang, Z.; Wang, Y. L.; Liu, Y.; Huang, S. L.; Yang, G. Y. Three ring-shaped Zr(IV)-substituted silicotungstates: Syntheses, structures and their properties. Nanoscale 2020, 12, 18333–18341.

[4]

Buru, C. T.; Wasson, M. C.; Farha, O. K. H5PV2Mo10O40 polyoxometalate encapsulated in NU-1000 metal-organic framework for aerobic oxidation of a mustard gas simulant. ACS Appl. Nano Mater. 2020, 3, 658–664.

[5]

Huang, L.; Wang, S. S.; Zhao, J. W.; Cheng, L.; Yang, G. Y. Synergistic combination of multi-ZrIV cations and lacunary Keggin germanotungstates leading to a gigantic Zr24-cluster-substituted polyoxometalate. J. Am. Chem. Soc. 2014, 136, 7637–7642.

[6]

Zheng, S. T.; Yang, G. Y. Recent advances in paramagnetic-TM-substituted polyoxometalates (TM = Mn, Fe, Co, Ni, Cu). Chem. Soc. Rev. 2012, 41, 7623–7646.

[7]

Zhang, Z.; Li, W. L.; Wang, Y. L.; Yang, G. Y. Syntheses, structures, and electrochemical properties of three new acetate-functionalized zirconium-substituted germanotungstates: From dimer to tetramer. Inorg. Chem. 2019, 58, 2372–2378.

[8]

Yang, K.; Ying, Y. X.; Cui, L. L.; Sun, G. C.; Luo, H.; Hu, Y. Y.; Zhao, J. W. Stable aqueous Zn-Ag and Zn-polyoxometalate hybrid battery driven by successive Ag+ cation and polyoxoanion redox reactions. Energy Stor. Mater. 2021, 34, 203–210.

[9]

Liu, J. C.; Wang, J. F.; Han, Q.; Shangguan, P.; Liu, L. L.; Chen, L. J.; Zhao, J. W.; Streb, C.; Song, Y. F. Multicomponent self-assembly of a giant heterometallic polyoxotungstate supercluster with antitumor activity. Angew. Chem., Int. Ed. 2021, 60, 11153–11157.

[10]

Lin, J. M.; Li, N.; Yang, S. P.; Jia, M. J.; Liu, J.; Li, X. M.; An, L.; Tian, Q. W.; Dong, L. Z.; Lan, Y. Q. Self-assembly of giant Mo240 hollow opening dodecahedra. J. Am. Chem. Soc. 2020, 142, 13982–13988.

[11]

Wu, Y. L.; Li, X. X.; Qi, Y. J.; Yu, H.; Jin, L.; Zheng, S. T. {Nb288O768(OH)48(CO3)12}: A macromolecular polyoxometalate with close to 300 niobium atoms. Angew. Chem., Int. Ed. 2018, 57, 8572–8576.

[12]

Li, S. R.; Liu, W. D.; Long, L. S.; Zheng, L. S.; Kong, X. J. Recent advances in polyoxometalate-based lanthanide-oxo clusters. Polyoxometalates 2023, 2, 9140022.

[13]

Ding, J. H.; Liu, Y. F.; Tian, Z. T.; Lin, P. J.; Yang, F.; Li, K.; Yang, G. P.; Wei, Y. G. Uranyl-silicotungstate containing hybrid building units {α-SiW9} and {γ-SiW10} with excellent catalytic activities in the three-component synthesis of dihydropyrimidin-2(1 H)-ones. Inorg. Chem. Front. 2023, 10, 3195–3201.

[14]
Li, H. L.; Lian, C.; Yang, G. Y. A new 4-Ti-added polyoxometalate. Tungsten, DOI: 10.1007/s42864-023-00221-5.
[15]

Yin, X. Y.; Bi, H. X.; Song, H.; He, J. Y.; Ma, Y. Y.; Fang, T. T.; Han, Z. G. Photoactive hourglass-type M{P4Mo6}2 networks for efficient removal of hexavalent chromium. Polyoxometalates 2023, 2, 9140027.

[16]

Zhang, Y. Q.; Zhou, L. Y.; Ma, Y. Y.; Dastafkan, K.; Zhao, C.; Wang, L. Z.; Han, Z. G. Stable monovalent aluminum(I) in a reduced phosphomolybdate cluster as an active acid catalyst. Chem. Sci. 2021, 12, 1886–1890.

[17]

Zhang, Z.; Wang, Y. L.; Li, H. L.; Sun, K. N.; Yang, G. Y. Syntheses, structures and properties of three organic-inorganic hybrid polyoxotungstates constructed from {Ni6PW9} building blocks: From isolated clusters to 2-D layers. CrystEngComm 2019, 21, 2641–2647.

[18]

Liu, Y. N.; Li, L. N.; Meng, S.; Wang, J.; Xu, Q.; Ma, P. T.; Wang, J. P.; Niu, J. Y. Fabrication of polyoxometalate-based metal−organic frameworks integrating paddlewheel Rh2(OAc)4 for visible-light-driven oxidative coupling of amines. Inorg. Chem. 2023, 62, 12954–12964.

[19]

Yang, L.; Zhang, Z.; Zhang, C. N.; Li, S.; Liu, G. C.; Wang, X. L. An excellent multifunctional photocatalyst with a polyoxometalate-viologen framework for CEES oxidation, Cr(VI) reduction and dye decolorization under different light regimes. Inorg. Chem. Front. 2022, 9, 4824–4833.

[20]

Zhang, Y.; Wang, X.; Wang, Y.; Xu, N.; Wang, X. L. Anderson-type polyoxometalate-based sandwich complexes bearing a new “V”-like bis-imidazole-bis-amide ligand as electrochemical sensors and catalysts for sulfide oxidation. Polyoxometalates 2022, 1, 9140004.

[21]

Ge, S. H.; Cui, L. P.; Yu, K.; Wang, M. L.; Wang, C. M.; Guo, L. X.; Zhou, B. B. A bi-As-capped and tetra-V-substituted arsenomolybdate: Synthesis, structure, capacitive and electrocatalytic properties. Tungsten 2023, 5, 270–276.

[22]

Li, J. H.; Wang, X. L.; Song, G.; Lin, H. Y.; Wang, X.; Liu, G. C. Various Anderson-type polyoxometalate-based metal-organic complexes induced by diverse solvents: Assembly, structures and selective adsorption for organic dyes. Dalton Trans. 2020, 49, 1265–1275.

[23]

Zheng, S. T.; Zhang, J.; Yang, G. Y. Designed synthesis of POM-organic frameworks from {Ni6PW9} building blocks under hydrothermal conditions. Angew. Chem., Int. Ed. 2008, 47, 3909–3913.

[24]

Zhang, S. M.; Wang, Y.; Ma, Y. Y.; Li, Z. B.; Du, J.; Han, Z. G. Three-dimensional silver-containing polyoxotungstate frameworks for photocatalytic aerobic oxidation of benzyl alcohol. Inorg. Chem. 2022, 61, 20596–20607.

[25]

An, W. T.; Zhang, X. J.; Niu, J. Q.; Ma, Y. Y.; Han, Z. G. Unusual hexa-nuclear cadmium cluster functionalized phosphomolybdate as effective photoelectrochemical sensor for trace Cr(VI) detection. Chin. Chem. Lett. 2022, 33, 4400–4404.

[26]

Wang, Y.; Liu, Z. X.; Zhao, X. P.; Ma, Y. Y.; Zhang, S. M.; Cui, W. J.; Du, J.; Han, Z. G. Polyoxometalate-encapsulated metal-organic frameworks with diverse cages for the C-H bond oxidation of alkylbenzenes. Chin. J. Struct. Chem. 2023, 42, 100011.

[27]

Chen, Y. H.; An, H. Y.; Chang, S. Z.; Li, Y. Q.; Zhu, Q. S.; Luo, H. Y.; Huang, Y. H. A POM-based porous supramolecular framework for efficient sulfide-sulfoxide transformations with a low molar O/S ratio. Inorg. Chem. Front. 2022, 9, 3282–3294.

[28]

Martín-Caballero, J.; Wéry, J. A. S.; Reinoso, S.; Artetxe, B.; San Felices, L.; El Bakkali, B.; Trautwein, G.; Alcañiz-Monge, J.; Vilas, J. L.; Gutiérrez-Zorrilla, J. M. A robust open framework formed by decavanadate clusters and copper(II) complexes of macrocyclic polyamines: Permanent microporosity and catalytic oxidation of cycloalkanes. Inorg. Chem. 2016, 55, 4970–4979.

[29]

Liu, Y. N.; Ji, K. H.; Wang, J.; Li, H. F.; Zhu, X. Y.; Ma, P. T.; Niu, J. Y.; Wang, J. P. Enhanced carrier separation in visible-light-responsive polyoxometalate-based metal-organic frameworks for highly efficient oxidative coupling of amines. ACS Appl. Mater. Interfaces 2022, 14, 27882–27890.

[30]

Yang, G. P.; Luo, X. X.; Liu, Y. F.; Li, K.; Wu, X. L. [Co33-O)]-based metal-organic frameworks as advanced anode materials in K- and Na-ion batteries. ACS Appl Mater. Interfaces 2021, 13, 46902–46908.

[31]

Zhou, W. L.; Zheng, Y. P.; Yuan, G.; Peng. J. Three polyoxometalates-based organic-inorganic hybrids decorated with Cu-terpyridine complexes exhibiting dual functional electro-catalytic behaviors. Dalton Trans. 2019, 48, 2598–2605.

[32]

Zhao, J. W.; Zhang, J.; Zheng, S. T.; Yang, G. Y. Combination between lacunary polyoxometalates and high-nuclear transition metal clusters under hydrothermal conditions: First (3,6)-connected framework constructed from sandwich-type polyoxometalate building blocks containing a novel {Cu8} cluster. Chem. Comm. 2008, 570–572.

[33]

Li, K.; Liu, Y. F.; Lin, X. L.; Yang, G. P. Copper-containing polyoxometalate-based metal-organic frameworks as heterogeneous catalysts for the synthesis of N-heterocycles. Inorg. Chem. 2022, 61, 6934–6942.

[34]

Li, Y. W.; Guo, L. Y.; Su, H. F.; Jagodič, M.; Luo, M.; Zhou, X. Q.; Zeng, S. Y.; Tung, C. H.; Sun, D.; Zheng, L. S. Two unprecedented POM-based inorganic-organic hybrids with concomitant heteropolytungstate and molybdate. Inorg. Chem. 2017, 56, 2481–2489.

[35]

Wang, Q. Z.; Xu, B. J.; Wang, Y. Y.; Wang, H.; Hu, X.; Ma, P. T.; Niu, J. Y.; Wang, J. P. Polyoxometalate-incorporated framework as a heterogeneous catalyst for selective oxidation of C–H bonds of alkylbenzenes. Inorg. Chem. 2021, 60, 7753–7761.

[36]

Wang, X. L.; Zhang, J. Y.; Chang, Z. H.; Zhang, Z.; Wang, X.; Lin, H. Y.; Cui, Z. W. α-γ-Type [Mo8O26]4−-containing metal-organic complex possessing efficient catalytic activity toward the oxidation of thioether Derivatives. Inorg. Chem. 2021, 60, 3331–3337.

[37]
Téazéa, A.; Hervéa, G.; Finke, R. G.; Lyon, D. K. α-, β-, and γ-Dodecatungstosilicic acids: Isomers and related lacunary compounds. In Inorganic Syntheses; Ginsberg, A. P., Ed.; Inorganic Syntheses, Inc.: Hoboken, 1990; pp 85–96.
[38]

Wang, X. X.; Wang, J. J.; Geng, Z. K.; Qian, Z.; Han, Z. G. Phosphomolybdate assembly as a low-cost catalyst for the reduction of toxic Cr(VI) in aqueous solution. Dalton Trans. 2017, 46, 7917–7925.

[39]

Wang, X.; Lin, J. F.; Li, H.; Wang, C. Y.; Wang, X. L. Carbazole-based bis-imidazole ligand-involved synthesis of inorganic-organic hybrid polyoxometalates as electrochemical sensors for detecting bromate and efficient catalysts for selective oxidation of thioether. RSC Adv. 2022, 12, 4437–4445.

[40]

Zhang, J. Y.; Zhang, Y. C.; Wang, X. L.; Chang, Z. H.; Zhang, Z.; Li, H. Y.; Cui, Z. W. Polyoxometalate-based CuII/CoII complexes tuned using various metal-pyrazole loops: Design, diverse architectures and catalytic activity toward the oxidation of thioether derivatives. CrystEngComm 2022, 24, 3172–3178.

[41]

Wang, C. J.; Wang, T. T.; Lan, Q.; Yao, S.; Wu, H. L.; Zhou, Y. Y.; Zhang, Z. M.; Wang, E. B. Polyoxometalate-based supramolecular architecture constructed from a purely inorganic 1D chain and a metal-organic layer with efficient catalytic activity. RSC Adv. 2016, 6, 15513–15517.

[42]

Son, J. H.; Park, D. H.; Keszler, D. A.; Casey, W. H. Acid-stable peroxoniobophosphate clusters to make patterned films. Chem.—Eur. J. 2015, 21, 6727–6731.

[43]

Dong, J.; Hu, J. F.; Chi, Y. N.; Lin, Z. G.; Zou, B.; Yang, S.; Hill, C. L.; Hu, C. W. A polyoxoniobate-polyoxovanadate double-anion catalyst for simultaneous oxidative and hydrolytic decontamination of chemical warfare agent simulants. Angew. Chem., Int. Ed. 2017, 56, 4473–4477.

[44]

Zhen, N.; Dong, J.; Lin, Z. G.; Li, X. X.; Chi, Y. N.; Hu, C. W. Self-assembly of polyoxovanadate-capped polyoxoniobates and their catalytic decontamination of sulfur mustard simulants. Chem. Commun. 2020, 56, 13967–13970.

[45]

Li, X.; Yang, X. Y.; Sha, J. Q.; Han, T.; Du, C. J.; Sun, Y. J.; Lan, Y. Q. POMOF/SWNT nanocomposites with prominent peroxidase-mimicking activity for L-cysteine “on-off switch” colorimetric biosensing. ACS Appl. Mater. Interfaces 2019, 11, 16896–16904.

[46]

Chang, S. Z.; Chen, Y. H.; An, H. Y.; Zhu, Q. S.; Luo, H. Y.; Xu, T. Q. Highly efficient synthesis of p-benzoquinones catalyzed by robust two-dimensional POM-based coordination polymers. ACS Appl. Mater. Interfaces 2021, 13, 21261–21271.

[47]

Grandcolas, M.; Cottineau, T.; Louvet, A.; Keller, N.; Keller, V. Solar light-activated photocatalytic degradation of gas phase diethylsulfide on WO3-modified TiO2 nanotubes. Appl. Catal. B Environ. 2013, 138–139, 128–140.

[48]

Yu, M. Y.; Yang, J.; Guo, T. T.; Ma, J. F. Efficient catalytic oxidative desulfurization toward thioether and sulfur mustard stimulant by polyoxomolybdate-resorcin[4]arene-based metal-organic materials. Inorg. Chem. 2020, 59, 4985–4994.

[49]

Zhang, C. D.; Liu, S. X.; Sun, C. Y.; Ma, F. J.; Su, Z. M. Assembly of organic-inorganic hybrid materials based on Dawson-type polyoxometalate and multinuclear copper-Phen complexes with unique magnetic properties. Cryst. Growth Des. 2009, 9, 3655–3660.

Polyoxometalates
Article number: 9140039
Cite this article:
Sun J-Y, Wang Z-L, Zhang Z, et al. Hydrothermal synthesis, structure, and catalytic properties of a (4,6)-connected framework constructed from Keggin-type polyoxometalate units and tetranuclear copper complexes. Polyoxometalates, 2024, 3(1): 9140039. https://doi.org/10.26599/POM.2023.9140039

3153

Views

438

Downloads

18

Crossref

Altmetrics

Received: 24 August 2023
Revised: 21 September 2023
Accepted: 28 September 2023
Published: 19 October 2023
© The Author(s) 2023. Published by Tsinghua University Press.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the original author(s) and the source, provide a link to the license, and indicate if changes were made. See http://creativecommons.org/licenses/by/4.0/

Return