AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (15.8 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Mini Review | Open Access

Advances in coinage-metal-substituted polyoxometalates: A review

De-Qing QianYu-Diao LinHui-Ping XiaoBiao WuXin-Xiong Li ( )Shou-Tian Zheng ( )
Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated-Materials, College of Chemistry, Fuzhou University, Fuzhou 350108, China
Show Author Information

Graphical Abstract

Abstract

The introduction of coinage metals (CMs) into lacunary polyoxometalates (POMs) to construct CM-substituted POMs (CM-POMs) has attracted increasing interest over the past decade. This is because CM-POMs combine the unique structural features of POMs and CMs and have promising applications in photocatalysis, luminescence, magnetic materials, etc. In this review, the structural characteristics, synthesis methods, and applications of CM-POMs are summarized in three categories according to the type of their metal core element: Cu-, Ag-, and Au-substituted POMs. Furthermore, this paper discusses the current challenges regarding investigations into the design and properties of CM-POMs.

References

[1]

Zhang, L.; Chen, Z. Q. Polyoxometalates: Tailoring metal oxides in molecular dimension toward energy applications. Int. J. Energy Res. 2020, 44, 3316–3346.

[2]

Stuckart, M.; Monakhov, K. Y. Polyoxometalates as components of supramolecular assemblies. Chem. Sci. 2019, 10, 4364–4376.

[3]

Chen, Y.; Li, F. B.; Li, S. B.; Zhang, L.; Sun, M. A review of application and prospect for polyoxometalate-based composites in electrochemical sensor. Inorg. Chem. Commun. 2022, 135, 109084.

[4]

Cao, Y. W.; Chen, Q. Y.; Shen, C. R.; He, L. Polyoxometalate-based catalysts for CO2 conversion. Molecules 2019, 24, 2069.

[5]

Bijelic, A.; Aureliano, M.; Rompel, A. Polyoxometalates as potential next-generation metallodrugs in the combat against cancer. Angew. Chem., Int. Ed. 2019, 58, 2980–2999.

[6]

Anjass, M.; Lowe, G. A.; Streb, C. Molecular vanadium oxides for energy conversion and energy storage: Current trends and emerging opportunities. Angew. Chem., Int. Ed. 2021, 60, 7522–7532.

[7]

Ahmadian, M.; Anbia, M. Oxidative desulfurization of liquid fuels using polyoxometalate-based catalysts: A review. Energy Fuels 2021, 35, 10347–10373.

[8]

Lis, S.; But, S.; Staninski, K.; Jesiołowska, M. Photoluminescence and electrochemiluminescence studies of chosen rare earths systems. J. Rare Earths 2008, 26, 192–197.

[9]

Li, G. P.; Sun, T. S.; Qian, J. H. Cluster Based Strategy to Improve competitiveness of rare earth industry in China-taking emerging rare earth industry cluster in Baotou as an example. J. Rare Earths 2005, 23, 574–580.

[10]

Lin, M. H.; Zhang, Q. E. A quantum chemical study on hexanuclear cluster halides of rare earth elements and their interstitial compounds. J. Rare Earths 1992, 10, 93–97.

[11]

Shi, J. Y.; Gupta, R. K.; Deng, Y. K.; Sun, D.; Wang, Z. Recent advances in the asymmetrical templation effect of polyoxometalate in silver clusters. Polyoxometalates 2022, 1, 9140010.

[12]

Zhang, S. S.; Chen, J. Y.; Li, K.; Yuan, J. D.; Su, H. F.; Wang, Z.; Kurmoo, M.; Li, Y. Z.; Gao, Z. Y.; Tung, C. H. et al. Janus cluster: Asymmetric coverage of a Ag43 cluster on the symmetric preyssler P5W30 Polyoxometalate. Chem. Mater. 2021, 33, 9708–9714.

[13]

Zhang, Y.; Wang, X.; Wang, Y.; Xu, N.; Wang, X. L. Anderson-type polyoxometalate-based sandwich complexes bearing a new “V”-like bis-imidazole-bis-amide ligand as electrochemical sensors and catalysts for sulfide oxidation. Polyoxometalates 2022, 1, 9140004.

[14]

Jia, Q. D.; Cao, J.; Duan, Y. P.; Hu, C. W. The solution chemistry and reactivity of lacunary Keggin silicotungstates monitored in real-time by a combination of mass spectrometry and electrochemistry. Dalton Trans. 2015, 44, 553–559.

[15]

Lu, Y.; Xu, Y.; Li, Y. G.; Wang, E. B.; Xu, X. X.; Ma, Y. New polyoxometalate compounds built up of lacunary Wells-Dawson anions and trivalent lanthanide cations. Inorg. Chem. 2006, 45, 2055–2060.

[16]

Zheng, S. T.; Yang, G. Y. Recent advances in paramagnetic-TM-substituted polyoxometalates (TM = Mn, Fe, Co, Ni, Cu). Chem. Soc. Rev. 2012, 41, 7623–7646.

[17]

Patel, A.; Sadasivan, R. Modified Mn substituted POMs: Synthetic strategies, structural diversity to applications. Prog. Mater. Sci. 2021, 118, 100759.

[18]

Guo, L. Y.; Jagodič, M.; Zeng, S. Y.; Wang, Z.; Shi, Z. Q.; Wang, X. P.; Tung, C. H.; Sun, D. pH-controlled assembly of two novel Dawson-sandwiched clusters involving the in situ reorganization of trivacant α-[P2W15O56]12− into divacant α-[P2W16O57]8−. Dalton Trans. 2016, 45, 8404–8411.

[19]

Sang, X. J.; Li, J. S.; Zhang, L. C.; Zhu, Z. M.; Chen, W. L.; Li, Y. G.; Su, Z. M.; Wang, E. B. Two carboxyethyltin functionalized polyoxometalates for assembly on carbon nanotubes as efficient counter electrode materials in dye-sensitized solar cells. Chem. Commun. 2014, 50, 14678–14681.

[20]

Yi, X. F.; Izarova, N. V.; Stuckart, M.; Guérin, D.; Thomas, L.; Lenfant, S.; Vuillaume, D.; van Leusen, J.; Duchoň, T.; Nemšák, S. et al. Probing frontier orbital energies of {Co9(P2W15)3} polyoxometalate clusters at molecule-metal and molecule-water interfaces. J. Am. Chem. Soc. 2017, 139, 14501–14510.

[21]

Li, L.; Niu, Y. J.; Dong, K. L.; Ma, P. T.; Zhang, C.; Niu, J. Y.; Wang, J. P. A Ni-containing decaniobate incorporating organic ligands: Synthesis, structure, and catalysis for allylic alcohol epoxidation. RSC Adv. 2017, 7, 28696–28701.

[22]

Paille, G.; Boulmier, A.; Bensaid, A.; Ha-Thi, M. H.; Tran, T. T.; Pino, T.; Marrot, J.; Rivière, E.; Hendon, C. H.; Oms, O. et al. An unprecedented {Ni14SiW9} hybrid polyoxometalate with high photocatalytic hydrogen evolution activity. Chem. Commun. 2019, 55, 4166–4169.

[23]

Bassil, B. S.; Ibrahim, M.; Al-Oweini, R.; Asano, M.; Wang, Z. X.; van Tol, J.; Dalal, N. S.; Choi, K. Y.; Biboum, R. N.; Keita, B. et al. A planar {Mn19(OH)12}26+ unit incorporated in a 60-tungsto-6-silicate polyanion. Angew. Chem., Int. Ed. 2011, 50, 5961–5964.

[24]

Car, P. E.; Spingler, B.; Weyeneth, S.; Patscheider, J.; Patzke, G. R. All-inorganic 1D chain-based architecture of a novel dimanganese-substituted Keggin polyoxotungstate. Polyhedron 2013, 52, 151–158.

[25]

Fang, X. K.; Kögerler, P.; Furukawa, Y.; Speldrich, M.; Luban, M. Molecular growth of a core-shell polyoxometalate. Angew. Chem., Int. Ed. 2011, 50, 5212–5216.

[26]

Mitchell, S. G.; Molina, P. I.; Khanra, S.; Miras, H. N.; Prescimone, A.; Cooper, G. J. T.; Winter, R. S.; Brechin, E. K.; Long, D. L.; Cogdell, R. J. et al. A mixed-valence manganese cubane trapped by inequivalent trilacunary polyoxometalate ligands. Angew. Chem., Int. Ed. 2011, 50, 9154–9157.

[27]

Mitchell, S. G.; Streb, C.; Miras, H. N.; Boyd, T.; Long, D. L.; Cronin, L. Face-directed self-assembly of an electronically active Archimedean polyoxometalate architecture. Nat. Chem. 2010, 2, 308–312.

[28]

Wu, Q.; Li, Y. G.; Wang, Y. H.; Wang, E. B.; Zhang, Z. M.; Clérac, R. Mixed-valent {Mn14} aggregate encapsulated by the inorganic Polyoxometalate shell: [MnIII13MnIIO12(PO4)4(PW9O34)4]31−. Inorg. Chem. 2009, 48, 1606–1612.

[29]

Ritchie, C.; Streb, C.; Thiel, J.; Mitchell, S. G.; Miras, H. N.; Long, D. L.; Boyd, T.; Peacock, R. D.; McGlone, T.; Cronin, L. Reversible redox reactions in an extended polyoxometalate framework solid. Angew. Chem., Int. Ed. 2008, 47, 6881–6884.

[30]

Sato, R.; Suzuki, K.; Minato, T.; Shinoe, M.; Yamaguchi, K.; Mizuno, N. Field-induced slow magnetic relaxation of octahedrally coordinated mononuclear Fe(III)-, Co(II)-, and Mn(III)-containing polyoxometalates. Chem. Commun. 2015, 51, 4081–4084.

[31]

Winter, R. S.; Yan, J.; Busche, C.; Mathieson, J. S.; Prescimone, A.; Brechin, E. K.; Long, D. L.; Cronin, L. Nanoscale control of polyoxometalate assembly: A {Mn8W4} cluster within a {W36Si4Mn10} cluster showing a new type of isomerism. Chem.—Eur. J. 2013, 19, 2976–2981.

[32]

Zhang, Z. M.; Yao, S.; Li, Y. G.; Wu, H. H.; Wang, Y. H.; Rouzieres, M.; Clerac, R.; Su, Z. M.; Wang, E. B. A polyoxometalate-based single-molecule magnet with a mixed-valent {MnIV2MnIII6MnII4} core. Chem. Commun. 2013, 49, 2515–2517.

[33]

Yin, B. Q.; Luo, Z. X. Coinage metal clusters: From superatom chemistry to genetic materials. Coord. Chem. Rev. 2021, 429, 213643.

[34]

Zhang, M. M.; Dong, X. Y.; Wang, Y. J.; Zang, S. Q.; Mak, T. C. W. Recent progress in functional atom-precise coinage metal clusters protected by alkynyl ligands. Coord. Chem. Rev. 2022, 453, 214315.

[35]

Cui, J. X.; Shao, Y. Y.; Zhang, H. P.; Zhang, H.; Zhu, J. Development of a novel silver ions-nanosilver complementary composite as antimicrobial additive for powder coating. Chem. Eng. J. 2021, 420, 127633.

[36]

Zheng, K. Y.; Setyawati, M. I.; Leong, D. T.; Xie, J. P. Antimicrobial silver nanomaterials. Coord. Chem. Rev. 2018, 357, 1–17.

[37]

Muniz, C. N.; Schaab, J.; Razgoniaev, A.; Djurovich, P. I.;. Thompson, M. E. π-extended ligands in two-coordinate coinage metal complexes. J. Am. Chem. Soc. 2022, 144, 17916–17928.

[38]

Zhang, T.; Zhang, D.; Han, X. H.; Dong, T.; Guo, X. W.; Song, C. S.; Si, R.; Liu, W.; Liu, Y. F.; Zhao, Z. K. Preassembly strategy to fabricate porous hollow carbonitride spheres inlaid with single Cu-N3 sites for selective oxidation of benzene to phenol. J. Am. Chem. Soc. 2018, 140, 16936–16940.

[39]

Tsunoyama, H.; Sakurai, H.; Negishi, Y.; Tsukuda, T. Size-specific catalytic activity of polymer-stabilized gold nanoclusters for aerobic alcohol oxidation in water. J. Am. Chem. Soc. 2005, 127, 9374–9375.

[40]

Feng, Y. Q.; Qin, L.; Zhang, J. H.; Fu, F. Y.; Li, H. J.; Xiang, H.; Lv, H. J. Wheel-shaped icosanuclear Cu-containing polyoxometalate catalyst: Mechanistic and stability studies on light-driven hydrogen generation. Chin. J. Catal. 2022, 43, 442–450.

[41]

Lv, H. J.; Gao, Y. Z.; Guo, W. W.; Lauinger, S. M.; Chi, Y. N.; Bacsa, J.; Sullivan, K. P.; Wieliczko, M.; Musaev, D. G.; Hill, C. L. Cu-based polyoxometalate catalyst for efficient catalytic hydrogen evolution. Inorg. Chem. 2016, 55, 6750–6758.

[42]

Yonesato, K.; Yanai, D.; Yamazoe, S.; Yokogawa, D.; Kikuchi, T.; Yamaguchi, K.; Suzuki, K. Surface-exposed silver nanoclusters inside molecular metal oxide cavities. Nat. Chem. 2023, 15, 940–947.

[43]

Kang, X.; Wei, X.; Jin, S.; Wang, S. X.; Zhu, M. Z. Controlling the crystallographic packing modes of Pt1Ag28 nanoclusters: Effects on the optical properties and nitrogen adsorption-desorption performances. Inorg. Chem. 2021, 60, 4198–4206.

[44]

Lei, Z.; Wan, X. K.; Yuan, S. F.; Guan, Z. J.; Wang, Q. M. Alkynyl approach toward the protection of metal nanoclusters. Acc. Chem. Res. 2018, 51, 2465–2474.

[45]

Xu, C.; Yuan, Q. Q.; Wei, X.; Li, H.; Shen, H. L.; Kang, X.; Zhu, M. Z. Surface environment complication makes Ag29 nanoclusters more robust and leads to their unique packing in the supracrystal lattice. Chem. Sci. 2022, 13, 1382–1389.

[46]

Yamase, T.; Fukaya, K.; Nojiri, H.; Ohshima, Y. Ferromagnetic exchange interactions for Cu612+ and Mn612+ hexagons sandwiched by two B- α-[XW9O33]9− (X = AsIII and SbIII) ligands in D3 d -symmetric polyoxotungstates. Inorg. Chem. 2006, 45, 7698–7704.

[47]

Yonesato, K.; Ito, H.; Itakura, H.; Yokogawa, D.; Kikuchi, T.; Mizuno, N.; Yamaguchi, K.; Suzuki, K. Controlled assembly synthesis of atomically precise ultrastable silver nanoclusters with Polyoxometalates. J. Am. Chem. Soc. 2019, 141, 19550–19554.

[48]

Fan, X.; Chen, S.; Zhang, L.; Zhang, J. Protection of Ag clusters by metal-oxo modules. Chem.—Eur. J. 2021, 27, 15563–15570.

[49]

Wan, R.; Ma, P. T.; Hu, F.; Zhang, D. D.; Zhang, C.; Niu, J. Y.; Wang, J. P. Two magnetic 2D inorganic-organic hybrid framework materials constructed by phosphotungstates. J. Cluster Sci. 2017, 28, 1761–1771.

[50]

Yang, M. X.; Zhou, M. J.; Cao, J. P.; Han, Y. M.; Hong, Y. L.; Xu, Y. Application of temperature-controlled chiral hybrid structures constructed from copper(II)-monosubstituted Keggin polyoxoanions and copper(II)-organoamine complexes in enantioselective sensing of tartaric acid. RSC Adv. 2020, 10, 13759–13765.

[51]

Sasaki, S.; Yonesato, K.; Mizuno, N.; Yamaguchi, K.; Suzuki, K. Ring-shaped polyoxometalates possessing multiple 3d metal cation sites: [{M2(OH2)2}2{M(OH2)2}4P8W48O176(OCH3)8]16− (M = Mn, Co, Ni, Cu, Zn). Inorg. Chem. 2019, 58, 7722–7729.

[52]

Zhan, C. H.; Cameron, J. M.; Gao, J.; Purcell, J. W.; Long, D. L.; Cronin, L. Time-resolved assembly of cluster-in-cluster {Ag12}-in-{W76} polyoxometalates under supramolecular control. Angew. Chem., Int. Ed. 2014, 53, 10362–10366.

[53]

Cao, R.; Anderson, T. M.; Piccoli, P. M. B.; Schultz, A. J.; Koetzle, T. F.; Geletii, Y. V.; Slonkina, E.; Hedman, B.; Hodgson, K. O.; Hardcastle, K. I. et al. Terminal gold-oxo complexes. J. Am. Chem. Soc. 2007, 129, 11118–11133.

[54]

Wang, S. S.; Yang, G. Y. Recent advances in polyoxometalate-catalyzed reactions. Chem. Rev. 2015, 115, 4893–4962.

[55]

Luo, J.; Li, H. L.; Chen, X. X.; Ma, J. R.; Chen, L. J.; Zhao, J. W. A 3-D framework based on mono-copperII substituted silicotungstate units [Cu(dap)2(H2O)]2[Cu(dap)2][α-SiW11CuO39]·2H2O. Inorg. Chem. Commun. 2014, 50, 19–23.

[56]

Zhao, X. F.; Yan, J. S.; Xue, X. L.; Han, Z. G.; Cui, S.; Zong, L. Y.; Zheng, D. M.; Shen, C.; Yu, H. T.; Zhai, X. L. Transition-metal ion modified monolacunary tungstates: Synthesis, structural characterization and property. Inorg. Chim. Acta 2014, 414, 46–52.

[57]

Wang, Y.; Peng, Y.; Xiao, L. N.; Hu, Y. Y.; Wang, L. M.; Gao, Z. M.; Wang, T. G.; Wu, F. Q.; Cui, X. B.; Xu, J. Q. New compounds constructed from polyoxometalates and transition metal coordination complexes with lower positive charge. CrystEngComm 2012, 14, 1049–1056.

[58]

Emirdag-Eanes, M.; Önen, B.; McMillen, C. D. Hydrothermal synthesis and characterization of one dimensional chain structures of monolacunary Keggin polyoxoanions substituted with copper. Inorg. Chim. Acta 2015, 427, 219–225.

[59]

Ci, P. C.; Zhang, Z.; Yang, B. F.; Li, X. X.; Yang, G. Y. A new 2-D inorganic-organic hybrid polyoxometalate based on mono-Cu-substituted [CuSiW11O39] n 6 n chains and [Cu(en)2]2+ bridges. J. Cluster Sci. 2017, 28, 1249–1257.

[60]

Suzuki, K.; Sato, R.; Minato, T.; Shinoe, M.; Yamaguchi, K.; Mizuno, N. A cascade approach to hetero-pentanuclear manganese-oxide clusters in polyoxometalates and their single-molecule magnet properties. Dalton Trans. 2015, 44, 14220–14226.

[61]

Winter, R. S.; Long, D. L.; Cronin, L. Synthesis and characterization of a series of [M2(β-SiW8O31)2] n clusters and mechanistic insight into the reorganization of {β-SiW8O31} into {α-SiW9O34}. Inorg. Chem. 2015, 54, 4151–4155.

[62]

Zhao, M.; Zhang, X. W.; Wu, C. D. Structural transformation of porous polyoxometalate frameworks and highly efficient biomimetic aerobic oxidation of aliphatic alcohols. ACS Catal. 2017, 7, 6573–6580.

[63]

Wang, K. P.; Yu, K.; Lv, J. H.; Zhang, M. L.; Meng, F. X.; Zhou, B. B. A host-guest supercapacitor electrode material based on a mixed hexa-transition metal sandwiched arsenotungstate chain and three-dimensional supramolecular metal-organic networks with one-dimensional cavities. Inorg. Chem. 2019, 58, 7947–7957.

[64]

Li, J.; Chen, H. H.; Liu, Y.; Ma, P. T. Synthesis and characterization of a novel organic-inorganic hybrid dimeric tungstoantimonate. Inorg. Chem. Commun. 2019, 106, 91–94.

[65]

Deng, W. P.; Zhang, Q. H.; Wang, Y. Polyoxometalates as efficient catalysts for transformations of cellulose into platform chemicals. Dalton Trans. 2012, 41, 9817–9831.

[66]

Sato, R.; Suzuki, K.; Minato, T.; Yamaguchi, K.; Mizuno, N. Sequential synthesis of 3d-3d'-4f heterometallic heptanuclear clusters in between lacunary polyoxometalates. Inorg. Chem. 2016, 55, 2023–2029.

[67]

Ding, Y. S.; Wang, H. Y.; Ding, Y. Visible-light-driven hydrogen evolution using a polyoxometalate-based copper molecular catalyst. Dalton Trans. 2020, 49, 3457–3462.

[68]

Hua, J. A.; Ma, X.; Ma, P. T.; Wang, J. P.; Niu, J. Y. Crystal Structure and magnetic property of a 2-D hexa-circular ring Cu(II)/Na(I)-substituted sandwich-type arsenotungstate. J. Cluster Sci. 2013, 24, 689–700.

[69]

Suzuki, K.; Minato, T.; Tominaga, N.; Okumo, I.; Yonesato, K.; Mizuno, N.; Yamaguchi, K. Hexavacant γ-Dawson-type phosphotungstates supporting an edge-sharing bis(square-pyramidal) {O2M(μ3-O)2(μ-OAc)MO2} core (M = Mn2+, Co2+, Ni2+, Cu2+, or Zn2+). Dalton Trans. 2019, 48, 7281–7289.

[70]

Su, Z. M.; Zhang, M.; An, Q. Q.; Qin, D.; Li, H. L.; Lv, H. J.; Jia, Z. Y.; Zhang, Q.; Yang, G. Y. Synthesis of two new copper-sandwiched polyoxotungstates and the influence of nuclear number on catalytic hydrogen evolution activity. New J. Chem. 2020, 44, 11035–11041.

[71]

Fang, W. H.; Wang, W. D.; Yang, G. Y. A novel poly(polyoxometalate) built by {Cu9}/{Cu5} clusters and {PW9}/{PW10}/{PW11} lacunary fragments. Dalton Trans. 2015, 44, 12546–12549.

[72]

Zhan, C. H.; Busche, C.; Long, D. L.; Molina, P. I.; Winter, R. S.; Cronin, L. Encapsulation of a {Cu16} cluster containing four [Cu4O4] cubanes within an isopolyoxometalate {W44} cluster. Chem. Commun. 2017, 53, 7076–7079.

[73]

Li, X. M.; Shi, T.; Chen, Y. G. Syntheses, crystal structures and properties of organic-inorganic hybrid compounds of 4,4′-bipyridine-decorated Ni/Cu-substituted molybdophosphates. J. Cluster Sci. 2016, 27, 457–468.

[74]

Tian, A. X.; Ni, H. P.; Tian, Y.; Ji, X. B.; Liu, G. C.; Ying, J. Two Keggin compounds constructed from tri-/tetra-nuclear Cu clusters linked mono copper(II)-substituted phosphomolybdates. Inorg. Chem. Commun. 2016, 68, 50–55.

[75]

Guo, Y.; Li, X. M.; Shi, T.; Li, C. H.; Chen, Y. G.; Wang, H. Y. Double-linked chain in POM-based hybrids. Synthesis, crystal structure and properties of an inorganic-organic compound. Inorg. Chem. Commun. 2016, 65, 49–53.

[76]

Hu, J. K.; Yu, X. Y.; Luo, Y. H.; Wang, X. F.; Yue, F. X.; Zhang, H. Hydrothermal syntheses and crystal structures of two novel inorganic-organic hybrid compounds based on saturated α-Keggin phosphomolybdate clusters. Inorg. Chem. Commun. 2013, 32, 37–41.

[77]

Lysenko, A. B.; Bondar, O. A.; Senchyk, G. A.; Rusanov, E. B.; Srebro-Hooper, M.; Hooper, J.; Prsa, K.; Krämer, K. W.; Decurtins, S.; Waldmann, O. et al. On the border between low-nuclearity and one-dimensional solids: A unique interplay of 1,2,4-triazolyl-based {CuII5(OH)2} clusters and MoVI-oxide matrix. Inorg. Chem. 2018, 57, 6076–6083.

[78]

Wang, Y.; Kong, X. P.; Xu, W.; Jiang, F. R.; Li, B.; Wu, L. X. Ratio-controlled precursors of Anderson-Evans polyoxometalates: Synthesis, structural transformation, and magnetic and catalytic properties of a series of triol ligand-decorated {M2Mo6} clusters (M = Cu2+, Co2+, Ni2+, Zn2+). Inorg. Chem. 2018, 57, 3731–3741.

[79]

Gao, Q.; Hu, D. H.; Duan, M. H.; Li, D. H.; Xu, J. M. A novel 2D organic-inorganic hybrid based on tetra-CuII substituted sandwich-type Mo/V-arsenite-based heteropolymolybdate with magnetic property and electrochemical sensing of ascorbic acid. J. Cluster Sci. 2019, 30, 727–733.

[80]

Healy, C.; Twamley, B.; Venkatesan, M.; Schmidt, S.; Gunnlaugsson, T.; Schmitt, W. Hetero-metallic, functionalizable polyoxomolybdate clusters via a "top-down" synthetic method. Chem. Commun. 2017, 53, 10660–10663.

[81]

Forster, J.; Rösner, B.; Fink, R. H.; Nye, L. C.; Ivanovic-Burmazovic, I.; Kastner, K.; Tucher, J.; Streb, C. Oxidation-driven self-assembly gives access to high-nuclearity molecular copper vanadium oxide clusters. Chem. Sci. 2013, 4, 418–424.

[82]

Kastner, K.; Margraf, J. T.; Clark, T.; Streb, C. A molecular placeholder strategy to access a family of transition-metal-functionalized vanadium oxide clusters. Chem.—Eur. J. 2014, 20, 12269–12273.

[83]

Villanneau, R.; Proust, A.; Robert, F. Synthesis and characterization of [NBu4]4[Ag2{Mo5O13(OMe)4(NO)}2], a novel polyoxomolybdate complex with a short AgI···AgI distance. Chem. Commun. 1998, 1491–1492.

[84]

Yonesato, K.; Ito, H.; Yokogawa, D.; Yamaguchi, K.; Suzuki, K. An ultrastable, small {Ag7}5+ nanocluster within a triangular hollow polyoxometalate framework. Angew. Chem., Int. Ed. 2020, 59, 16361–16365.

[85]

Rhule, J. T.; Neiwert, W. A.; Hardcastle, K. I.; Do, B. T.; Hill, C. L. Ag5PV2Mo10O40, a heterogeneous catalyst for air-based selective oxidation at ambient temperature. J. Am. Chem. Soc. 2001, 123, 12101–12102.

[86]

Nogueira, H. I. S.; Paz, F. A. A.; Teixeira, P. A. F.; Klinowski, J. One-dimensional silver(I) chain of lacunary α-Keggin anions. Chem. Commun. 2006, 2953–2955.

[87]

Cui, C. J.; Shi, D. Y.; Nie, Z. H.; Song, L. B.; Ren, A. H.; Liu, C. S. A novel Ag(I)-containing polyoxometalate-based MOF for visible-light-driven water oxidation. J. Cluster Sci. 2020, 31, 983–988.

[88]

Zeng, L.; Chen, Y. Q.; Liu, G. C.; Zhang, J. X. Large polytungstobismuthate aggregate linked by unusual silver-tungsten-bismuth cluster. J. Mol. Struct. 2009, 930, 176–179.

[89]

Han, Z. G.; Zhang, H. X.; Zhang, D. S.; Liu, C. N.; Zheng, R.; Xia, G. B.; Wang, X. X. Sandwich-type polyoxotungstate consisting of two different trilacunary Keggin-type units. Inorg. Chem. 2016, 55, 12488–12491.

[90]

Yoshida, A.; Nakagawa, Y.; Uehara, K.; Hikichi, S.; Mizuno, N. Inorganic cryptand: Size-selective strong metallic cation encapsulation by a disilicoicosatungstate (Si2W20) polyoxometalate. Angew. Chem., Int. Ed. 2009, 48, 7055–7058.

[91]

Kikukawa, Y.; Kuroda, Y.; Yamaguchi, K.; Mizuno, N. Diamond-shaped [Ag4]4+ cluster encapsulated by silicotungstate ligands: Synthesis and catalysis of hydrolytic oxidation of silanes. Angew. Chem., Int. Ed. 2012, 51, 2434–2437.

[92]

Kikukawa, Y.; Kuroda, Y.; Suzuki, K.; Hibino, M.; Yamaguchi, K.; Mizuno, N. A discrete octahedrally shaped [Ag6]4+ cluster encapsulated within silicotungstate ligands. Chem. Commun. 2013, 49, 376–378.

[93]

Wang, Q. M.; Lin, Y. M.; Liu, K. G. Role of anions associated with the formation and properties of silver clusters. Acc. Chem. Res. 2015, 48, 1570–1579.

[94]
Jiang, Z. G.; Shi, K.; Lin, Y. M.; Wang, Q. M. [Ag70(PW9O34)2( tBuC≡C)44(H2O)2]8+: Ionothermal synthesis of a silver cluster encapsulating lacunary polyoxometalate ions. Chem. Commun. 2014 , 50, 2353–2355.
[95]

Minato, T.; Suzuki, K.; Ohata, Y.; Yamaguchi, K.; Mizuno, N. A modular synthesis approach to multinuclear heterometallic oxo clusters in polyoxometalates. Chem. Commun. 2017, 53, 7533–7536.

[96]

Su, Y. M.; Wang, Z.; Zhuang, G. L.; Zhao, Q. Q.; Wang, X. P.; Tung, C. H.; Sun, D. Unusual fcc-structured Ag10 kernels trapped in Ag70 nanoclusters. Chem. Sci. 2019, 10, 564–568.

[97]

Zhan, C. H.; Zheng, Q.; Long, D. L.; Vilà-Nadal, L.; Cronin, L. Controlling the reactivity of the [P8W48O184]40- inorganic ring and its assembly into POMZite inorganic frameworks with silver ions. Angew. Chem., Int. Ed. 2019, 58, 17282–17286.

[98]

Shi, Z. Y.; Peng, J.; Li, Y. G.; Zhang, Z. Y.; Yu, X.; Alimaje, K.; Wang, X. Assembly of multinuclear Ag complexes and Keggin polyoxometalates adjusted by organic ligands: Syntheses, structures and luminescence. CrystEngComm 2013, 15, 7583–7588.

Polyoxometalates
Article number: 9140040
Cite this article:
Qian D-Q, Lin Y-D, Xiao H-P, et al. Advances in coinage-metal-substituted polyoxometalates: A review. Polyoxometalates, 2024, 3(1): 9140040. https://doi.org/10.26599/POM.2023.9140040

2379

Views

650

Downloads

8

Crossref

0

Scopus

Altmetrics

Received: 06 August 2023
Revised: 15 September 2023
Accepted: 28 September 2023
Published: 06 November 2023
© The Author(s) 2023. Published by Tsinghua University Press.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the original author(s) and the source, provide a link to the license, and indicate if changes were made. See http://creativecommons.org/licenses/by/4.0/

Return