AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (7.8 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Hexanuclear nickel-added silicotungstates as high-efficiency electrocatalysts for nitrate reduction to ammonia

Zhihui Ni ( )Ning LiuChunhui ZhaoLiwei Mi ( )
Center for Advanced Materials Research, Henan Key Laboratory of Functional Salt Materials, Zhongyuan University of Technology, Zhengzhou 450007, China
Show Author Information

Graphical Abstract

Abstract

Ammonia (NH3) is widely used in a wide range of fields because of its high energy density, and NH3 is simple to liquefy and transport. Nitrate is also a source of pollution of the environment and drinking water sources. Therefore, there is a pressing demand for the design and production of high-efficiency catalysts for the nitrate reduction reaction (NO3RR). Herein, two nickel-added polyoxometalates (NiAPs), namely, [Ni(en)2][Ni6(μ3-OH)3(en)3(H2O)6(B-α-SiW9O34)]2·6H2O (Ni6en) and [Ni(enMe)2(H2O)2][Ni6(μ3-OH)3(H2O)6(enMe)3(B-α-SiW9O34)]2·8H2O (Ni6enMe) (en = ethylenediamine, enMe = 1,2-diaminopropane), were effectively synthesized under hydrothermal conditions that contained several electrons and were used as electrocatalytic nitrate reduction reaction (e-NO3RR) catalysts. The structures of the compounds were characterized by using various instruments such as powder X-ray diffraction (PXRD) spectroscopy, infrared (IR) spectroscopy, thermogravimetric analysis (TGA), Brunauer–Emmett–Teller (BET) method, scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). e-NO3RR tests were performed using electrochemical workstation. Results show that Ni6en and Ni6enMe have high-efficient electrochemical catalytic nitrogen reduction to NH3. The highest NH3 yield rate for Ni6en was 3.66 mg∙h−1∙mgcat.−1 with Faradaic efficiency (FE) of 89.32%, whereas that for Ni6enMe was 3.46 mg∙h−1∙mgcat.−1 with FE of 86.75% at a low voltage (−0.5 V vs. reversible hydrogen electrode (RHE)). This finding creates a novel path for manufacturing highly effective NO3RR electrocatalysts using metal-added polyoxometalate as the catalyst in ambient settings. Furthermore, the findings of this research provide practical advice for creating effective electrocatalytic catalysts.

Electronic Supplementary Material

Download File(s)
0044_ESM.pdf (1,000.1 KB)

References

[1]
Shukla, S.; Saxena, A. Global status of nitrate contamination in groundwater: Its occurrence, health impacts, and mitigation measures. In Handbook of Environmental Materials Management; Hussain, C. M., Ed.; Springer: Cham, 2019; pp 869–888.
[2]

Hsini, A.; Naciri, Y.; Benafqir, M.; Ajmal, Z.; Aarab, N.; Laabd, M.; Navío, J. A.; Puga, F.; Boukherroub, R.; Bakiz, B. et al. Facile synthesis and characterization of a novel 1,2,4,5-benzene tetracarboxylic acid doped polyaniline@zinc phosphate nanocomposite for highly efficient removal of hazardous hexavalent chromium ions from water. J. Colloid Interface Sci. 2021, 585, 560–573.

[3]

Wang, L. S.; Fu, W. Z.; Zhuge, Y. P.; Wang, J.; Yao, F. F.; Zhong, W. Z.; Ge, X. H. Synthesis of polyoxometalates (POM)/TiO2/Cu and removal of nitrate nitrogen in water by photocatalysis. Chemosphere 2021, 278, 130298.

[4]

Rezvani, F.; Sarrafzadeh, M. H.; Ebrahimi, S.; Oh, H. M. Nitrate removal from drinking water with a focus on biological methods: A review. Environ. Sci. Pollut. Res. Int. 2019, 26, 1124–1141.

[5]

Hu, S. H.; Wu, Y. G.; Zhang, Y. J.; Zhou, B.; Xu, X. Nitrate removal from groundwater by heterotrophic/autotrophic denitrification using easily degradable organics and nano-zero valent iron as Co-electron donors. Water Air Soil Pollut. 2018, 229, 56.

[6]

Čorić, I.; Mercado, B. Q.; Bill, E.; Vinyard, D. J.; Holland, P. L. Binding of dinitrogen to an iron-sulfur-carbon site. Nature 2015, 526, 96–99.

[7]

Licht, S.; Cui, B. C.; Wang, B. H.; Li, F. F.; Lau, J.; Liu, S. Z. RETRACTED: Ammonia synthesis by N2 and steam electrolysis in molten hydroxide suspensions of nanoscale Fe2O3. Science 2014, 345, 637–642.

[8]

Guo, K. Y.; Yang, J.; Yu, N.; Luo, L.; Wang, E. T. Biological nitrogen fixation in cereal crops: progress, strategies, and perspectives. Plant Commun. 2023, 4, 100499.

[9]

Andersen, S. Z.; Statt, M. J.; Bukas, V. J.; Shapel, S. G.; Pedersen, J. B.; Krempl, K.; Saccoccio, M.; Chakraborty, D.; Kibsgaard, J.; Vesborg, P. C. K. et al. Increasing stability, efficiency, and fundamental understanding of lithium-mediated electrochemical nitrogen reduction. Energy Environ. Sci. 2020, 13, 4291–4300.

[10]

Xu, T.; Liang, J.; Wang, Y. Y.; Li, S. X.; Du, Z. B.; Li, T. S.; Liu, Q.; Luo, Y. L.; Zhang, F.; Shi, X. F. et al. Enhancing electrocatalytic N2-to-NH3 fixation by suppressing hydrogen evolution with alkylthiols modified Fe3P nanoarrays. Nano Res. 2022, 15, 1039–1046.

[11]

Zhao, X.; Hu, G. Z.; Chen, G. F.; Zhang, H. B.; Zhang, S. S.; Wang, H. H. Comprehensive understanding of the thriving ambient electrochemical nitrogen reduction reaction. Adv. Mater. 2021, 33, 2007650.

[12]

Wang, D. D.; Chen, Z. W.; Gu, K. Z.; Chen, C.; Liu, Y. Y.; Wei, X. X.; Singh, C. V.; Wang, S. Y. Hexagonal cobalt nanosheets for high-performance electrocatalytic NO reduction to NH3. J. Am. Chem. Soc. 2023, 145, 6899–6904.

[13]

Shi, M. M.; Bao, D.; Li, S. J.; Wulan, B. R.; Yan, J. M.; Jiang, Q. Anchoring PdCu amorphous nanocluster on graphene for electrochemical reduction of N2 to NH3 under ambient conditions in aqueous solution. Adv. Energy Mater. 2018, 8, 1800124.

[14]

Hu, B.; Hu, M. W.; Seefeldt, L.; Liu, T. L. Electrochemical dinitrogen reduction to ammonia by Mo2N: Catalysis or decomposition? ACS Energy Lett. 2019, 4, 1053–1054.

[15]

Andersen, S. Z.; Čolić, V.; Yang, S.; Schwalbe, J. A.; Nielander, A. C.; McEnaney, J. M.; Enemark-Rasmussen, K.; Baker, J. G.; Singh, A. R.; Rohr, B. A. et al. A rigorous electrochemical ammonia synthesis protocol with quantitative isotope measurements. Nature 2019, 570, 504–508.

[16]

Liu, Y. Q.; Huang, L.; Fang, Y. X.; Zhu, X. Y.; Dong, S. J. Achieving ultrahigh electrocatalytic NH3 yield rate on Fe-doped Bi2WO6 electrocatalyst. Nano Res. 2021, 14, 2711–2716.

[17]

Shen, H. D.; Yang, M. M.; Hao, L. D.; Wang, J. R.; Strunk, J.; Sun, Z. Y. Photocatalytic nitrogen reduction to ammonia: Insights into the role of defect engineering in photocatalysts. Nano Res. 2022, 15, 2773–2809.

[18]

Zhai, X. W.; Yan, H. X.; Ge, G. X.; Yang, J. M.; Chen, F.; Liu, X. Y.; Yang, D. Z.; Li, L. F.; Zhang, J. L. The single-Mo-atom-embedded-graphdiyne monolayer with ultra-low onset potential as high efficient electrocatalyst for N2 reduction reaction. Appl. Surf. Sci. 2020, 506, 144941.

[19]

Wang, W. K.; Zhang, S. B.; Liu, Y. Y.; Zheng, L. R.; Wang, G. Z.; Zhang, Y. X.; Zhang, H. M.; Zhao, H. J. Integration of Fe2O3-based photoanode and atomically dispersed cobalt cathode for efficient photoelectrochemical NH3 synthesis. Chin. Chem. Lett. 2021, 32, 805–810.

[20]

Li, X. H.; Xue, C.; Zhou, X. R.; Wei, Y. A.; Yu, Y. J.; Fu, Y.; Liu, W. J.; Lan, Y. Q. Polyoxometalate-derived bimetallic catalysts for the nitrogen reduction reaction. Mater. Chem. Front. 2023, 7, 720–727.

[21]

Huang, C. X.; Lv, S. Y.; Li, C.; Peng, B.; Li, G. L.; Yang, L. M. Single-atom catalysts based on two-dimensional metalloporphyrin monolayers for ammonia synthesis under ambient conditions. Nano Res. 2022, 15, 4039–4047.

[22]

Qi, J. M.; Zhou, S. L.; Xie, K.; Lin, S. Catalytic role of assembled Ce Lewis acid sites over ceria for electrocatalytic conversion of dinitrogen to ammonia. J. Energy Chem. 2021, 60, 249–258.

[23]

Zhao, Y. X.; Zhao, Y. F.; Shi, R.; Wang, B.; Waterhouse, G. I. N.; Wu, L. Z.; Tung, C. H.; Zhang, T. R. Tuning oxygen vacancies in ultrathin TiO2 nanosheets to boost photocatalytic nitrogen fixation up to 700 nm. Adv. Mater. 2019, 31, 1806482.

[24]

Shang, S. S.; Xiong, W.; Yang, C.; Johannessen, B.; Liu, R. G.; Hsu, H. Y.; Gu, Q. F.; Leung, M. K. H.; Shang, J. Atomically dispersed iron metal site in a porphyrin-based metal-organic framework for photocatalytic nitrogen fixation. ACS Nano 2021, 15, 9670–9678.

[25]

Jiao, F.; Xu, B. J. Electrochemical ammonia synthesis and ammonia fuel cells. Adv. Mater. 2019, 31, 1805173.

[26]

Liu, Q.; Xu, T.; Luo, Y. L.; Kong, Q. Q.; Li, T. S.; Lu, S. Y.; Alshehri, A. A.; Alzahrani, K. A.; Sun, X. P. Recent advances in strategies for highly selective electrocatalytic N2 reduction toward ambient NH3 synthesis. Curr. Opin. Electrochem. 2021, 29, 100766.

[27]

Chen, H. J.; Liang, J.; Dong, K.; Yue, L. C.; Li, T. S.; Luo, Y. S.; Feng, Z. S.; Li, N.; Hamdy, M. S.; Alshehri, A. A. et al. Ambient electrochemical N2-to-NH3 conversion catalyzed by TiO2 decorated juncus effusus-derived carbon microtubes. Inorg. Chem. Front. 2022, 9, 1514–1519.

[28]

Bastia, S.; Moses, Y. T.; Kumar, N.; Mishra, R. P.; Chaudhary, Y. S. Enhanced nitrogen reduction to ammonia by surface-and defect-engineered Co-catalyst-modified perovskite catalysts under ambient conditions and their charge carrier dynamics. ACS Appl. Mater. Interfaces 2023, 15, 13052–13063.

[29]

Ni, Z. H.; Lv, H. J.; Yang, G. Y. Recent advances of Ti/Zr-substituted polyoxometalates: From structural diversity to functional applications. Molecules 2022, 27, 8799.

[30]

Zhang, Z.; Wang, Y. L.; Li, H. L.; Sun, K. N.; Yang, G. Y. Syntheses, structures and properties of three organic-inorganic hybrid polyoxotungstates constructed from {Ni6PW9} building blocks: From isolated clusters to 2-D layers. CrystEngComm 2019, 21, 2641–2647.

[31]

Guan, Y.; Xiao, H. P.; Li, X. X.; Zheng, S. T. Recent advances on the synthesis, structure, and properties of polyoxotantalates. Polyoxometalates 2023, 2, 9140023.

[32]

Lai, Q. S.; Li, X. X.; Zheng, S. T. All-inorganic POM cages and their assembly: A review. Coordin. Chem. Rev. 2023, 482, 215077.

[33]

Sun, J. Y.; Wang, Z. L.; Zhang, Z.; Liu, G. C.; Wang, X. L. Hydrothermal synthesis, structure, and catalytic properties of a (4,6)-connected framework constructed from Keggin-type polyoxometalate units and tetranuclear copper complexes. Polyoxometalates 2024, 3, 9140039.

[34]

Zhang, Y.; Wang, X.; Wang, Y.; Xu, N.; Wang, X. L. Anderson-type polyoxometalate-based sandwich complexes bearing a new “V”-like bis-imidazole-bis-amide ligand as electrochemical sensors and catalysts for sulfide oxidation. Polyoxometalates 2022, 1, 9140004.

[35]

Yang, L.; Zhang, Z.; Zhang, C. N.; Li, S.; Liu, G. C.; Wang, X. L. An excellent multifunctional photocatalyst with a polyoxometalate-viologen framework for CEES oxidation, Cr(VI) reduction and dye decolorization under different light regimes. Inorg. Chem. Front. 2022, 9, 4824–4833.

[36]

Li, X. X.; Zhao, D.; Zheng, S. T. Recent advances in POM-organic frameworks and POM-organic polyhedra. Coord. Chem. Rev. 2019, 397, 220–240.

[37]

Li, H. L.; Lian, C.; Yang, G. Y. A Zr-added Dawson-type poly(polyoxometalate). Dalton Trans. 2023, 52, 857–861.

[38]
Li, H. L.; Lian, C.; Yang, G. Y. A new 4-Ti-added polyoxometalate. Tungsten, in press, DOI: 10.1007/s42864-023-00221-5.
[39]

Lian, C.; Li, H. L.; Yang, G. Y. A new 28-Ni-added poly(polyoxometalate) with B atoms: Synthesis, structure and catalysis for Knoevenagel condensation. Sci. China Chem. 2023, 66, 1394–1399.

[40]

Lai, R. D.; Zhang, J.; Li, X. X.; Zheng, S. T.; Yang, G. Y. Assemblies of increasingly large Ln-containing polyoxoniobates and intermolecular aggregation-disaggregation interconversions. J. Am. Chem. Soc. 2022, 144, 19603–19610.

[41]

Gao, L. Y.; Wang, F. T.; Yu, M. A.; Wei, F. F.; Qi, J. M.; Lin, S.; Xie, D. Q. A novel phosphotungstic acid-supported single metal atom catalyst with high activity and selectivity for the synthesis of NH3 from electrochemical N2 reduction: A DFT prediction. J. Mater. Chem. A 2019, 7, 19838–19845.

[42]

Lin, L. H.; Gao, L. Y.; Xie, K.; Jiang, R.; Lin, S. Ru-polyoxometalate as a single-atom electrocatalyst for N2 reduction to NH3 with high selectivity at applied voltage: A perspective from DFT studies. Phys. Chem. Chem. Phys. 2020, 22, 7234–7240.

[43]

Wang, X.; Yang, J.; Salla, M.; Xi, S. B.; Yang, Y.; Li, M. S.; Zhang, F. F.; Zhu, M. K.; Huang, S. P.; Huang, S. Q. et al. Redox-mediated ambient electrolytic nitrogen reduction for hydrazine and ammonia generation. Angew. Chem., Int. Ed. 2021, 60, 18721–18727.

[44]

Yang, X.; Li, M. H.; Xu, L.; Li, F. Y. Limitation of WO3 in Zn-Co3O4 nanopolyhedra by the pyrolysis of H3PW12O40@BMZIF: Synergistic effect of heterostructure and oxygen vacancies for enhanced nitrogen fixation. Inorg. Chem. 2023, 62, 8710–8718.

[45]

Li, X. H.; Li, H.; Jiang, S. L.; Yang, L.; Li, H. Y.; Liu, Q. L.; Bai, W.; Zhang, Q.; Xiao, C.; Xie, Y. Constructing mimic-enzyme catalyst: Polyoxometalates regulating carrier dynamics of metal-organic frameworks to promote photocatalytic nitrogen fixation. ACS Catal. 2023, 13, 7189–7198.

[46]

Su, S. D.; Li, X. M.; Liu, Z. Y.; Ding, W. M.; Cao, Y.; Yang, Y.; Su, Q.; Luo, M. Microchemical environmental regulation of POMs@MIL-101(Cr) promote photocatalytic nitrogen to ammonia. J. Colloid Interface Sci. 2023, 646, 547–554.

[47]

Yin, H. Q.; Yang, L. L.; Sun, H.; Wang, H.; Wang, Y. J.; Zhang, M.; Lu, T. B.; Zhang, Z. M. W/Mo-polyoxometalate-derived electrocatalyst for high-efficiency nitrogen fixation. Chin. Chem. Lett. 2023, 34, 107337.

[48]

Yang, M. L.; Wang, X. M.; Gómez-García, C. J.; Jin, Z. X.; Xin, J. J.; Cao, X. X.; Ma, H. Y.; Pang, H. J.; Tan, L. C.; Yang, G. X. et al. Efficient electron transfer from an electron-reservoir polyoxometalate to dual-metal-site metal-organic frameworks for highly efficient electroreduction of nitrogen. Adv. Funct. Mater. 2023, 33, 2214495.

[49]

Ye, S. H.; Chen, Z. D.; Zhang, G. K.; Chen, W. D.; Peng, C.; Yang, X. Y.; Zheng, L. R.; Li, Y. L.; Ren, X. Z.; Cao, H. Q. et al. Elucidating the activity, mechanism and application of selective electrosynthesis of ammonia from nitrate on cobalt phosphide. Energy Environ. Sci. 2022, 15, 760–770.

[50]

Hervé, G.; Tézé, A. Study of ɑ- and β-enneatungstosilicates and-germanates. Inorg. Chem. 1977, 16, 2115–2117.

[51]
Sheldrick, G. M. SHELXS-97, program for X-ray crystal structure solution; University of Göttingen, Germany, 1997.
[52]

Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. Sec. C Struct. Chem. 2015, C71, 3–8.

[53]

Xu, L. J.; Zhou, W. Z.; Zhang, L. Y.; Li, B.; Zang, H. Y.; Wang, Y. H.; Li, Y. G. Organic-inorganic hybrid assemblies based on Ti-substituted polyoxometalates for photocatalytic dye degradation. CrystEngComm 2015, 17, 3708–3714.

[54]

Wang, X. Y.; Bai, J. W.; Wang, Y. T.; Lu, X. Y.; Zou, Z. H.; Huang, J. F.; Xu, C. L. Sulfur vacancies-doped Sb2S3 nanorods as high-efficient electrocatalysts for dinitrogen fixation under ambient conditions. Green Energy Environ. 2022, 7, 755–762.

[55]

Li, Y. S.; Wang, H. Y.; Chang, B.; Guo, Y. Y.; Li, Z. Y.; Talib, S. H.; Lu, Z. S.; Wang, J. J. Intercalation assisted liquid phase production of disulfide zirconium nanosheets for efficient electrocatalytic dinitrogen reduction to ammonia. Green Energy Environ. 2023, 8, 1174–1184.

[56]

Wan, Y. C.; Zhou, H. J.; Zheng, M. Y.; Huang, Z. H.; Kang, F. Y.; Li, J.; Lv, R. T. Oxidation state modulation of bismuth for efficient electrocatalytic nitrogen reduction to ammonia. Adv. Funct. Mater. 2021, 31, 2100300.

[57]

Zhao, J. W.; Jia, H. P.; Zhang, J.; Zheng, S. T.; Yang, G. Y. A combination of lacunary polyoxometalates and high-nuclear transition-metal clusters under hydrothermal conditions. Part II: From double cluster, dimer, and tetramer to three-dimensional frameworks. Chem.—Eur. J. 2007, 13, 10030–10045.

[58]

Li, Q. L.; Zhang, Y. P.; Wang, X. X.; Yang, Y. Dual interface-engineered tin heterostructure for enhanced ambient ammonia electrosynthesis. ACS Appl. Mater. Interfaces 2021, 13, 15270–15278.

[59]

Zheng, S. T.; Yuan, D. Q.; Jia, H. P.; Zhang, J.; Yang, G. Y. Combination between lacunary polyoxometalates and high-nuclear transition metal clusters under hydrothermal conditions: I. from isolated cluster to 1-D chain. Chem. Commun. 2007, 1858–1860.

[60]

Liu, Y.; Zhang, Z.; Li, X. Y.; Yang, G. Y. A Ni11-cluster sandwiched phosphotungstate supported by Ni(H2O)5 group. Inorg. Chem. Commun. 2020, 113, 107765.

[61]

Ni, Z. H.; Li, H. L.; Li, X. Y.; Yang, G. Y. Zr4-substituted polyoxometalate dimers decorated by D-tartaric acid/glycolic acid: Syntheses, structures and optical/electrochemical properties. CrystEngComm 2019, 21, 876–883.

[62]

Tong, Y. Y.; Guo, H. P.; Liu, D. L.; Yan, X.; Su, P. P.; Liang, J.; Zhou, S.; Liu, J.; Lu, G. Q.; Dou, S. X. Vacancy engineering of iron-doped W18O49 nanoreactors for low-barrier electrochemical nitrogen reduction. Angew. Chem., Int. Ed. 2020, 59, 7356–7361.

[63]

Romanyuk, O.; Gordeev, I.; Paszuk, A.; Supplie, O.; Stoeckmann, J. P.; Houdkova, J.; Ukraintsev, E.; Bartoš, I.; Jiříček, P.; Hannappel, T. GaP/Si(0 0 1) interface study by XPS in combination with Ar gas cluster ion beam sputtering. Appl. Surf. Sci. 2020, 514, 145903.

[64]

Bagus, P. S.; Nelin, C. J.; Brundle, C. R.; Crist, B. V.; Ilton, E. S.; Lahiri, N.; Rosso, K. M. Main and satellite features in the Ni 2p XPS of NiO. Inorg. Chem. 2022, 61, 18077–18094.

[65]

Feng, Z. M.; Li, G.; Wang, X. M.; Gómez-García, C. J.; Xin, J. J.; Ma, H. Y.; Pang, H. J.; Gao, K. Q. FeS2/MoS2@RGO hybrid materials derived from polyoxomolybdate-based metal-organic frameworks as high-performance electrocatalyst for ammonia synthesis under ambient conditions. Chem. Eng. J. 2022, 445, 136797.

Polyoxometalates
Article number: 9140044
Cite this article:
Ni Z, Liu N, Zhao C, et al. Hexanuclear nickel-added silicotungstates as high-efficiency electrocatalysts for nitrate reduction to ammonia. Polyoxometalates, 2024, 3(1): 9140044. https://doi.org/10.26599/POM.2023.9140044

2588

Views

409

Downloads

6

Crossref

Altmetrics

Received: 29 August 2023
Revised: 29 October 2023
Accepted: 21 November 2023
Published: 08 December 2023
© The Author(s) 2023. Published by Tsinghua University Press.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the original author(s) and the source, provide a link to the license, and indicate if changes were made. See http://creativecommons.org/licenses/by/4.0/

Return