AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (5.8 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Metal ion-induced alloying and size transformation of water-soluble metal nanoclusters

Shuyu Qian1Fengyu Liu2Haiguang Zhu1Yong Liu1Ting Feng1Xinyue Dou1Xun Yuan1 ( )
School of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
Sino-German Institute of Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
Show Author Information

Graphical Abstract

Abstract

The development of novel strategies for the synthesis of water-soluble alloy nanoclusters (NCs) and investigations of their alloying mechanisms are highly desirable. Herein, we report the design of a metal ion-induced alloying strategy for the synthesis of atomically precise water-soluble alloy NCs. The transformation of Au15(GSH)13 NCs as model seeds (here GSH denotes water-soluble glutathione) into Au18−xAgx(GSH)14 NCs was triggered using Ag(I) ions; subsequently, Au(III) ions were employed to convert the variable-composition Au18−xAgx(GSH)14 NCs into fixed-composition alloy Au26Ag(GSH)17Cl2 NCs. Monitoring of the alloying process showed that the formation of Au18−xAgx(GSH)14 NCs proceeds through the two electron-hopping events (2e Au15 → 2e (AuAg)15–17 → 4e (AuAg)18–19 → 4e (AuAg)18), whereas the transformation of (AuAg)18 into Au26Ag mainly involved the formation of intermediate species Au26(GSH)17Cln (n = 0–2). Moreover, we determined that the single Ag atom in Au26Ag NCs resides on the NC surface. This study not only provides a novel strategy for the synthesis of water-soluble alloy NCs but also contributes to the fundamental understanding of the alloying mechanism of metal NCs.

Electronic Supplementary Material

Download File(s)
0049_ESM.pdf (1.4 MB)

References

[1]

Du, Y. X.; Sheng, H. T.; Astruc, D.; Zhu, M. Z. Atomically precise noble metal nanoclusters as efficient catalysts: A bridge between structure and properties. Chem. Rev. 2020, 120, 526–622.

[2]

Narouz, M. R.; Osten, K. M.; Unsworth, P. J.; Man, R. W. Y.; Salorinne, K.; Takano, S.; Tomihara, R.; Kaappa, S.; Malola, S.; Dinh, C. T. et al. N-Heterocyclic carbene-functionalized magic-number gold nanoclusters. Nat. Chem. 2019, 11, 419–425.

[3]

Qin, L. B.; Sun, F.; Ma, X. S.; Ma, G. Y.; Tang, Y.; Wang, L. K.; Tang, Q.; Jin, R. C.; Tang, Z. H. Homoleptic alkynyl-protected Ag15 nanocluster with atomic precision: Structural analysis and electrocatalytic performance toward CO2 reduction. Angew. Chem., Int. Ed. 2021, 60, 26136–26141.

[4]

Yuan, S. F.; Lei, Z.; Guan, Z. J.; Wang, Q. M. Atomically precise preorganization of open metal sites on gold nanoclusters with high catalytic performance. Angew. Chem., Int. Ed. 2021, 60, 5225–5229.

[5]

Qin, R. X.; Liu, K. L.; Wu, Q. Y.; Zheng, N. F. Surface coordination chemistry of atomically dispersed metal catalysts. Chem. Rev. 2020, 120, 11810–11899.

[6]

Zhu, X.; Chen, L. Y.; Liu, Y. G.; Tang, Z. H. Atomically precise Au nanoclusters for electrochemical hydrogen evolution catalysis: Progress and perspectives. Polyoxometalates 2023, 2, 9140031.

[7]

Zhang, Y.; Wang, X.; Wang, Y.; Xu, N.; Wang, X. L. Anderson-type polyoxometalate-based sandwich complexes bearing a new “V”-like bis-imidazole-bis-amide ligand as electrochemical sensors and catalysts for sulfide oxidation. Polyoxometalates 2022, 1, 9140004.

[8]

Sun, Y. N.; Pei, W.; Xie, M. C.; Xu, S.; Zhou, S.; Zhao, J. J.; Xiao, K.; Zhu, Y. Excitonic Au4Ru2(PPh3)2(SC2H4Ph)8 cluster for light-driven dinitrogen fixation. Chem. Sci. 2020, 11, 2440–2447.

[9]

Zhang, H.; Liu, H.; Tian, Z. Q.; Lu, D.; Yu, Y.; Cestellos-Blanco, S.; Sakimoto, K. K.; Yang, P. D. Bacteria photosensitized by intracellular gold nanoclusters for solar fuel production. Nat. Nanotechnol. 2018, 13, 900–905.

[10]

Wang, X. N.; Zhao, L. M.; Li, X. J.; Liu, Y.; Wang, Y. S.; Yao, Q. F.; Xie, J. P.; Xue, Q. Z.; Yan, Z. F.; Yuan, X. et al. Atomic-precision Pt6 nanoclusters for enhanced hydrogen electro-oxidation. Nat. Commun. 2022, 13, 1596.

[11]

Kawawaki, T.; Kataoka, Y.; Hirata, M.; Akinaga, Y.; Takahata, R.; Wakamatsu, K.; Fujiki, Y.; Kataoka, M.; Kikkawa, S.; Alotabi, A. S. et al. Creation of high-performance heterogeneous photocatalysts by controlling ligand desorption and particle size of gold nanocluster. Angew. Chem., Int. Ed. 2021, 60, 21340–21350.

[12]

Wang, X. N.; Tong, Y. F.; Feng, W. T.; Liu, P. Y.; Li, X. J.; Cui, Y. P.; Cai, T. H.; Zhao, L. M.; Xue, Q. Z.; Yan, Z. F. et al. Embedding oxophilic rare-earth single atom in platinum nanoclusters for efficient hydrogen electro-oxidation. Nat. Commun. 2023, 14, 3767.

[13]

Zhang, F. J.; Gao, Y. B.; Lu, P.; Zhong, Y.; Liu, Y.; Bao, X. Y.; Xu, Z. H.; Lu, M.; Wu, Y. J.; Chen, P. et al. Engineering of hole transporting interface by incorporating the atomic-precision Ag6 nanoclusters for high-efficiency blue perovskite light-emitting diodes. Nano Lett. 2023, 23, 1582–1590.

[14]

Lin, Z. K.; Goswami, N.; Xue, T. T.; Chai, O. J. H.; Xu, H. J.; Liu, Y. X.; Su, Y.; Xie, J. P. Engineering metal nanoclusters for targeted therapeutics: From targeting strategies to therapeutic applications. Adv. Funct. Mater. 2021, 31, 2105662.

[15]

Jiang, X. Y.; Du, B. J.; Huang, Y. Y.; Zheng, J. Ultrasmall noble metal nanoparticles: Breakthroughs and biomedical implications. Nano Today 2018, 21, 106–125.

[16]

Liu, H. L.; Li, Y. H.; Sun, S.; Xin, Q.; Liu, S. H.; Mu, X. Y.; Yuan, X.; Chen, K.; Wang, H.; Varga, K. et al. Catalytically potent and selective clusterzymes for modulation of neuroinflammation through single-atom substitutions. Nat. Commun. 2021, 12, 114.

[17]

Yang, G.; Wang, Z. P.; Du, F. L.; Jiang, F. Y.; Yuan, X.; Ying, J. Y. Ultrasmall coinage metal nanoclusters as promising theranostic probes for biomedical applications. J. Am. Chem. Soc. 2023, 145, 11879–11898.

[18]

Wang, X. J.; Yin, B.; Jiang, L. R.; Yang, C.; Liu, Y.; Zou, G.; Chen, S.; Zhu, M. Z. Ligand-protected metal nanoclusters as low-loss, highly polarized emitters for optical waveguides. Science 2023, 381, 784–790.

[19]

Qian, S. Y.; Wang, Z. P.; Zuo, Z. X.; Wang, X. M.; Wang, Q.; Yuan, X. Engineering luminescent metal nanoclusters for sensing applications. Coord. Chem. Rev. 2022, 451, 214268.

[20]

Xiao, Y.; Wu, Z. N.; Yao, Q. F.; Xie, J. P. Luminescent metal nanoclusters: Biosensing strategies and bioimaging applications. Aggregate 2021, 2, 114–132.

[21]

Liu, X.; Saranya, G.; Huang, X. Y.; Cheng, X. L.; Wang, R.; Chen, M. Y.; Zhang, C. F.; Li, T.; Zhu, Y. Ag2Au50(PET)36 nanocluster: Dimeric assembly of Au25(PET)18 enabled by silver atoms. Angew. Chem., Int. Ed. 2020, 59, 13941–13946.

[22]

Zhang, M. M.; Dong, X. Y.; Wang, Z. Y.; Li, H. Y.; Li, S. J.; Zhao, X. L.; Zang, S. Q. AIE triggers the circularly polarized luminescence of atomically precise enantiomeric copper(I) alkynyl clusters. Angew. Chem., Int. Ed. 2020, 59, 10052–10058.

[23]

Yang, J. S.; Han, Z.; Dong, X. Y.; Luo, P.; Mo, H. L.; Zang, S. Q. Extra silver atom triggers room-temperature photoluminescence in atomically precise radarlike silver clusters. Angew. Chem., Int. Ed. 2020, 59, 11898–11902.

[24]

Xiang, H. X.; Yan, H.; Liu, J. H.; Cheng, R. R.; Xu, C. Q.; Li, J.; Yao, C. H. Identifying the real chemistry of the synthesis and reversible transformation of AuCd bimetallic clusters. J. Am. Chem. Soc. 2022, 144, 14248–14257.

[25]

Zhou, Y.; Liao, L. W.; Zhuang, S. L.; Zhao, Y.; Gan, Z. B.; Gu, W. M.; Li, J.; Deng, H. T.; Xia, N.; Wu, Z. K. Traceless removal of two kernel atoms in a gold nanocluster and its impact on photoluminescence. Angew. Chem., Int. Ed. 2021, 60, 8668–8672.

[26]

Shi, Y. E.; Ma, J. Z.; Feng, A. R.; Wang, Z. G.; Rogach, A. L. Aggregation-induced emission of copper nanoclusters. Aggregate 2021, 2, e112.

[27]

Zhou, M.; Higaki, T.; Hu, G. X.; Sfeir, M. Y.; Chen, Y. X.; Jiang, D. E.; Jin, R. C. Three-orders-of-magnitude variation of carrier lifetimes with crystal phase of gold nanoclusters. Science 2019, 364, 279–282.

[28]

Li, Q. Z.; Tan, Y. S.; Huang, B. Y.; Yang, S.; Chai, J. S.; Wang, X. P.; Pei, Y.; Zhu, M. Z. Mechanistic study of the hydride migration-induced reversible isomerization in Au22(SR)15H isomers. J. Am. Chem. Soc. 2023, 145, 15859–15868.

[29]

Jia, T.; Guan, Z. J.; Zhang, C.; Zhu, X. Z.; Chen, Y. X.; Zhang, Q.; Yang, Y.; Sun, D. Eight-electron superatomic Cu31 nanocluster with chiral kernel and NIR-II emission. J. Am. Chem. Soc. 2023, 145, 10355–10363.

[30]

Yao, Q. F.; Liu, L. M.; Malola, S.; Ge, M.; Xu, H. Y.; Wu, Z. N.; Chen, T. K.; Cao, Y. T.; Matus, M. F.; Pihlajamäki, A. et al. Supercrystal engineering of atomically precise gold nanoparticles promoted by surface dynamics. Nat. Chem. 2023, 15, 230–239.

[31]

Zhong, Y.; Zhang, J. W.; Li, T. T.; Xu, W. W.; Yao, Q. F.; Lu, M.; Bai, X.; Wu, Z. N.; Xie, J. P.; Zhang, Y. Suppression of kernel vibrations by layer-by-layer ligand engineering boosts photoluminescence efficiency of gold nanoclusters. Nat. Commun. 2023, 14, 658.

[32]

Shi, J. Y.; Kumar Gupta, R.; Deng, Y. K.; Sun, D.; Wang, Z. Recent advances in the asymmetrical templation effect of polyoxometalate in silver clusters. Polyoxometalates 2022, 1, 9140010.

[33]

Wang, Z. P.; Pan, X. X.; Qian, S. Y.; Yang, G.; Du, F. L.; Yuan, X. The beauty of binary phases: A facile strategy for synthesis, processing, functionalization, and application of ultrasmall metal nanoclusters. Coord. Chem. Rev. 2021, 438, 213900.

[34]

Khatun, E.; Bodiuzzaman, M.; Sugi, K. S.; Chakraborty, P.; Paramasivam, G.; Dar, W. A.; Ahuja, T.; Antharjanam, S.; Pradeep, T. Confining an Ag10 core in an Ag12 shell: A four-electron superatom with enhanced photoluminescence upon crystallization. ACS Nano 2019, 13, 5753–5759.

[35]

Liu, J. W.; Feng, L.; Su, H. F.; Wang, Z.; Zhao, Q. Q.; Wang, X. P.; Tung, C. H.; Sun, D.; Zheng, L. S. Anisotropic assembly of Ag52 and Ag76 nanoclusters. J. Am. Chem. Soc. 2018, 140, 1600–1603.

[36]

He, L. Z.; Gan, Z. B.; Xia, N.; Liao, L. W.; Wu, Z. K. Alternating array stacking of Ag26Au and Ag24Au nanoclusters. Angew. Chem., Int. Ed. 2019, 58, 9897–9901.

[37]

Song, Y. B.; Li, Y. W.; Li, H.; Ke, F.; Xiang, J.; Zhou, C. J.; Li, P.; Zhu, M. Z.; Jin, R. C. Atomically resolved Au52Cu72(SR)55 nanoalloy reveals marks decahedron truncation and penrose tiling surface. Nat. Commun. 2020, 11, 478.

[38]

Kim, K.; Hirata, K.; Nakamura, K.; Kitazawa, H.; Hayashi, S.; Koyasu, K.; Tsukuda, T. Elucidating the doping effect on the electronic structure of thiolate-protected silver superatoms by photoelectron spectroscopy. Angew. Chem., Int. Ed. 2019, 58, 11637–11641.

[39]

Ma, X.; Xiong, L.; Qin, L.; Tang, Y.; Ma, G.; Pei, Y.; Tang, Z. A homoleptic alkynyl-protected [Ag9Cu6( t BuC≡C)12]+ superatom with free electrons: Synthesis, structure analysis, and different properties compared with the Au7Ag8 cluster in the M15+ series. Chem. Sci. 2021, 12, 12819–12826.

[40]

Liu, W. D.; Wang, J. Q.; Yuan, S. F.; Chen, X.; Wang, Q. M. Chiral superatomic nanoclusters Ag47 induced by the ligation of amino acids. Angew. Chem., Int. Ed. 2021, 60, 11430–11435.

[41]

Chevrier, D. M.; Raich, L.; Rovira, C.; Das, A.; Luo, Z. T.; Yao, Q. F.; Chatt, A.; Xie, J. P.; Jin, R. C.; Akola, J. et al. Molecular-scale ligand effects in small gold-thiolate nanoclusters. J. Am. Chem. Soc. 2018, 140, 15430–15436.

[42]

Zhang, X. L.; Wang, Z. P.; Qian, S. Y.; Liu, N. W.; Sui, L.; Yuan, X. Effect of subtle changes of isomeric ligands on the synthesis of atomically precise water-soluble gold nanoclusters. Nanoscale 2020, 12, 6449–6455.

[43]

Bera, D.; Baruah, M.; Dehury, A. K.; Samanta, A.; Chaudhary, Y. S.; Goswami, N. Depletion driven assembly of ultrasmall metal nanoclusters: From kinetically arrested assemblies to thermodynamically stable, spherical superclusters. J. Phys. Chem. Lett. 2022, 13, 9411–9421.

[44]

Pyo, K.; Ly, N. H.; Yoon, S. Y.; Shen, Y. M.; Choi, S. Y.; Lee, S. Y.; Joo, S. W.; Lee, D. Highly luminescent folate-functionalized Au22 nanoclusters for bioimaging. Adv. Healthc. Mater. 2017, 6, 1700203.

[45]

Zhou, T. Y.; Zhu, J. Y.; Gong, L. S.; Nong, L. T.; Liu, J. B. Amphiphilic block copolymer-guided in situ fabrication of stable and highly controlled luminescent copper nanoassemblies. J. Am. Chem. Soc. 2019, 141, 2852–2856.

[46]

Loynachan, C. N.; Soleimany, A. P.; Dudani, J. S.; Lin, Y. Y.; Najer, A.; Bekdemir, A.; Chen, Q.; Bhatia, S. N.; Stevens, M. M. Renal clearable catalytic gold nanoclusters for in vivo disease monitoring. Nat. Nanotechnol. 2019, 14, 883–890.

[47]

Kang, X.; Zhu, M. Z. Tailoring the photoluminescence of atomically precise nanoclusters. Chem. Soc. Rev. 2019, 48, 2422–2457.

[48]

Hossain, S.; Niihori, Y.; Nair, L. V.; Kumar, B.; Kurashige, W.; Negishi, Y. Alloy clusters: Precise synthesis and mixing effects. Acc. Chem. Res. 2018, 51, 3114–3124.

[49]

Wang, S. X.; Li, Q.; Kang, X.; Zhu, M. Z. Customizing the structure, composition, and properties of alloy nanoclusters by metal exchange. Acc. Chem. Res. 2018, 51, 2784–2792.

[50]

Yuan, X.; Dou, X. Y.; Zheng, K. Y.; Xie, J. P. Recent advances in the synthesis and applications of ultrasmall bimetallic nanoclusters. Part. Part. Syst. Charact. 2015, 32, 613–629.

[51]

Zheng, K. Y.; Fung, V.; Yuan, X.; Jiang, D. E.; Xie, J. P. Real time monitoring of the dynamic intracluster diffusion of single gold atoms into silver nanoclusters. J. Am. Chem. Soc. 2019, 141, 18977–18983.

[52]

Yao, Q. F.; Feng, Y.; Fung, V.; Yu, Y.; Jiang, D. E.; Yang, J.; Xie, J. P. Precise control of alloying sites of bimetallic nanoclusters via surface motif exchange reaction. Nat. Commun. 2017, 8, 1555.

[53]

Wang, Z. P.; Zhu, Z. L.; Zhao, C. K.; Yao, Q. F.; Li, X. Y.; Liu, H. Y.; Du, F. L.; Yuan, X.; Xie, J. P. Silver doping-induced luminescence enhancement and red-shift of gold nanoclusters with aggregation-induced emission. Chem.—Asian J. 2019, 14, 765–769.

[54]

Yao, Q. F.; Yu, Y.; Yuan, X.; Yu, Y.; Xie, J. P.; Lee, J. Y. Two-phase synthesis of small thiolate-protected Au15 and Au18 nanoclusters. Small 2013, 9, 2696–2701.

[55]

Goswami, N.; Yao, Q. F.; Luo, Z. T.; Li, J. G.; Chen, T. K.; Xie, J. P. Luminescent metal nanoclusters with aggregation-induced emission. J. Phys. Chem. Lett. 2016, 7, 962–975.

[56]

Chen, S.; Wang, S. X.; Zhong, J.; Song, Y. B.; Zhang, J.; Sheng, H. T.; Pei, Y.; Zhu, M. Z. The structure and optical properties of the [Au18(SR)14] nanocluster. Angew. Chem., Int. Ed. 2015, 54, 3145–3149.

[57]

Gan, Z. B.; Xia, N.; Wu, Z. K. Discovery, mechanism, and application of antigalvanic reaction. Acc. Chem. Res. 2018, 51, 2774–2783.

[58]

Luo, Z. T.; Nachammai, V.; Zhang, B.; Yan, N.; Leong, D. T.; Jiang, D. E.; Xie, J. P. Toward understanding the growth mechanism: Tracing all stable intermediate species from reduction of Au(I)-thiolate complexes to evolution of Au25 nanoclusters. J. Am. Chem. Soc. 2014, 136, 10577–10580.

[59]

Yao, Q. F.; Yuan, X.; Fung, V.; Yu, Y.; Leong, D. T.; Jiang, D. E.; Xie, J. P. Understanding seed-mediated growth of gold nanoclusters at molecular level. Nat. Commun. 2017, 8, 927.

[60]

Yuan, X.; Chng, L. L.; Yang, J. H.; Ying, J. Y. Miscible-solvent-assisted two-phase synthesis of monolayer-ligand-protected metal nanoclusters with various sizes. Adv. Mater. 2020, 32, 1906063.

[61]

Yu, Y.; Yao, Q. F.; Chen, T. K.; Lim, G. X.; Xie, J. P. The innermost three gold atoms are indispensable to maintain the structure of the Au18(SR)14 cluster. J. Phys. Chem. C 2016, 120, 22096–22102.

Polyoxometalates
Article number: 9140049
Cite this article:
Qian S, Liu F, Zhu H, et al. Metal ion-induced alloying and size transformation of water-soluble metal nanoclusters. Polyoxometalates, 2023, 2(4): 9140049. https://doi.org/10.26599/POM.2023.9140049

1929

Views

318

Downloads

2

Crossref

0

Scopus

Altmetrics

Received: 16 October 2023
Revised: 24 November 2023
Accepted: 27 November 2023
Published: 11 December 2023
© The Author(s) 2023. Polyoxometalates published by Tsinghua University Press.

The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Return