Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
The development of novel strategies for the synthesis of water-soluble alloy nanoclusters (NCs) and investigations of their alloying mechanisms are highly desirable. Herein, we report the design of a metal ion-induced alloying strategy for the synthesis of atomically precise water-soluble alloy NCs. The transformation of Au15(GSH)13 NCs as model seeds (here GSH denotes water-soluble glutathione) into Au18−xAgx(GSH)14 NCs was triggered using Ag(I) ions; subsequently, Au(III) ions were employed to convert the variable-composition Au18−xAgx(GSH)14 NCs into fixed-composition alloy Au26Ag(GSH)17Cl2 NCs. Monitoring of the alloying process showed that the formation of Au18−xAgx(GSH)14 NCs proceeds through the two electron-hopping events (2e− Au15 → 2e− (AuAg)15–17 → 4e− (AuAg)18–19 → 4e− (AuAg)18), whereas the transformation of (AuAg)18 into Au26Ag mainly involved the formation of intermediate species Au26(GSH)17Cln (n = 0–2). Moreover, we determined that the single Ag atom in Au26Ag NCs resides on the NC surface. This study not only provides a novel strategy for the synthesis of water-soluble alloy NCs but also contributes to the fundamental understanding of the alloying mechanism of metal NCs.
Du, Y. X.; Sheng, H. T.; Astruc, D.; Zhu, M. Z. Atomically precise noble metal nanoclusters as efficient catalysts: A bridge between structure and properties. Chem. Rev. 2020, 120, 526–622.
Narouz, M. R.; Osten, K. M.; Unsworth, P. J.; Man, R. W. Y.; Salorinne, K.; Takano, S.; Tomihara, R.; Kaappa, S.; Malola, S.; Dinh, C. T. et al. N-Heterocyclic carbene-functionalized magic-number gold nanoclusters. Nat. Chem. 2019, 11, 419–425.
Qin, L. B.; Sun, F.; Ma, X. S.; Ma, G. Y.; Tang, Y.; Wang, L. K.; Tang, Q.; Jin, R. C.; Tang, Z. H. Homoleptic alkynyl-protected Ag15 nanocluster with atomic precision: Structural analysis and electrocatalytic performance toward CO2 reduction. Angew. Chem., Int. Ed. 2021, 60, 26136–26141.
Yuan, S. F.; Lei, Z.; Guan, Z. J.; Wang, Q. M. Atomically precise preorganization of open metal sites on gold nanoclusters with high catalytic performance. Angew. Chem., Int. Ed. 2021, 60, 5225–5229.
Qin, R. X.; Liu, K. L.; Wu, Q. Y.; Zheng, N. F. Surface coordination chemistry of atomically dispersed metal catalysts. Chem. Rev. 2020, 120, 11810–11899.
Zhu, X.; Chen, L. Y.; Liu, Y. G.; Tang, Z. H. Atomically precise Au nanoclusters for electrochemical hydrogen evolution catalysis: Progress and perspectives. Polyoxometalates 2023, 2, 9140031.
Zhang, Y.; Wang, X.; Wang, Y.; Xu, N.; Wang, X. L. Anderson-type polyoxometalate-based sandwich complexes bearing a new “V”-like bis-imidazole-bis-amide ligand as electrochemical sensors and catalysts for sulfide oxidation. Polyoxometalates 2022, 1, 9140004.
Sun, Y. N.; Pei, W.; Xie, M. C.; Xu, S.; Zhou, S.; Zhao, J. J.; Xiao, K.; Zhu, Y. Excitonic Au4Ru2(PPh3)2(SC2H4Ph)8 cluster for light-driven dinitrogen fixation. Chem. Sci. 2020, 11, 2440–2447.
Zhang, H.; Liu, H.; Tian, Z. Q.; Lu, D.; Yu, Y.; Cestellos-Blanco, S.; Sakimoto, K. K.; Yang, P. D. Bacteria photosensitized by intracellular gold nanoclusters for solar fuel production. Nat. Nanotechnol. 2018, 13, 900–905.
Wang, X. N.; Zhao, L. M.; Li, X. J.; Liu, Y.; Wang, Y. S.; Yao, Q. F.; Xie, J. P.; Xue, Q. Z.; Yan, Z. F.; Yuan, X. et al. Atomic-precision Pt6 nanoclusters for enhanced hydrogen electro-oxidation. Nat. Commun. 2022, 13, 1596.
Kawawaki, T.; Kataoka, Y.; Hirata, M.; Akinaga, Y.; Takahata, R.; Wakamatsu, K.; Fujiki, Y.; Kataoka, M.; Kikkawa, S.; Alotabi, A. S. et al. Creation of high-performance heterogeneous photocatalysts by controlling ligand desorption and particle size of gold nanocluster. Angew. Chem., Int. Ed. 2021, 60, 21340–21350.
Wang, X. N.; Tong, Y. F.; Feng, W. T.; Liu, P. Y.; Li, X. J.; Cui, Y. P.; Cai, T. H.; Zhao, L. M.; Xue, Q. Z.; Yan, Z. F. et al. Embedding oxophilic rare-earth single atom in platinum nanoclusters for efficient hydrogen electro-oxidation. Nat. Commun. 2023, 14, 3767.
Zhang, F. J.; Gao, Y. B.; Lu, P.; Zhong, Y.; Liu, Y.; Bao, X. Y.; Xu, Z. H.; Lu, M.; Wu, Y. J.; Chen, P. et al. Engineering of hole transporting interface by incorporating the atomic-precision Ag6 nanoclusters for high-efficiency blue perovskite light-emitting diodes. Nano Lett. 2023, 23, 1582–1590.
Lin, Z. K.; Goswami, N.; Xue, T. T.; Chai, O. J. H.; Xu, H. J.; Liu, Y. X.; Su, Y.; Xie, J. P. Engineering metal nanoclusters for targeted therapeutics: From targeting strategies to therapeutic applications. Adv. Funct. Mater. 2021, 31, 2105662.
Jiang, X. Y.; Du, B. J.; Huang, Y. Y.; Zheng, J. Ultrasmall noble metal nanoparticles: Breakthroughs and biomedical implications. Nano Today 2018, 21, 106–125.
Liu, H. L.; Li, Y. H.; Sun, S.; Xin, Q.; Liu, S. H.; Mu, X. Y.; Yuan, X.; Chen, K.; Wang, H.; Varga, K. et al. Catalytically potent and selective clusterzymes for modulation of neuroinflammation through single-atom substitutions. Nat. Commun. 2021, 12, 114.
Yang, G.; Wang, Z. P.; Du, F. L.; Jiang, F. Y.; Yuan, X.; Ying, J. Y. Ultrasmall coinage metal nanoclusters as promising theranostic probes for biomedical applications. J. Am. Chem. Soc. 2023, 145, 11879–11898.
Wang, X. J.; Yin, B.; Jiang, L. R.; Yang, C.; Liu, Y.; Zou, G.; Chen, S.; Zhu, M. Z. Ligand-protected metal nanoclusters as low-loss, highly polarized emitters for optical waveguides. Science 2023, 381, 784–790.
Qian, S. Y.; Wang, Z. P.; Zuo, Z. X.; Wang, X. M.; Wang, Q.; Yuan, X. Engineering luminescent metal nanoclusters for sensing applications. Coord. Chem. Rev. 2022, 451, 214268.
Xiao, Y.; Wu, Z. N.; Yao, Q. F.; Xie, J. P. Luminescent metal nanoclusters: Biosensing strategies and bioimaging applications. Aggregate 2021, 2, 114–132.
Liu, X.; Saranya, G.; Huang, X. Y.; Cheng, X. L.; Wang, R.; Chen, M. Y.; Zhang, C. F.; Li, T.; Zhu, Y. Ag2Au50(PET)36 nanocluster: Dimeric assembly of Au25(PET)18 enabled by silver atoms. Angew. Chem., Int. Ed. 2020, 59, 13941–13946.
Zhang, M. M.; Dong, X. Y.; Wang, Z. Y.; Li, H. Y.; Li, S. J.; Zhao, X. L.; Zang, S. Q. AIE triggers the circularly polarized luminescence of atomically precise enantiomeric copper(I) alkynyl clusters. Angew. Chem., Int. Ed. 2020, 59, 10052–10058.
Yang, J. S.; Han, Z.; Dong, X. Y.; Luo, P.; Mo, H. L.; Zang, S. Q. Extra silver atom triggers room-temperature photoluminescence in atomically precise radarlike silver clusters. Angew. Chem., Int. Ed. 2020, 59, 11898–11902.
Xiang, H. X.; Yan, H.; Liu, J. H.; Cheng, R. R.; Xu, C. Q.; Li, J.; Yao, C. H. Identifying the real chemistry of the synthesis and reversible transformation of AuCd bimetallic clusters. J. Am. Chem. Soc. 2022, 144, 14248–14257.
Zhou, Y.; Liao, L. W.; Zhuang, S. L.; Zhao, Y.; Gan, Z. B.; Gu, W. M.; Li, J.; Deng, H. T.; Xia, N.; Wu, Z. K. Traceless removal of two kernel atoms in a gold nanocluster and its impact on photoluminescence. Angew. Chem., Int. Ed. 2021, 60, 8668–8672.
Shi, Y. E.; Ma, J. Z.; Feng, A. R.; Wang, Z. G.; Rogach, A. L. Aggregation-induced emission of copper nanoclusters. Aggregate 2021, 2, e112.
Zhou, M.; Higaki, T.; Hu, G. X.; Sfeir, M. Y.; Chen, Y. X.; Jiang, D. E.; Jin, R. C. Three-orders-of-magnitude variation of carrier lifetimes with crystal phase of gold nanoclusters. Science 2019, 364, 279–282.
Li, Q. Z.; Tan, Y. S.; Huang, B. Y.; Yang, S.; Chai, J. S.; Wang, X. P.; Pei, Y.; Zhu, M. Z. Mechanistic study of the hydride migration-induced reversible isomerization in Au22(SR)15H isomers. J. Am. Chem. Soc. 2023, 145, 15859–15868.
Jia, T.; Guan, Z. J.; Zhang, C.; Zhu, X. Z.; Chen, Y. X.; Zhang, Q.; Yang, Y.; Sun, D. Eight-electron superatomic Cu31 nanocluster with chiral kernel and NIR-II emission. J. Am. Chem. Soc. 2023, 145, 10355–10363.
Yao, Q. F.; Liu, L. M.; Malola, S.; Ge, M.; Xu, H. Y.; Wu, Z. N.; Chen, T. K.; Cao, Y. T.; Matus, M. F.; Pihlajamäki, A. et al. Supercrystal engineering of atomically precise gold nanoparticles promoted by surface dynamics. Nat. Chem. 2023, 15, 230–239.
Zhong, Y.; Zhang, J. W.; Li, T. T.; Xu, W. W.; Yao, Q. F.; Lu, M.; Bai, X.; Wu, Z. N.; Xie, J. P.; Zhang, Y. Suppression of kernel vibrations by layer-by-layer ligand engineering boosts photoluminescence efficiency of gold nanoclusters. Nat. Commun. 2023, 14, 658.
Shi, J. Y.; Kumar Gupta, R.; Deng, Y. K.; Sun, D.; Wang, Z. Recent advances in the asymmetrical templation effect of polyoxometalate in silver clusters. Polyoxometalates 2022, 1, 9140010.
Wang, Z. P.; Pan, X. X.; Qian, S. Y.; Yang, G.; Du, F. L.; Yuan, X. The beauty of binary phases: A facile strategy for synthesis, processing, functionalization, and application of ultrasmall metal nanoclusters. Coord. Chem. Rev. 2021, 438, 213900.
Khatun, E.; Bodiuzzaman, M.; Sugi, K. S.; Chakraborty, P.; Paramasivam, G.; Dar, W. A.; Ahuja, T.; Antharjanam, S.; Pradeep, T. Confining an Ag10 core in an Ag12 shell: A four-electron superatom with enhanced photoluminescence upon crystallization. ACS Nano 2019, 13, 5753–5759.
Liu, J. W.; Feng, L.; Su, H. F.; Wang, Z.; Zhao, Q. Q.; Wang, X. P.; Tung, C. H.; Sun, D.; Zheng, L. S. Anisotropic assembly of Ag52 and Ag76 nanoclusters. J. Am. Chem. Soc. 2018, 140, 1600–1603.
He, L. Z.; Gan, Z. B.; Xia, N.; Liao, L. W.; Wu, Z. K. Alternating array stacking of Ag26Au and Ag24Au nanoclusters. Angew. Chem., Int. Ed. 2019, 58, 9897–9901.
Song, Y. B.; Li, Y. W.; Li, H.; Ke, F.; Xiang, J.; Zhou, C. J.; Li, P.; Zhu, M. Z.; Jin, R. C. Atomically resolved Au52Cu72(SR)55 nanoalloy reveals marks decahedron truncation and penrose tiling surface. Nat. Commun. 2020, 11, 478.
Kim, K.; Hirata, K.; Nakamura, K.; Kitazawa, H.; Hayashi, S.; Koyasu, K.; Tsukuda, T. Elucidating the doping effect on the electronic structure of thiolate-protected silver superatoms by photoelectron spectroscopy. Angew. Chem., Int. Ed. 2019, 58, 11637–11641.
Ma, X.; Xiong, L.; Qin, L.; Tang, Y.; Ma, G.; Pei, Y.; Tang, Z. A homoleptic alkynyl-protected [Ag9Cu6( t BuC≡C)12]+ superatom with free electrons: Synthesis, structure analysis, and different properties compared with the Au7Ag8 cluster in the M15+ series. Chem. Sci. 2021, 12, 12819–12826.
Liu, W. D.; Wang, J. Q.; Yuan, S. F.; Chen, X.; Wang, Q. M. Chiral superatomic nanoclusters Ag47 induced by the ligation of amino acids. Angew. Chem., Int. Ed. 2021, 60, 11430–11435.
Chevrier, D. M.; Raich, L.; Rovira, C.; Das, A.; Luo, Z. T.; Yao, Q. F.; Chatt, A.; Xie, J. P.; Jin, R. C.; Akola, J. et al. Molecular-scale ligand effects in small gold-thiolate nanoclusters. J. Am. Chem. Soc. 2018, 140, 15430–15436.
Zhang, X. L.; Wang, Z. P.; Qian, S. Y.; Liu, N. W.; Sui, L.; Yuan, X. Effect of subtle changes of isomeric ligands on the synthesis of atomically precise water-soluble gold nanoclusters. Nanoscale 2020, 12, 6449–6455.
Bera, D.; Baruah, M.; Dehury, A. K.; Samanta, A.; Chaudhary, Y. S.; Goswami, N. Depletion driven assembly of ultrasmall metal nanoclusters: From kinetically arrested assemblies to thermodynamically stable, spherical superclusters. J. Phys. Chem. Lett. 2022, 13, 9411–9421.
Pyo, K.; Ly, N. H.; Yoon, S. Y.; Shen, Y. M.; Choi, S. Y.; Lee, S. Y.; Joo, S. W.; Lee, D. Highly luminescent folate-functionalized Au22 nanoclusters for bioimaging. Adv. Healthc. Mater. 2017, 6, 1700203.
Zhou, T. Y.; Zhu, J. Y.; Gong, L. S.; Nong, L. T.; Liu, J. B. Amphiphilic block copolymer-guided in situ fabrication of stable and highly controlled luminescent copper nanoassemblies. J. Am. Chem. Soc. 2019, 141, 2852–2856.
Loynachan, C. N.; Soleimany, A. P.; Dudani, J. S.; Lin, Y. Y.; Najer, A.; Bekdemir, A.; Chen, Q.; Bhatia, S. N.; Stevens, M. M. Renal clearable catalytic gold nanoclusters for in vivo disease monitoring. Nat. Nanotechnol. 2019, 14, 883–890.
Kang, X.; Zhu, M. Z. Tailoring the photoluminescence of atomically precise nanoclusters. Chem. Soc. Rev. 2019, 48, 2422–2457.
Hossain, S.; Niihori, Y.; Nair, L. V.; Kumar, B.; Kurashige, W.; Negishi, Y. Alloy clusters: Precise synthesis and mixing effects. Acc. Chem. Res. 2018, 51, 3114–3124.
Wang, S. X.; Li, Q.; Kang, X.; Zhu, M. Z. Customizing the structure, composition, and properties of alloy nanoclusters by metal exchange. Acc. Chem. Res. 2018, 51, 2784–2792.
Yuan, X.; Dou, X. Y.; Zheng, K. Y.; Xie, J. P. Recent advances in the synthesis and applications of ultrasmall bimetallic nanoclusters. Part. Part. Syst. Charact. 2015, 32, 613–629.
Zheng, K. Y.; Fung, V.; Yuan, X.; Jiang, D. E.; Xie, J. P. Real time monitoring of the dynamic intracluster diffusion of single gold atoms into silver nanoclusters. J. Am. Chem. Soc. 2019, 141, 18977–18983.
Yao, Q. F.; Feng, Y.; Fung, V.; Yu, Y.; Jiang, D. E.; Yang, J.; Xie, J. P. Precise control of alloying sites of bimetallic nanoclusters via surface motif exchange reaction. Nat. Commun. 2017, 8, 1555.
Wang, Z. P.; Zhu, Z. L.; Zhao, C. K.; Yao, Q. F.; Li, X. Y.; Liu, H. Y.; Du, F. L.; Yuan, X.; Xie, J. P. Silver doping-induced luminescence enhancement and red-shift of gold nanoclusters with aggregation-induced emission. Chem.—Asian J. 2019, 14, 765–769.
Yao, Q. F.; Yu, Y.; Yuan, X.; Yu, Y.; Xie, J. P.; Lee, J. Y. Two-phase synthesis of small thiolate-protected Au15 and Au18 nanoclusters. Small 2013, 9, 2696–2701.
Goswami, N.; Yao, Q. F.; Luo, Z. T.; Li, J. G.; Chen, T. K.; Xie, J. P. Luminescent metal nanoclusters with aggregation-induced emission. J. Phys. Chem. Lett. 2016, 7, 962–975.
Chen, S.; Wang, S. X.; Zhong, J.; Song, Y. B.; Zhang, J.; Sheng, H. T.; Pei, Y.; Zhu, M. Z. The structure and optical properties of the [Au18(SR)14] nanocluster. Angew. Chem., Int. Ed. 2015, 54, 3145–3149.
Gan, Z. B.; Xia, N.; Wu, Z. K. Discovery, mechanism, and application of antigalvanic reaction. Acc. Chem. Res. 2018, 51, 2774–2783.
Luo, Z. T.; Nachammai, V.; Zhang, B.; Yan, N.; Leong, D. T.; Jiang, D. E.; Xie, J. P. Toward understanding the growth mechanism: Tracing all stable intermediate species from reduction of Au(I)-thiolate complexes to evolution of Au25 nanoclusters. J. Am. Chem. Soc. 2014, 136, 10577–10580.
Yao, Q. F.; Yuan, X.; Fung, V.; Yu, Y.; Leong, D. T.; Jiang, D. E.; Xie, J. P. Understanding seed-mediated growth of gold nanoclusters at molecular level. Nat. Commun. 2017, 8, 927.
Yuan, X.; Chng, L. L.; Yang, J. H.; Ying, J. Y. Miscible-solvent-assisted two-phase synthesis of monolayer-ligand-protected metal nanoclusters with various sizes. Adv. Mater. 2020, 32, 1906063.
Yu, Y.; Yao, Q. F.; Chen, T. K.; Lim, G. X.; Xie, J. P. The innermost three gold atoms are indispensable to maintain the structure of the Au18(SR)14 cluster. J. Phys. Chem. C 2016, 120, 22096–22102.
The articles published in this open access journal are distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits use, distribution and reproduction in any medium, provided the original work is properly cited.