AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (25.5 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article | Open Access

Recent progress in atomically precise Ag/Cu-based hydride clusters

Ying Lv1Tingting Jiang1Qianli Zhang1Haizhu Yu1,2 ( )Manzhou Zhu1,2
Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, China
Institute of Energy, Hefei Comprehensive National Science Center, Hefei 230601, China
Show Author Information

Graphical Abstract

Abstract

Owing to advantages in synthesis, separation, structure determination, and low cost (compared to noble metal nanoclusters), Ag/Cu hydride clusters (and their alloys) have received increasing research interest in recent decades and have shown great potential in mediating reduction reactions and H2 storage applications. The atomic precision of the Ag/Cu hydride clusters with the combination of single-crystal X-ray diffraction, 1/2H nuclear magnetic resonance, electrospray ionization mass spectrometry, density functional theory, and particularly, single-crystal neutron diffraction, has provided pivotal information regarding its structural characteristics, facilitating a deep understanding of the inherent bonding principles therein. This review summarizes the research progress of atomically precise Ag/Cu hydride clusters (and their alloys) over the past three years (2021–2023), mainly focusing on the synthesis, structure analysis, and catalytic applications of the hydride clusters. We believe that this review can benefit the future design of different types of metal hydride clusters and aid in their application in various redox reactions.

References

[1]

Jadzinsky, P. D.; Calero, G.; Ackerson, C. J.; Bushnell, D. A.; Kornberg, R. D. Structure of a thiol monolayer-protected gold nanoparticle at 1.1 Å resolution. Science 2007, 318, 430–433.

[2]

Jin, Y.; Zhang, C.; Dong, X. Y.; Zang, S. Q.; Mak, T. C. W. Shell engineering to achieve modification and assembly of atomically-precise silver clusters. Chem. Soc. Rev. 2021, 50, 2297–2319.

[3]

Li, Y. W.; Jin, R. C. Shape control with atomic precision: Anisotropic nanoclusters of noble metals. Nanoscale Horiz. 2023, 8, 991–1013.

[4]

Liang, H.; Chen, Q.; Mo, Q. L.; Wu, Y.; Xiao, F. X. Atomically precise thiolate-protected gold nanoclusters: Current advances in solar-powered photoredox catalysis. J. Mater. Chem. A 2023, 11, 9401–9426.

[5]

Yang, J. L.; Peng, Y.; Li, S. R.; Mu, J.; Huang, Z. Z.; Ma, J. T.; Shi, Z.; Jia, Q. Metal nanocluster-based hybrid nanomaterials: Fabrication and application. Coord. Chem. Rev. 2022, 456, 214391.

[6]

Shi, J. Y.; Kumar Gupta, R.; Deng, Y. K.; Sun, D.; Wang, Z. Recent advances in the asymmetrical templation effect of polyoxometalate in silver clusters. Polyoxometalates 2022, 1, 9140010.

[7]

Zhang, Y.; Wang, X.; Wang, Y.; Xu, N.; Wang, X. L. Anderson-type polyoxometalate-based sandwich complexes bearing a new “V”-like bis-imidazole-bis-amide ligand as electrochemical sensors and catalysts for sulfide oxidation. Polyoxometalates 2022, 1, 9140004.

[8]

Dong, G. L.; Pan, Z. H.; Han, B. L.; Tao, Y. W.; Chen, X.; Luo, G. G.; Sun, P. P.; Sun, C. F.; Sun, D. Multi-layer 3D chirality and double-helical assembly in a copper nanocluster with a triple-helical Cu15 core. Angew. Chem., Int. Ed. 2023, 62, e202302595.

[9]

Sun, C. F.; Teo, B. K.; Deng, C. L.; Lin, J. Q.; Luo, G. G.; Tung, C. H.; Sun, D. Hydrido-coinage-metal clusters: Rational design, synthetic protocols and structural characteristics. Coord. Chem. Rev. 2021, 427, 213576.

[10]

Graetz, J. New approaches to hydrogen storage. Chem. Soc. Rev. 2009, 38, 73–82.

[11]
. Yvon, K.; Renaudin, G. Hydrides: Solid state transition metal complexes. In Encyclopedia of Inorganic Chemistry, 2nd ed.; King, R. B., Ed.; Wiley: New York, 2006.
[12]

Dhayal, R. S.; van Zyl, W. E.; Liu, C. W. Copper hydride clusters in energy storage and conversion. Dalton Trans. 2019, 48, 3531–3538.

[13]

Yang, J.; Sudik, A.; Wolverton, C.; Siegel, D. J. High capacity hydrogenstorage materials: Attributes for automotive applications and techniques for materials discovery. Chem. Soc. Rev. 2010, 39, 656–675.

[14]

van Zyl, W. E.; Liu, C. W. Interstitial hydrides in nanoclusters can reduce M(I) (M = Cu, Ag, Au) to M(0) and form stable superatoms. Chem.—Eur. J. 2022, 28, e202104241.

[15]

Artem’ev, A. V.; Liu, C. W. Recent progress in dichalcophosphate coinage metal clusters and superatoms. Chem. Commun. 2023, 59, 7182–7195.

[16]

Horita, Y.; Ishimi, M.; Negishi, Y. Anion-templated silver nanoclusters: Precise synthesis and geometric structure. Sci. Technol. Adv. Mater. 2023, 24, 2203832.

[17]

Takano, S.; Tsukuda, T. Chemically modified gold/silver superatoms as artificial elements at nanoscale: Design principles and synthesis challenges. J. Am. Chem. Soc. 2021, 143, 1683–1698.

[18]

Zhu, X. Z.; Jia, T.; Guan, Z. J.; Zhang, Q.; Yang, Y. Elongation of a trigonal-prismatic copper cluster by diphosphine ligands with longer spacers. Inorg. Chem. 2022, 61, 15144–15151.

[19]

Jia, T.; Guan, Z. J.; Zhang, C. K.; Zhu, X. Z.; Chen, Y. X.; Zhang, Q.; Yang, Y.; Sun, D. Eight-electron superatomic Cu31 nanocluster with chiral kernel and NIR-II emission. J. Am. Chem. Soc. 2023, 145, 10355–10363.

[20]

Li, H.; Li, T.; Liu, S. M.; Qu, M.; Liang, L. F.; Zhang, F. W.; Zhang, X. M. A top-down approach towards Cu(I) alkynyl clusters with unusual geometry. Chin. J. Chem. 2021, 39, 937–941.

[21]

Yan, J. Z.; Teo, B. K.; Zheng, N. F. Surface chemistry of atomically precise coinage-metal nanoclusters: From structural control to surface reactivity and catalysis. Acc. Chem. Res. 2018, 51, 3084–3093.

[22]

Lee, S.; Bootharaju, M. S.; Deng, G. C.; Malola, S.; Baek, W.; Häkkinen, H.; Zheng, N. F.; Hyeon, T. [Cu32(PET)24H8Cl2](PPh4)2: A copper hydride nanocluster with a bisquare antiprismatic core. J. Am. Chem. Soc. 2020, 142, 13974–13981.

[23]

Narayanan, B.; Bhadbhade, M. M. X-ray structure of thermochromic bis(N,N-diethylethylenediamine)-copper(II)tetrafluoroborate. J. Coord. Chem. 1998, 46, 115–123.

[24]

Schneider, R.; Engesser, T. A.; Näther, T.; Krossing, I.; Tuczek, F. Copper-catalyzed monooxygenation of phenols: Evidence for a mononuclear reaction mechanism. Angew. Chem., Int. Ed. 2022, 61, e202202562.

[25]

Kishore, P. V. V. N.; Liao, J. H.; Hou, H. N.; Lin, Y. R.; Liu, C. W. Ferrocene-functionalized Cu(I)/Ag(I) dithiocarbamate clusters. Inorg. Chem. 2016, 55, 3663–3673.

[26]

Edwards, A. J.; Dhayal, R. S.; Liao, P. K.; Liao, J. H.; Chiang, M. H.; Piltz, R. O.; Kahlal, S.; Saillard, J. Y.; Liu, C. W. Chinese puzzle molecule: A 15 hydride, 28 copper atom nanoball. Angew. Chem., Int. Ed. 2014, 53, 7214–7218.

[27]

Silalahi, R. P. B.; Liao, J. H.; Tseng, Y. F.; Chiu, T. H.; Kahlal, S.; Saillard, J. Y.; Liu, C. W. Unusual core engineering on a copper hydride nanoball. Dalton Trans. 2023, 52, 2106–2114.

[28]

Liao, P. K.; Fang, C. S.; Edwards, A. J.; Kahlal, S.; Saillard, J. Y.; Liu, C. W. Hydrido copper clusters supported by dithiocarbamates: Oxidative hydride removal and neutron diffraction analysis of [Cu7(H){S2C(aza-15-crown-5)}6]. Inorg. Chem. 2012, 51, 6577–6591.

[29]

Chakrahari, K. K.; Liao, J. P.; Silalahi, R. P. B.; Chiu, T. H.; Liao, J. H.; Wang, X. P.; Kahlal, S.; Saillard, J. Y.; Liu, C. W. Isolation and structural elucidation of 15-nuclear copper dihydride clusters: An intermediate in the formation of a two-electron copper superatom. Small 2021, 17, 2002544.

[30]

Dhayal, R. S.; Liao, J. H.; Wang, X. P.; Liu, Y. C.; Chiang, M. H.; Kahlal, S.; Saillard, J. Y.; Liu, C. W. Diselenophosphate-induced conversion of an achiral [Cu20H11{S2P(O i Pr)2}9] into a chiral [Cu20H11{Se2P(O i Pr)2}9] polyhydrido nanocluster. Angew. Chem., Int. Ed. 2015, 54, 13604–13608.

[31]

Dhayal, R. S.; Liao, J. H.; Lin, Y. R.; Liao, P. K.; Kahlal, S.; Saillard, J. Y.; Liu, C. W. A nanospheric polyhydrido copper cluster of elongated triangular orthobicupola array: Liberation of H2 from solar energy. J. Am. Chem. Soc. 2013, 135, 4704–4707.

[32]

Liao, J. H.; Dhayal, R. S.; Wang, X. P.; Kahlal, S.; Saillard, J. Y.; Liu, C. W. Neutron diffraction studies of a four-coordinated hydride in near square-planar geometry. Inorg. Chem. 2014, 53, 11140–11145.

[33]

Lin, P. Y.; Li, D. Y.; Ho, F. H.; Liao, J. H.; Barik, S. K.; Liu, C. W. Unified reciprocity of dithiophosphate by dichalcogenophosph(in)ate ligands on copper hydride nanoclusters via ligand exchange reaction. J. Chin. Chem. Soc. 2019, 66, 988–995.

[34]

Barik, S. K.; Huo, S. C.; Wu, C. Y.; Chiu, T. H.; Liao, J. H.; Wang, X. P.; Kahlal, S.; Saillard, J. Y.; Liu, C. W. Polyhydrido copper nanoclusters with a hollow icosahedral core: [Cu30H18{E2P(OR)2}12] (E = S or Se; R = n Pr, i Pr or i Bu). Chem.—Eur. J. 2020, 26, 10471–10479.

[35]

Silalahi, R. P. B.; Chiu, T. H.; Kao, J. H.; Wu, C. Y.; Yin, C. W.; Liu, Y. C.; Chen, Y. J.; Saillard, J. Y.; Chiang, M. H.; Liu, C. W. Synthesis and luminescence properties of two-electron bimetallic Cu-Ag and Cu-Au nanoclusters via copper hydride precursors. Inorg. Chem. 2021, 60, 10799–10807.

[36]

Chakrahari, K. K.; Silalahi, R. P. B.; Chiu, T. H.; Wang, X. P.; Azrou, N.; Kahlal, S.; Liu, Y. C.; Chiang, M. H.; Saillard, J. Y.; Liu, C. W. Synthesis of bimetallic copper-rich nanoclusters encapsulating a linear palladium dihydride unit. Angew. Chem., Int. Ed. 2019, 58, 4943–4947.

[37]

Silalahi, R. P. B.; Wang, Q.; Liao, J. H.; Chiu, T. H.; Wu, Y. Y.; Wang, X. P.; Kahlal, S.; Saillard, J. Y.; Liu, C. W. Reactivities of interstitial hydrides in a Cu11 template: En route to bimetallic clusters. Angew. Chem., Int. Ed. 2022, 61, e202113266.

[38]

Liu, C. W.; Chang, H. W.; Fang, C. S.; Sarkar, B.; Wang, J. C. Anion-templated syntheses of octanuclear silver clusters from a silver dithiophosphate chain. Chem. Commun. 2010, 46, 4571–4573.

[39]

Zhong, Y. J.; Liao, J. H.; Chiu, T. H.; Kahlal, S.; Lin, C. J.; Saillard, J. Y.; Liu, C. W. A two-electron silver superatom isolated from thermally induced internal redox reaction of a silver(I) hydride. Angew. Chem., Int. Ed. 2021, 60, 12712–12716.

[40]

Liu, C. W.; Lin, Y. R.; Fang, C. S.; Latouche, C.; Kahlal, S.; Saillard, J. Y. [Ag7(H){E2P(OR)2}6] (E = Se, S): Precursors for the fabrication of silver nanoparticles. Inorg. Chem. 2013, 52, 2070–2077.

[41]

Zhong, Y. J.; Liao, J. H.; Chiu, T. H.; Wu, Y. Y.; Kahlal, S.; McGlinchey, M. J.; Saillard, J. Y.; Liu, C. W. Intercluster exchanges leading to hydride-centered bimetallic clusters: A multi-NMR, X-ray crystallographic, and DFT study. Dalton Trans. 2021, 50, 4727–4734.

[42]

Mikami, K.; Hui, S.; Kubo, K.; Kume, S.; Mizuta, T. The [Ag25Cu4H8Br6(CCPh)12(PPh3)12]3+: Ag13H8 silver hydride core protected by [CuAg3(CCPh)3(PPh3)3]+ motifs. Dalton Trans. 2021, 50, 5659–5665.

[43]

Yuan, S. F.; Guan, Z. J.; Wang, Q. M. Identification of the active species in bimetallic cluster catalyzed hydrogenation. J. Am. Chem. Soc. 2022, 144, 11405–11412.

[44]

Gao, Y. L.; Sun, X. L.; Tang, X. K.; Xie, Z. L.; Tian, G. L.; Nan, Z. A.; Yang, H. Y.; Shen, H. An alkynyl-protected Ag13− x Cu6+ x nanocluster for catalytic hydrogenation. Dalton Trans. 2023, 52, 52–57.

[45]

Shen, H.; Han, Y. Z.; Wu, Q. Y.; Peng, J.; Teo, B. K.; Zheng, N. F. Simple and selective synthesis of copper-containing metal nanoclusters using (PPh3)2CuBH4 as reducing agent. Small Methods 2021, 5, 2000603.

[46]

Khalavka, Y.; Becker, J.; Sönnichsen, C. Synthesis of rod-shaped gold nanorattles with improved plasmon sensitivity and catalytic activity. J. Am. Chem. Soc. 2009, 131, 1871–1875.

[47]
. Wei, X.; Kang, X.; Duan, T. F.; Li, H.; Wang, S. X.; Pei, Y.; Zhu, M. Z. [Au16Ag43H12(SPhCl2)34]5–: An Au-Ag alloy nanocluster with 12 hydrides and its enlightenment on nanocluster structural evolution. Inorg. Chem. 2021 , 60, 11640–11647.
[48]

Yi, H.; Han, S. M.; Song, S.; Kim, M.; Sim, E.; Lee, D. Superatom-in-superatom [RhH@Ag24(SPhMe2)18]2− nanocluster. Angew. Chem., Int. Ed. 2021, 60, 22293–22300.

[49]

Chiu, T. H.; Liao, J. H.; Wu, Y. Y.; Chen, J. Y.; Chen, Y. J.; Wang, X. P.; Kahlal, S.; Saillard, J. Y.; Liu, C. W. Hydride doping effects on the structure and properties of eight-electron Rh/Ag superatoms: The [RhH x @Ag21− x {S2P(O n Pr)2}12] ( x = 0–2) series. J. Am. Chem. Soc. 2023, 145, 16739–16747.

[50]

Ni, Y. R.; Pillay, M. N.; Chiu, T. H.; Wu, Y. Y.; Kahlal, S.; Saillard, J. Y.; Liu, C. W. Controlled shell and kernel modifications of atomically precise Pd/Ag superatomic nanoclusters. Chem.—Eur. J. 2023, 29, e202300730.

[51]

Chiu, T. H.; Liao, J. H.; Gam, F.; Wu, Y. Y.; Wang, X. P.; Kahlal, S.; Saillard, J. Y.; Liu, C. W. Hydride-containing eight-electron Pt/Ag superatoms: Structure, bonding, and multi-NMR studies. J. Am. Chem. Soc. 2022, 144, 10599–10607.

[52]

Yi, H.; Song, S.; Han, S. M.; Lee, J.; Kim, W.; Sim, E.; Lee, D. Superatom-in-superatom nanoclusters: Synthesis, structure, and photoluminescence. Angew. Chem., Int. Ed. 2023, 62, e202302591.

[53]

Brocha Silalahi, R. P.; Jo, Y.; Liao, J. H.; Chiu, T. H.; Park, E.; Choi, W.; Liang, H.; Kahlal, S.; Saillard, J. Y.; Lee, D. et al. Hydride-containing 2-electron Pd/Cu superatoms as catalysts for efficient electrochemical hydrogen evolution. Angew. Chem., Int. Ed. 2023, 62, e202301272.

[54]

Brocha Silalahi, R. P.; Huang, G. R.; Liao, J. H.; Chiu, T. H.; Chakrahari, K. K.; Wang, X. P.; Cartron, J.; Kahlal, S.; Saillard, J. Y.; Liu, C. W. Copper clusters containing hydrides in trigonal pyramidal geometry. Inorg. Chem. 2020, 59, 2536–2547.

[55]

Dhayal, R. S.; Liao, J. H.; Kahlal, S.; Wang, X. P.; Liu, Y. C.; Chiang, M. H.; van Zyl, W. E.; Saillard, J. Y.; Liu, C. W. [Cu32(H)20{S2P(O i Pr)2}12]: The largest number of hydrides recorded in a molecular nanocluster by neutron diffraction. Chem.—Eur. J. 2015, 21, 8369–8374.

[56]

Bennett, E. L.; Murphy, P. J.; Imberti, S.; Parker, S. F. Characterization of the hydrides in Stryker’s reagent: [HCu{P(C6H5)3}]6. Inorg. Chem. 2014, 53, 2963–2967.

[57]

Jordan, A. J.; Lalic, G.; Sadighi, J. P. Coinage metal hydrides: Synthesis, characterization, and reactivity. Chem. Rev. 2016, 116, 8318–8372.

[58]

Ma, H. Z.; McKay, A. I.; Mravak, A.; Scholz, M. S.; White, J. M.; Mulder, R. J.; Bieske, E. J.; Bonačić-Koutecký, V.; O'Hair, R. A. J. Structural characterization and gas-phase studies of the [Ag10H8(L)6]2+ nanocluster dication. Nanoscale 2019, 11, 22880–22889.

[59]

Liu, C. W.; Liao, P. K.; Fang, C. S.; Saillard, J. Y.; Kahlal, S.; Wang, J. C. An eleven-vertex deltahedron with hexacapped trigonal bipyramidal geometry. Chem. Commun. 2011, 47, 5831–5833.

[60]

Bootharaju, M. S.; Dey, R.; Gevers, L. E.; Hedhili, M. N.; Basset, J. M.; Bakr, O. M. A new class of atomically precise, hydride-rich silver nanoclusters Co-protected by phosphines. J. Am. Chem. Soc. 2016, 138, 13770–13773.

[61]

Zhu, C.; Duan, T. F.; Li, H.; Wei, X.; Kang, X.; Pei, Y.; Zhu, M. Z. Structural determination of a metastable Ag27 nanocluster and its transformations into Ag8 and Ag29 nanoclusters. Inorg. Chem. Front. 2021, 8, 4407–4414.

[62]

Yuan, X. T.; Sun, C. F.; Li, X. H.; Malola, S.; Teo, B. K.; Häkkinen, H.; Zheng, L. S.; Zheng, N. F. Combinatorial identification of hydrides in a ligated Ag40 nanocluster with noncompact metal core. J. Am. Chem. Soc. 2019, 141, 11905–11911.

[63]

Nakajima, T.; Nakamae, K.; Ura, Y.; Tanase, T. Multinuclear copper hydride complexes supported by polyphosphine ligands. Eur. J. Inorg. Chem. 2020, 2020, 2211–2226.

[64]

Nakamae, K.; Nakajima, T.; Ura, Y.; Kitagawa, Y.; Tanase, T. Facially dispersed polyhydride Cu9 and Cu16 clusters comprising apex-truncated supertetrahedral and square-face-capped cuboctahedral copper frameworks. Angew. Chem., Int. Ed. 2020, 59, 2262–2267.

[65]

Nguyen, T. A. D.; Jones, Z. R.; Goldsmith, B. R.; Buratto, W. R.; Wu, G.; Scott, S. L.; Hayton, T. W. A Cu25 nanocluster with partial Cu(0) character. J. Am. Chem. Soc. 2015, 137, 13319–13324.

[66]

Sun, C. F.; Mammen, N.; Kaappa, S.; Yuan, P.; Deng, G. C.; Zhao, C. W.; Yan, J. Z.; Malola, S.; Honkala, K.; Häkkinen, H. et al. Atomically precise, thiolated copper-hydride nanoclusters as single-site hydrogenation catalysts for ketones in mild conditions. ACS Nano 2019, 13, 5975–5986.

[67]

Nguyen, T. A. D.; Jones, Z. R.; Leto, D. F.; Wu, G.; Scott, S. L.; Hayton, T. W. Ligand-exchange-induced growth of an atomically precise Cu29 nanocluster from a smaller cluster. Chem. Mater. 2016, 28, 8385–8390.

[68]

Yuan, P.; Chen, R. H.; Zhang, X. M.; Chen, F. J.; Yan, J. Z.; Sun, C. F.; Ou, D. H.; Peng, J.; Lin, S. C.; Tang, Z. C. et al. Ether-soluble Cu53 nanoclusters as an effective precursor of high-quality CuI films for optoelectronic applications. Angew. Chem., Int. Ed. 2019, 58, 835–839.

[69]

Ghosh, A.; Huang, R. W.; Alamer, B.; Abou-Hamad, E.; Hedhili, M. N.; Mohammed, O. F.; Bakr, O. M. [Cu61(S t Bu)26S6Cl6H14]+: A core-shell superatom nanocluster with a quasi- J36 Cu19 core and an “18-crown-6” metal-sulfide-like stabilizing belt. ACS Mater. Lett. 2019, 1, 297–302.

[70]

Dhayal, R. S.; Liao, J. H.; Hou, H. N.; Ervilita, R.; Liao, P. K.; Liu, C. W. Copper(i) diselenocarbamate clusters: Synthesis, structures and single-source precursors for Cu and Se composite materials. Dalton Trans. 2015, 44, 5898–5908.

[71]

Kishore, P. V. V. N.; Shi, D. R.; Liao, J. H.; Gupta, A. K.; Liu, C. W. Synthesis and structural characterization of xanthate ligated hydrido Cu(I) clusters and Cu(I) coordination polymer. Inorg. Chim. Acta. 2019, 496, 119068.

[72]

Liao, P. K.; Liu, K. G.; Fang, C. S.; Wu, Y. Y.; Liu, C. W. [Ag7(H){S2CC(CN)2}6]6−: An anionic heptanuclear silver hydride cluster compound stabilized by dithiolate ligands. J. Cluster Sci. 2019, 30, 1185–1193.

[73]

Liao, P. K.; Shi, D. R.; Liao, J. H.; Liu, C. W.; Artem'ev, A. V.; Kuimov, V. A.; Gusarova, N. K.; Trofimov, B. A. Facile self-assembly synthesis and characterization of diselenophosphinato octanuclear CuI clusters inscribed in a twelve-vertex selenium polyhedron. Eur. J. Inorg. Chem. 2012, 2012, 4921–4929.

[74]

Liao, P. K.; Liu, K. G.; Fang, C. S.; Liu, C. W.; Fackler, J. P. Jr.; Wu, Y. Y. A copper(I) homocubane collapses to a tetracapped tetrahedron upon hydride insertion. Inorg. Chem. 2011, 50, 8410–8417.

[75]

Liao, P. K.; Sarkar, B.; Chang, H. W.; Wang, J. C.; Liu, C. W. Facile entrapment of a hydride inside the tetracapped tetrahedral CuI8 cage inscribed in a S12 icosahedral framework. Inorg. Chem. 2009, 48, 4089–4097.

[76]

Liu, C. W.; Sarkar, B.; Huang, Y. J.; Liao, P. K.; Wang, J. C.; Saillard, J. Y.; Kahlal, S. Octanuclear copper(I) clusters inscribed in a Se12 icosahedron: Anion-induced modulation of the core size and symmetry. J. Am. Chem. Soc. 2009, 131, 11222–11233.

[77]

Liao, J. H.; Chang, H. W.; Li, Y. J.; Fang, C. S.; Sarkar, B.; van Zyl, W. E.; Liu, C. W. Anion templating from a silver(I) dithiophosphate 1D polymer forming discrete cationic and neutral octa- and decanuclear silver(I) clusters. Dalton Trans. 2014, 43, 12380–12389.

[78]

Zhong, Y. J.; Liao, J. H.; Chiu, T. H.; Wu, Y. Y.; Kahlal, S.; Saillard, J. Y.; Liu, C. W. Hydride-encapsulated bimetallic clusters supported by 1,1-dithiolates. Chem. Commun. 2020, 56, 9300–9303.

Polyoxometalates
Article number: 9140050
Cite this article:
Lv Y, Jiang T, Zhang Q, et al. Recent progress in atomically precise Ag/Cu-based hydride clusters. Polyoxometalates, 2024, 3(2): 9140050. https://doi.org/10.26599/POM.2023.9140050

1072

Views

324

Downloads

4

Crossref

Altmetrics

Received: 10 August 2023
Revised: 31 October 2023
Accepted: 27 November 2023
Published: 26 January 2024
© The Author(s) 2024. Published by Tsinghua University Press.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the original author(s) and the source, provide a link to the license, and indicate if changes were made. See http://creativecommons.org/licenses/by/4.0/

Return