Electrochemical CO2 reduction reaction (CO2RR) driven by indium-based catalysts can convert CO2 into C1 products with specific energy densities and relatively low mass. However, it is promising to obtain C2 products by introducing Keggin-type polyoxometalates (POMs) that can effectively regulate the proton-coupled electron transfer at the electrode–electrolyte interface. Here, the commercial indium sheets were combined with Keggin-type POMs (H4PVMoW10O40·15H2O, PVMoW10; H5PV2MoW9O40·10H2O, PV2MoW9) to process CO2RR. The highest Faradaic efficiency (FE) toward acetate reached 75.6% in the PVMoW10 system, and the highest FEethanol reached 85.1% in the PV2MoW9 system. The X-ray photoelectron spectroscopy (XPS) results indicated that the electron transfer by the POMs had a positive interaction with the active In0 sites, which provided a special electron channel to improve the FEs of the C2 products in CO2RR.
Zang, D. J.; Gao, X. J.; Li, L. Y.; Wei, Y. G.; Wang, H. Q. Confined interface engineering of self-supported Cu@N-doped graphene for electrocatalytic CO2 reduction with enhanced selectivity towards ethanol. Nano Res. 2022, 15, 8872–8879.
Zang, D. J.; Li, Q.; Dai, G. Y.; Zeng, M. Y.; Huang, Y. C.; Wei, Y. G. Interface engineering of Mo8/Cu heterostructures toward highly selective electrochemical reduction of carbon dioxide into acetate. Appl. Catal. B Environ. 2021, 281, 119426.
Ding, J. H.; Liu, Y. F.; Tian, Z. T.; Lin, P. J.; Yang, F.; Li, K.; Yang, G. P.; Wei, Y. G. Uranyl-silicotungstate-containing hybrid building units {α-SiW9} and {γ-SiW10} with excellent catalytic activities in the three-component synthesis of dihydropyrimidin-2(1 H)-ones. Inorg. Chem. Front. 2023, 10, 3195–3201.
Liu, S. B.; Tao, H. B.; Liu, Q.; Xu, Z. H.; Liu, Q. X.; Luo, J. L. Rational design of silver sulfide nanowires for efficient CO2 electroreduction in ionic liquid. ACS Catal. 2018, 8, 1469–1475.
Yan, C. L.; Luo, W.; Yuan, H. M.; Liu, G. Y.; Hao, R.; Qin, N.; Wang, Z. Q.; Liu, K.; Wang, Z. Y.; Cui, D. H. et al. Stabilizing intermediates and optimizing reaction processes with N doping in Cu2O for enhanced CO2 electroreduction. Appl. Catal. B Environ., 2022, 308, 121191.
Wang, Y. H.; Liu, J. L.; Zheng, G. F. Designing copper-based catalysts for efficient carbon dioxide electroreduction. Adv. Mater. 2021, 33, 2005798.
Shang, H. S.; Wang, T.; Pei, J. J.; Jiang, Z. L.; Zhou, D. N.; Wang, Y.; Li, H. J.; Dong, J. C.; Zhuang, Z. B.; Chen, W. X. et al. Design of a single-atom indium δ +-N4 interface for efficient electroreduction of CO2 to formate. Angew. Chem., Int. Ed. 2020, 59, 22465–22469.
Ma, W. C.; Xie, S. J.; Zhang, X. G.; Sun, F. F.; Kang, J. C.; Jiang, Z.; Zhang, Q. H.; Wu, D. Y.; Wang, Y. Promoting electrocatalytic CO2 reduction to formate via sulfur-boosting water activation on indium surfaces. Nat. Commun. 2019, 10, 892.
Karapinar, D.; Huan, N. T.; Sahraie, N. R.; Li, J. K.; Wakerley, D.; Touati, N.; Zanna, S.; Taverna, D.; Tizei, L. H. G.; Zitolo, A. et al. Electroreduction of CO2 on single-site copper-nitrogen-doped carbon material: Selective formation of ethanol and reversible restructuration of the metal sites. Angew. Chem., Int. Ed. 2019, 58, 15098–15103.
Zhao, K.; Nie, X. W.; Wang, H. Z.; Chen, S.; Quan, X.; Yu, H. T.; Choi, W.; Zhang, G. H.; Kim, B.; Chen, J. G. Selective electroreduction of CO2 to acetone by single copper atoms anchored on N-doped porous carbon. Nat. Commun. 2020, 11, 2455.
Gao, D. F.; Arán-Ais, R. M.; Jeon, H. S.; Roldan Cuenya, B. Rational catalyst and electrolyte design for CO2 electroreduction towards multicarbon products. Nat. Catal. 2019, 2, 198–210.
Deng, B. W.; Huang, M.; Zhao, X. L.; Mou, S. Y.; Dong, F. Interfacial electrolyte effects on electrocatalytic CO2 reduction. ACS Catal. 2022, 12, 331–362.
Sun, W. C.; Yao, D.; Tai, Y. H.; Zhou, L.; Tian, W. X.; Yang, M.; Li, C. X. Efficient electrocatalytic CO2 reduction to ethanol through the proton coupled electron transfer process of PV n Mo(12− n ) ( n = 1, 2, 3) over indium electrode. J. Colloid Interface Sci. 2023, 650, 121–131.
Tian, Y.; Chang, Z. H.; Wang, X. L.; Lin, H. Y.; Zhang, Y. C.; Liu, Q. Q.; Chen, Y. Z. Pseudocapacitance improvement of polymolybdates-based metal-organic complexes via modification with hydrogen molybdenum bronze by electrochemical treatment. Chem. Eng. J. 2022, 428, 132380.
Lang, Z. L.; Miao, J.; Lan, Y. C.; Cheng, J. J.; Xu, X. Q.; Cheng, C. Polyoxometalates as electron and proton reservoir assist electrochemical CO2 reduction. APL Mater. 2020, 8, 120702.
Sun, W. C.; Tai, Y. H.; Tian, W. X.; Zhou, L.; Li, C. X. Electrochemical CO2 reduction to ethanol: Synergism of (n-Bu4N)3SVMo11O40 and an in catalyst. Electrochim. Acta 2023, 445, 142067.
Zha, B.; Li, C. X.; Li, J. J. Efficient electrochemical reduction of CO2 into formate and acetate in polyoxometalate catholyte with indium catalyst. J. Catal. 2020, 382, 69–76.
Wang, S. S.; Liu, W.; Wan, Q. X.; Liu, Y. Homogeneous epoxidation of lipophilic alkenes by aqueous hydrogen peroxide: Catalysis of a Keggin-type phosphotungstate-functionalized ionic liquid in amphipathic ionic liquid solution. Green Chem. 2009, 11, 1589–1594.
Tong, X.; Tian, N. Q.; Zhu, W. M.; Wu, Q. Y.; Cao, F. H.; Yan, W. F. Synthesis, crystal structure and conductive performance of tungstovanadophosphoric heteropoly acid H4PW11VO40·8H2O. J. Alloys Compd. 2012, 544, 37–41.
Zhu, W. S.; Huang, W. L.; Li, H. M.; Zhang, M.; Jiang, W.; Chen, G. Y.; Han, C. R. Polyoxometalate-based ionic liquids as catalysts for deep desulfurization of fuels. Fuel Process. Technol. 2011, 92, 1842–1848.
Li, X.; Ren, Y. H.; Weng, Z. W.; Yue, B.; He, H. Y. Stabilisation of high-valent Cu3+ in a Keggin-type polyoxometalate. Chem. Commun. 2020, 56, 2324–2327.
Li, C. X.; Zhang, Y.; O’Halloran, K. P.; Zhang, J. W.; Ma, H. Y. Electrochemical behavior of vanadium-substituted Keggin-type polyoxometalates in aqueous solution. J. Appl. Electrochem. 2009, 39, 421–427.
Ji, H. M.; Zhu, L. D.; Liang, D. D.; Liu, Y.; Cai, L. L.; Zhang, S. W.; Liu, S. X. Use of a 12-molybdovanadate(V) modified ionic liquid carbon paste electrode as a bifunctional electrochemical sensor. Electrochim. Acta 2009, 54, 7429–7434.
Li, C. X.; Zha, B.; Li, J. J. A SiW11Mn-assisted indium electrocatalyst for carbon dioxide reduction into formate and acetate. J. CO2 Util. 2020, 38, 299–305.
Du, J.; Lang, Z. L.; Ma, Y. Y.; Tan, H. Q.; Liu, B. L.; Wang, Y. H.; Kang, Z. H.; Li, Y. G. Polyoxometalate-based electron transfer modulation for efficient electrocatalytic carbon dioxide reduction. Chem. Sci. 2020, 11, 3007–3015.
Sun, W. C.; Li, C. X.; Zhao, H. F. The targeted multi-electrons transfer for acetic acid and ethanol obtained with (n-Bu4N)3SVW11O40 and in synergetic catalysis in CO2 electroreduction. J. Power Sources 2022, 517, 230665.
White, J. L.; Bocarsly, A. B. Enhanced carbon dioxide reduction activity on indium-based nanoparticles. J. Electrochem. Soc. 2016, 163, H410–H416.
Huang, Z. F.; Xi, S. B.; Song, J. J.; Dou, S.; Li, X. G.; Du, Y. H.; Diao, C. Z.; Xu, Z. J.; Wang, X. Tuning of lattice oxygen reactivity and scaling relation to construct better oxygen evolution electrocatalyst. Nat. Commun. 2021, 12, 3992.
Baydaroglu, F. O.; Özdemir, E.; Gürek, A. G. Polypyrrole supported Co-W-B nanoparticles as an efficient catalyst for improved hydrogen generation from hydrolysis of sodium borohydride. Int. J. Hydrogen Energy 2022, 47, 9643–9652.
Guo, C. Y.; Guo, Y. H.; Shi, Y. M.; Lan, X. N.; Wang, Y. T.; Yu, Y. F.; Zhang, B. Electrocatalytic reduction of CO2 to ethanol at close to theoretical potential via engineering abundant electron-donating Cu δ + Species. Angew. Chem., Int. Ed. 2022, 61, e202205909.
Wang, Q. R.; Yang, X. F.; Zang, H.; Chen, F. R.; Wang, C.; Yu, N.; Geng, B. Y. Metal-organic framework-derived biIn bimetallic oxide nanoparticles embedded in carbon networks for efficient electrochemical reduction of CO2 to formate. Inorg. Chem., 2022, 61, 12003–12011.
Machan, C. W.; Sampson, M. D.; Chabolla, S. A.; Dang, T.; Kubiak, C. P. Developing a mechanistic understanding of molecular electrocatalysts for CO2 reduction using infrared spectroelectrochemistry. Organometallics 2014, 33, 4550–4559.
Cheng, Q.; Huang, M.; Xiao, L.; Mou, S. Y.; Zhao, X. L.; Xie, Y. Q.; Jiang, G. D.; Jiang, X. Y.; Dong, F. Unraveling the influence of oxygen vacancy concentration on electrocatalytic CO2 reduction to formate over indium oxide catalysts. ACS Catal. 2023, 13, 4021–4029.
Ding, L. C.; Zhu, N. N.; Hu, Y.; Chen, Z.; Song, P.; Sheng, T.; Wu, Z. C.; Xiong, Y. J. Over 70% faradaic efficiency for CO2 electroreduction to ethanol enabled by potassium dopant-tuned interaction between copper sites and intermediates. Angew. Chem., Int. Ed. 2022, 61, e202209268.
Deng, Y. L.; Yeo, B. S. Characterization of electrocatalytic water splitting and CO2 reduction reactions using in situ/operando Raman spectroscopy. ACS Catal. 2017, 7, 7873–7889.
Guo, S. Y.; Liu, Y. C.; Huang, Y.; Wang, H.; Murphy, E.; Delafontaine, L.; Chen, J. Z.; Zenyuk, I. V.; Atanassov, P. Promoting electrolysis of carbon monoxide toward acetate and 1-propanol in flow electrolyzer. ACS Energy Lett. 2023, 8, 935–942.