Herein, the overall structure of a nanocluster coprotected by phosphine and mercaptan ligands [Au7Ag8(SPh)6((p-OMePh)3P)8]NO3 (Au7Ag8) was reported. For comparison, a previously reported nanocluster with the same structure, but a different metal composition, [Au13Cu2(TBBT)6((p-ClPh)3P)8]SbF6 (Au13Cu2), was synthesized. In addition, their optical and electrocatalytic CO2 reduction properties were comprehensively compared. The results reveal that the photoluminescence quantum yield (PLQY) of the Ag-doped Au7Ag8 nanocluster is 1.62%, which is seven times greater than that of the Cu-doped Au13Cu2 nanocluster (PLQY = 0.23%). Furthermore, the Au13Cu2 nanocluster demonstrates significantly enhanced catalytic selectivity for CO, with a CO Faradaic efficiency ranging from 79.7% to 90.4%, compared with that of the Au7Ag8 nanocluster (CO Faradaic efficiency: 67.2%–77.7%) within a potential range of 0.5 to −1.1 V. From structural analyses, the superior CO selectivity of Au13Cu2 is attributed to the copper dopant.
Chakraborty, I.; Pradeep, T. Atomically precise clusters of noble metals: Emerging link between atoms and nanoparticles. Chem. Rev. 2017, 117, 8208–8271.
Jin, R. C.; Zeng, C. J.; Zhou, M.; Chen, Y. X. Atomically precise colloidal metal nanoclusters and nanoparticles: Fundamentals and opportunities. Chem. Rev. 2016, 116, 10346–10413.
Shi, J. Y.; Kumar Gupta, R.; Deng, Y. K.; Sun, D.; Wang, Z. Recent advances in the asymmetrical templation effect of polyoxometalate in silver clusters. Polyoxometalates 2022, 1, 9140010.
Zhang, S. S.; Havenridge, S.; Zhang, C. K.; Wang, Z.; Feng, L.; Gao, Z. Y.; Aikens, C. M.; Tung, C. H.; Sun, D. Sulfide boosting near-unity photoluminescence quantum yield of silver nanocluster. J. Am. Chem. Soc. 2022, 144, 18305–18314.
Kang, X.; Wang, S. X.; Zhu, M. Z. Observation of a new type of aggregation-induced emission in nanoclusters. Chem. Sci. 2018, 9, 3062–3068.
Zhang, M. M.; Gao, K. K.; Dong, X. Y.; Si, Y. B.; Jia, T.; Han, Z.; Zang, S. Q.; Mak, T. C. W. Chiral hydride Cu18 clusters transform to superatomic Cu15Ag4 clusters: Circularly polarized luminescence lighting. J. Am. Chem. Soc. 2023, 145, 22310–22316.
Man, R. W. Y.; Yi, H.; Malola, S.; Takano, S.; Tsukuda, T.; Häkkinen, H.; Nambo, M.; Crudden, C. M. Synthesis and characterization of enantiopure chiral bis NHC-stabilized edge-shared Au10 nanocluster with unique prolate shape. J. Am. Chem. Soc. 2022, 144, 2056–2061.
Ding, M.; Tang, L.; Ma, X. S.; Song, C. X.; Wang, S. X. Effects of ligand tuning and core doping of atomically precise copper nanoclusters on CO2 electroreduction selectivity. Commun. Chem. 2022, 5, 172.
Ma, G. Y.; Sun, F.; Qiao, L.; Shen, Q. L.; Wang, L.; Tang, Q.; Tang, Z. H. Atomically precise alkynyl-protected Ag20Cu12 nanocluster: Structure analysis and electrocatalytic performance toward nitrate reduction for NH3 synthesis. Nano Res. 2023, 16, 10867–10872.
Song, T. X.; Yao, Z.; Li, G. J.; Cai, X.; Liu, X.; Wang, Y. G.; Ding, W. P.; Zhu, Y. Catalytic activity coupled with structural stability within a heterodimeric Au29(SR)19 cluster. ACS Catal. 2023, 13, 10878–10886.
Li, G. J.; Hou, J.; Lei, X. M.; Li, D.; Yu, E. Q.; Hu, W. G.; Cai, X.; Liu, X.; Chen, M. Y.; Zhu, Y. Reactivity and recyclability of ligand-protected metal cluster catalysts for CO2 transformation. Angew. Chem., Int. Ed. 2023, 62, e202216735.
Kwak, K.; Lee, D. Electrochemistry of atomically precise metal nanoclusters. Acc. Chem. Res. 2019, 52, 12–22.
Tang, Q.; Lee, Y.; Li, D. Y.; Choi, W.; Liu, C. W.; Lee, D.; Jiang, D. E. Lattice-hydride mechanism in electrocatalytic CO2 reduction by structurally precise copper-hydride nanoclusters. J. Am. Chem. Soc. 2017, 139, 9728–9736.
Liu, Z. H.; Wu, Z. N.; Yao, Q. F.; Cao, Y. T.; Chai, O. J. H.; Xie, J. P. Correlations between the fundamentals and applications of ultrasmall metal nanoclusters: Recent advances in catalysis and biomedical applications. Nano Today 2021, 36, 101053.
Wu, Z. L.; Hu, G. X.; Jiang, D. E.; Mullins, D. R.; Zhang, Q. F.; Allard, L. F.; Wang, L. S.; Overbury, S. H. Diphosphine-protected Au22 nanoclusters on oxide supports are active for gas-phase catalysis without ligand removal. Nano Lett. 2016, 16, 6560–6567.
Wan, X. K.; Wang, J. Q.; Nan, Z. A.; Wang, Q. M. Ligand effects in catalysis by atomically precise gold nanoclusters. Sci. Adv. 2017, 3, e1701823.
Kwak, K.; Choi, W.; Tang, Q.; Kim, M.; Lee, Y.; Jiang, D. E.; Lee, D. A molecule-like PtAu24(SC6H13)18 nanocluster as an electrocatalyst for hydrogen production. Nat. Commun. 2017, 8, 14723.
Sugiuchi, M.; Shichibu, Y.; Konishi, K. An Inherently chiral Au24 framework with double-helical hexagold strands. Angew. Chem., Int. Ed. 2018, 57, 7855–7859.
Desireddy, A.; Conn, B. E.; Guo, J. S.; Yoon, B.; Barnett, R. N.; Monahan, B. M.; Kirschbaum, K.; Griffith, W. P.; Whetten, R. L.; Landman, U. et al. Ultrastable silver nanoparticles. Nature 2013, 501, 399–402.
Liu, X.; Yuan, J. Y.; Yao, C. H.; Chen, J. S.; Li, L. L.; Bao, X. L.; Yang, J. L.; Wu, Z. K. Crystal and solution photoluminescence of MAg24(SR)18 (M = Ag/Pd/Pt/Au) nanoclusters and some implications for the photoluminescence mechanisms. J. Phys. Chem. C 2017, 121, 13848–13853.
Liu, Y. J.; Shao, P.; Gao, M. Y.; Fang, W. H.; Zhang, J. Synthesis of Ag-doped polyoxotitanium nanoclusters for efficient electrocatalytic CO2 reduction. Inorg. Chem. 2020, 59, 11442–11448.
Zhai, Y. J.; Han, P.; Yun, Q. B.; Ge, Y. Y.; Zhang, X.; Chen, Y.; Zhang, H. Phase engineering of metal nanocatalysts for electrochemical CO2 reduction. eScience 2022, 2, 467–485.
Wang, Z.; Li, M. D.; Shi, J. Y.; Su, H. F.; Liu, J. W.; Feng, L.; Gao, Z. Y.; Xue, Q. W.; Tung, C. H.; Sun, D. et al. In situ capture of a ternary supramolecular cluster in a 58-nuclei silver supertetrahedron. CCS Chem. 2022, 4, 1788–1795.
Su, Y. M.; Ji, B. Q.; Wang, Z.; Zhang, S. S.; Feng, L.; Gao, Z. Y.; Li, Y. W.; Tung, C. H.; Sun, D.; Zheng, L. S. Anionic passivation layer-assisted trapping of an icosahedral Ag13 kernel in a truncated tetrahedral Ag89 nanocluster. Sci. China Chem. 2021, 64, 1482–1486.
Wang, Z.; Qu, Q. P.; Su, H. F.; Huang, P.; Gupta, R. K.; Liu, Q. Y.; Tung, C. H.; Sun, D.; Zheng, L. S. A novel 58-nuclei silver nanowheel encapsulating a subvalent Ag64+ kernel. Sci. China Chem. 2020, 63, 16–20.
Yuan, Q. Q.; Kang, X.; Hu, D. Q.; Qin, C. W. L.; Wang, S. X.; Zhu, M. Z. Metal synergistic effect on cluster optical properties: Based on Ag25 series nanoclusters. Dalton Trans. 2019, 48, 13190–13196.
Ma, X. H.; Jia, J. T.; Luo, P.; Wang, Z. Y.; Zang, S. Q.; Mak, T. C. W. Layer-by-layer alloying of NIR-II emissive M50 (Au/Ag/Cu) superatomic nanocluster. Nano Res. 2022, 15, 5569–5574.
Bootharaju, M. S.; Joshi, C. P.; Parida, M. R.; Mohammed, O. F.; Bakr, O. M. Templated atom-precise galvanic synthesis and structure elucidation of a [Ag24Au(SR)18]- nanocluster. Angew. Chem., Int. Ed. 2016, 55, 922–926.
Li, Q.; Lambright, K. J.; Taylor, M. G.; Kirschbaum, K.; Luo, T. Y.; Zhao, J. B.; Mpourmpakis, G.; Mokashi-Punekar, S.; Rosi, N. L.; Jin, R. C. Reconstructing the surface of gold nanoclusters by cadmium doping. J. Am. Chem. Soc. 2017, 139, 17779–17782.
Yang, H. Y.; Wang, Y.; Huang, H. Q.; Gell, L.; Lehtovaara, L.; Malola, S.; Häkkinen, H.; Zheng, N. F. All-thiol-stabilized Ag44 and Au12Ag32 nanoparticles with single-crystal structures. Nat. Commun. 2013, 4, 2422.
Kang, X.; Abroshan, H.; Wang, S. X.; Zhu, M. Z. Free valence electron centralization strategy for preparing ultrastable nanoclusters and their catalytic application. Inorg. Chem. 2019, 58, 11000–11009.
Shen, H.; Xu, Z.; Wang, L. Z.; Han, Y. Z.; Liu, X. H.; Malola, S.; Teo, B. K.; Häkkinen, H.; Zheng, N. F. Tertiary chiral nanostructures from C-H ··· F directed assembly of chiroptical superatoms. Angew. Chem., Int. Ed. 2021, 60, 22411–22416.
Li, H.; Zhou, C. J.; Wang, E. D.; Kang, X.; Xu, W. W.; Zhu, M. Z. An insight, at the atomic level, into the intramolecular metallophilic interaction in nanoclusters. Chem. Commun. 2022, 58, 5092–5095.
Anumula, R.; Reber, A. C.; An, P.; Cui, C. N.; Guo, M. D.; Wu, H. M.; Luo, Z. X.; Khanna, S. N. Ligand accommodation causes the anti-centrosymmetric structure of Au13Cu4 clusters with near-infrared emission. Nanoscale 2020, 12, 14801–14807.
Wang, J. Q.; He, R. L.; Liu, W. D.; Feng, Q. Y.; Zhang, Y. E.; Liu, C. Y.; Ge, J. X.; Wang, Q. M. Integration of metal catalysis and organocatalysis in a metal nanocluster with anchored proline. J. Am. Chem. Soc. 2023, 145, 12255–12263.
Zhang, S. S.; Liu, R. C.; Zhang, X. C.; Feng, L.; Xue, Q. W.; Gao, Z. Y.; Tung, C. H.; Sun, D. Core engineering of paired core-shell silver nanoclusters. Sci. China Chem. 2021, 64, 2118–2124.
Wang, Z.; Su, H. F.; Zhuang, G. L.; Kurmoo, M.; Tung, C. H.; Sun, D.; Zheng, L. S. Carbonate-water supramolecule trapped in silver nanoclusters encapsulating unprecedented Ag11 Kernel. CCS Chem. 2020, 2, 663–672.
Rambukwella, M.; Chang, L.; Ravishanker, A.; Fortunelli, A.; Stener, M.; Dass, A. Au36(SePh)24 nanomolecules: Synthesis, optical spectroscopy and theoretical analysis. Phys. Chem. Chem. Phys. 2018, 20, 13255–13262.
Zeng, C. J.; Qian, H. F.; Li, T.; Li, G.; Rosi, N. L.; Yoon, B.; Barnett, R. N.; Whetten, R. L.; Landman, U.; Jin, R. C. Total structure and electronic properties of the gold nanocrystal Au36(SR)24. Angew. Chem., Int. Ed. 2012, 51, 13114–13118.
Ma, A. L.; Wang, J. W.; Kong, J.; Ren, Y. G.; Wang, Y. X.; Ma, X. S.; Zhou, M.; Wang, S. X. Au10Ag17(TPP)10(SR)6Cl5 nanocluster: Structure, transformation and the origin of its photoluminescence. Phys. Chem. Chem. Phys. 2023, 25, 9772–9778.
Klementyeva, S. V.; Woern, K.; Schrenk, C.; Zhang, M. H.; Khusniyarov, M. M.; Schnepf, A. [(thf)5Ln(Ge9{Si(SiMe3)3}2)] (Ln = Eu, Sm, Yb): Capping metalloid germanium cluster with lanthanides. Inorg. Chem. 2023, 62, 5614–5621.
Luo, Z. T.; Yuan, X.; Yu, Y.; Zhang, Q. B.; Leong, D. T.; Lee, J. Y.; Xie, J. P. From aggregation-induced emission of Au(I)-thiolate complexes to ultrabright Au(0)@Au(I)-thiolate core-shell nanoclusters. J. Am. Chem. Soc. 2012, 134, 16662–16670.
Wu, Z. K.; Jin, R. C. On the ligand's role in the fluorescence of gold nanoclusters. Nano Lett. 2010, 10, 2568–2573.
Sun, Y. N.; Liu, X.; Xiao, K.; Zhu, Y.; Chen, M. Y. Active-site tailoring of gold cluster catalysts for electrochemical CO2 reduction. ACS Catal. 2021, 11, 11551–11560.
Seong, H.; Efremov, V.; Park, G.; Kim, H.; Yoo, J. S.; Lee, D. Atomically precise gold nanoclusters as model catalysts for identifying active sites for electroreduction of CO2. Angew. Chem., Int. Ed. 2021, 60, 14563–14570.
Deng, G. C.; Kim, J.; Bootharaju, M. S.; Sun, F.; Lee, K.; Tang, Q.; Hwang, Y. J.; Hyeon, T. Body-centered-cubic-kernelled Ag15Cu6 nanocluster with alkynyl protection: Synthesis, total Structure, and CO2 electroreduction. J. Am. Chem. Soc. 2022, 145, 3401–3407.
Zang, D. J.; Li, Q.; Dai, G. Y.; Zeng, M. Y.; Huang, Y. C.; Wei, Y. G. Interface engineering of Mo8/Cu heterostructures toward highly selective electrochemical reduction of carbon dioxide into acetate. Appl. Catal. B Environ. 2021, 281, 119426.
Liu, L. H.; Li, N.; Han, M.; Han, J. R.; Liang, H. Y. Scalable synthesis of nanoporous high entropy alloys for electrocatalytic oxygen evolution. Rare Met. 2022, 41, 125–131.
Cai, Y. F.; Fei, C.; Zhang, C.; Yang, J.; Wang, L.; Zhan, W. C.; Guo, Y. L.; Cao, X. M.; Gong, X. Q.; Guo, Y. Surface pits stabilized Au catalyst for low-temperature CO oxidation. Rare Met. 2022, 41, 3060–3068.
Qin, L. B.; Sun, F.; Ma, X. S.; Ma, G. Y.; Tang, Y.; Wang, L. K.; Tang, Q.; Jin, R. C.; Tang, Z. H. Homoleptic alkynyl-protected Ag15 nanocluster with atomic precision: Structural analysis and electrocatalytic performance toward CO2 reduction. Angew. Chem., Int. Ed. 2021, 60, 26136–26141.
Li, Q. Z.; Huang, B. Y.; Yang, S.; Zhang, H.; Chai, J. S.; Pei, Y.; Zhu, M. Z. Unraveling the nucleation process from a Au(I)-SR complex to transition-size nanoclusters. J. Am. Chem. Soc. 2021, 143, 15224–15232.
Ma, X. S.; Sun, F.; Qin, L. B.; Liu, Y. G.; Kang, X. W.; Wang, L. K.; Jiang, D. E.; Tang, Q.; Tang, Z. H. Electrochemical CO2 reduction catalyzed by atomically precise alkynyl-protected Au7Ag8, Ag9Cu6, and Au2Ag8Cu5 nanoclusters: Probing the effect of multi-metal core on selectivity. Chem. Sci. 2022, 13, 10149–10158.
Wang, K.; Liu, D. Y.; Liu, L. M.; Liu, J.; Hu, X. F.; Li, P.; Li, M. T.; Vasenko, A. S.; Xiao, C. H.; Ding, S. J. Tuning the local electronic structure of oxygen vacancies over copper-doped zinc oxide for efficient CO2 electroreduction. eScience. 2022, 2, 518–528.