Tin–oxo clusters have attracted considerable attention because they provide a platform for studying the structure–property relationship of tin oxide materials at the molecular level. Although different types of tin–oxo clusters have been developed, extended tin–oxo cluster-based structures and their corresponding discrete clusters are rarely obtained. In this study, we regulate reaction pathways to hierarchically assemble a novel discrete Sn8–oxo cluster and its extended structure using a solvent strategy. The discrete Sn8–oxo cluster (CTGU-SnC-1) is obtained because its coordination active sites are occupied by the esterifiable methanol in the solvent. The resulting one-dimensional chain (CTGU-SnC-2) is formed because of the coordination-driven assembly of active sites in the Sn8 cluster without methanol in the solvent. In addition to single-crystal X-ray diffraction, these compounds were further characterized using powder X-ray diffraction, infrared spectroscopy, thermogravimetric analysis, elemental analysis, and ultraviolet–visible (UV–vis) diffuse reflectance spectroscopy. In addition, their electrocatalytic CO2 reduction properties were explored. The extended structure CTGU-SnC-2 exhibits better electrocatalytic activity than the discrete cluster in the CO2 reduction reaction.
Yanagisawa, A.; Inoue, H.; Morodome, M.; Yamamoto, H. Highly chemoselective allylation of carbonyl compounds with tetraallyltin in acidic aqueous media. J. Am. Chem. Soc. 1993, 115, 10356–10357.
Durand, S.; Sakamoto, K.; Fukuyama, T.; Orita, A.; Otera, J.; Duthie, A.; Dakternieks, D.; Schulte, M.; Jurkschat, K. Cationic organotin clusters for highly efficient alcohol acetylation catalysts. Organometallics 2000, 19, 3220–3223.
Cardineau, B.; Del Re, R.; Marnell, M.; Al-Mashat, H.; Vockenhuber, M.; Ekinci, Y.; Sarma, C.; Freedman, D. A.; Brainard, R. L. Photolithographic properties of tin-oxo clusters using extreme ultraviolet light (13.5 nm). Microelectron. Eng. 2014, 127, 44–50.
Sharps, M. C.; Marsh, D. A.; Zakharov, L. N.; Hutchison, J. E.; Johnson, D. W. Implications of crystal structure on organotin carboxylate photoresists. Cryst. Res. Technol. 2017, 52, 1700081.
Zhu, Y.; Zhang, J.; Zhang, L. A core-shell type alkyl-Sn-oxo cluster of {Sn14As16} bridged by 4-aminophenylarsonate ligands and incorporated with a {Na6} cluster. Chem. Commun. 2020, 56, 1433–1435.
Zhu, Y.; Wang, Z. R.; Li, D. J.; Zhu, Y. D.; Li, Q. H.; Li, D. S.; Zhang, L. Silver-templated γ-Keggin alkyltin-oxo cluster: Electronic structure and optical limiting effect. Angew. Chem., Int. Ed. 2022, 61, e202202853.
Zhu, Y.; Li, Q. H.; Li, D. S.; Zhang, J.; Zhang, L. Functional ligand directed assembly and electronic structure of Sn18-oxo wheel nanoclusters. Chem. Commun. 2021, 57, 5159–5162.
Wang, D.; Chen, Z. N.; Ding, Q. R.; Feng, C. C.; Wang, S. T.; Zhuang, W.; Zhang, L. Rational preparation of atomically precise non-alkyl tin-Oxo clusters with theoretical to experimental insights into electrocatalytic CO2 reduction applications. CCS Chem. 2020, 3, 2607–2616.
Glowacki, B.; Lutter, M.; Schollmeyer, D.; Hiller, W.; Jurkschat, K. Novel stannatrane N(CH2CMe2O)2(CMe2CH2O)SnO- t-Bu and related oligonuclear tin(IV) oxoclusters. Two isomers in one crystal. Inorg. Chem. 2016, 55, 10218–10228.
Dong, Y. B.; Shi, H. Y.; Yang, J.; Liu, Y. Y.; Ma, J. F. Molecular dumbbell, sandwich, and paddle-wheel assembled with methylresorcin[4]arene cavitands and organooxotin clusters. Cryst. Growth Des. 2015, 15, 1546–1551.
Zhu, Y.; Zhang, L.; Zhang, J. Assembly of high-nuclearity Sn26, Sn34-oxo clusters: Solvent strategies and inorganic Sn incorporation. Chem. Sci. 2019, 10, 9125–9129.
Hutchison, D. C.; Smith, R. M.; Nyman, M. Isomerization of Na-centered alkyltin Keggin clusters. Eur. J. Inorg. Chem. 2021, 2021, 43–49.
Chandrasekhar, V.; Thilagar, P.; Bickley, J. F.; Steiner, A. Alternating hydrophilic and hydrophobic pockets in the channel structures of organostannoxane prismanes: Preferential confinement of guest molecules. J. Am. Chem. Soc. 2005, 127, 11556–11557.
Zheng, G. L.; Ma, J. F.; Su, Z. M.; Yan, L. K.; Yang, J.; Li, Y. Y.; Liu, J. F. A mixed-valence tin-oxygen cluster containing six peripheral ferrocene units. Angew. Chem., Int. Ed. 2004, 43, 2409–2411.
Prabusankar, G.; Jousseaume, B.; Toupance, T.; Allouchi, H. Organic-inorganic Sn12 and organic Sn6 oxide-hydroxide clusters. Angew. Chem., Int. Ed. 2006, 45, 1255–1258.
Xiao, X.; Shao, K. Z.; Yan, L. S.; Mei, Z. M.; Zhu, D. S.; Xu, L. A novel macrocyclic organotin carboxylate containing a nona-nuclear long ladder. Dalton Trans. 2013, 42, 15387–15390.
Holmes, R. R.; Schmid, C. G.; Chandrasekhar, V.; Day, R. O.; Holmes, J. M. Oxo carboxylate tin ladder clusters. A new structural class of organotin compounds. J. Am. Chem. Soc. 1987, 109, 1408–1414.
Wang, Q. F.; Ma, C. L.; He, G. F.; Li, Z. Synthesis and characterization of new tin derivatives derived from 3,5,6-trichlorosalicylic acid: Cage, chain and ladder X-ray crystal structures. Polyhedron 2013, 49, 177–182.
Swamy, K. C. K.; Day, R. O.; Holmes, R. R. A new structural form of tin in a cubic cluster. J. Am. Chem. Soc. 1987, 109, 5546–5548.
Liu, F. F.; Wang, D.; Chen, G. H.; Qiao, Y.; Luo, F.; Zhang, J.; Zhang, L. Alkenyl-type ligands functionalized tin-lanthanide oxo nanoclusters as molecular lithography resists. Sci. China Chem. 2023, 66, 1731–1736.
Wang, D.; Yi, X. F.; Zhang, L. Non-alkyl tin-oxo clusters as new-type patterning materials for nanolithography. Sci. China Chem. 2022, 65, 114–119.
Chandrasekhar, V.; Baskar, V.; Vittal, J. J. A new structural form of tin in a double O-capped cluster. J. Am. Chem. Soc. 2003, 125, 2392–2393.
Chandrasekhar, V.; Day, R. O.; Holmes, R. R. A new structural form of tin octahedrally coordinated in a drum-shaped molecule. Inorg. Chem. 1985, 24, 1970–1971.
Puff, H.; Reuter, H. Zur hydrolyse von monoorganylzinn-trihalogeniden III. Isolierung und röntgenstrukturanalyse von verbindungen mit dem neuartigen käfig-ion [(i-PrSn)12O14(OH)6]2+. J. Organomet. Chem. 1989, 373, 173–184.
Reuter, H. Inclusion of metal ions within a tin-oxygen cage stabilized by organic residues: Crystal structure of [( iPrSn)12O4(OH)24][Ag7I11]·NaCl·H2O·10DMSO. Angew. Chem., Int. Ed. 1991, 30, 1482–1484.
Saha, S.; Park, D. H.; Hutchison, D. C.; Olsen, M. R.; Zakharov, L. N.; Marsh, D.; Goberna-Ferrón, S.; Frederick, R. T.; Diulus, J. T.; Kenane, N. et al. Alkyltin Keggin clusters templated by sodium. Angew. Chem., Int. Ed. 2017, 56, 10140–10144.
Hutchison, D. C.; Stern, R. D.; Olsen, M. R.; Zakharov, L. N.; Persson, K. A.; Nyman, M. Alkyltin clusters: The less symmetric Keggin isomers. Dalton Trans. 2018, 47, 9804–9813.
Zhu, Y.; Olsen, M. R.; Nyman, M.; Zhang, L.; Zhang, J. Stabilizing γ-alkyltin-oxo Keggin ions by borate functionalization. Inorg. Chem. 2019, 58, 4534–4539.
Hutchison, D. C.; Stern, R. D.; Zakharov, L. N.; Persson, K. A.; Nyman, M. Butyltin Keggin ion with a rare four-coordinate Ca center. Inorg. Chem. 2020, 59, 2900–2909.
Ayari, J.; Göb, C. R.; Oppel, I. M.; Lutter, M.; Hiller, W.; Jurkschat, K. MeSi(CH2SnRO)3 (R = Ph, Me3SiCH2): Building blocks for triangular-shaped diorganotin oxide macrocycles. Angew. Chem., Int. Ed. 2020, 59, 23892–23898.
Boyle, T. J.; Doan, T. Q.; Steele, L. A. M.; Apblett, C.; Hoppe, S. M.; Hawthorne, K.; Kalinich, R. M.; Sigmund, W. M. Tin(II) amide/alkoxide coordination compounds for production of Sn-based nanowires for lithium ion battery anode materials. Dalton Trans. 2012, 41, 9349–9364.
Zhu, Y.; Li, D. S.; Zhang, J.; Zhang, L. Construction and two-dimensional assembly of double-shell Na@Sn6L6@Sn3L3 clusters through tetrahedral citrate ligands. Chem. Commun. 2022, 58, 5650–5652.
Song, S. Y.; Ma, J. F.; Yang, J.; Gao, L. L.; Su, Z. M. Synthesis of an organotin oligomer containing a heptanuclear tin phosphonate cluster by debenzylation reactions: X-ray crystal structure of {Na6(CH3OH)2(H2O)}{[(BzSn)3(PhPO3)5( µ 3 -O)(CH3O)]2Bz2Sn}·CH3OH. Organometallics 2007, 26, 2125–2128.
Zhu, Y.; Li, D. S.; Zhang, J.; Zhang, L. Sn6 and Na4 oxo clusters based non-centrosymmetric framework for solution iodine absorption and second harmonic generation response. Inorg. Chem. 2021, 60, 1985–1990.
Li, Q. L.; Liu, X. L.; Cheng, S.; Zhang, R. F.; Shi, Y.; Ma, C. L. Novel organotin complexes derived from 2,2’-selenodiacetic acid: Synthesis and biological evaluation. RSC Adv. 2016, 6, 32484–32492.
Chen, L.; Chen, Q. H.; Wu, M. Y.; Jiang, F. L.; Hong, M. C. Controllable coordination-driven self-assembly: From discrete metallocages to infinite cage-based frameworks. Acc. Chem. Res. 2015, 48, 201–210.
Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Cryst. 2015, C71, 3–8.
Spek, A. L. PLATON SQUEEZE: A tool for the calculation of the disordered solvent contribution to the calculated structure factors. Acta Cryst. 2015, C71, 9–18.
Chen, W. Z.; Yi, X. F.; Zhang, J.; Zhang, L. Heterometallic Mo-Ti oxo clusters with metal-metal bonds: Preparation and visible-light absorption behaviors. Polyoxometalates 2023, 2, 9140013.
Zhang, H. Y.; Zhao, W. L.; Li, H. Q.; Zhuang, Q. H.; Sun, Z. Q.; Cui, D. Y.; Chen, X. J.; Guo, A.; Ji, X.; An, S. et al. Latest progress in covalently modified polyoxometalates-based molecular assemblies and advanced materials. Polyoxometalates 2022, 1, 9140011.
Li, S. Q.; Li, L. J.; Tian, Y. Q.; Mu, W. L.; Meng, R. X.; Yan, J.; Liu, C. Synthesis and characterization of Ag(I) alkynyl nanoclusters utilizing MoVI-anchored thiacalix[4]arene metalloligands: Application in electrocatalytic CO2 reduction. Polyoxometalates 2024, 3, 9140038.
Zang, D. J.; Wang, H. Q. Polyoxometalate-based nanostructures for electrocatalytic and photocatalytic CO2 reduction. Polyoxometalates 2022, 1, 9140006.