AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (7.8 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Hierarchical assembly of discrete Sn8–oxo cluster and extended structure regulated by solvent strategy

Yu Su§Wei-Juan Chen§Qian ZhouYu Zhu( )Ya-Pan WuDong-Sheng Li( )
Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, College of Materials and Chemical Engineering, China Three Gorges University, Yichang 443002, China

§ Yu Su and Wei-Juan Chen contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Tin–oxo clusters have attracted considerable attention because they provide a platform for studying the structure–property relationship of tin oxide materials at the molecular level. Although different types of tin–oxo clusters have been developed, extended tin–oxo cluster-based structures and their corresponding discrete clusters are rarely obtained. In this study, we regulate reaction pathways to hierarchically assemble a novel discrete Sn8–oxo cluster and its extended structure using a solvent strategy. The discrete Sn8–oxo cluster (CTGU-SnC-1) is obtained because its coordination active sites are occupied by the esterifiable methanol in the solvent. The resulting one-dimensional chain (CTGU-SnC-2) is formed because of the coordination-driven assembly of active sites in the Sn8 cluster without methanol in the solvent. In addition to single-crystal X-ray diffraction, these compounds were further characterized using powder X-ray diffraction, infrared spectroscopy, thermogravimetric analysis, elemental analysis, and ultraviolet–visible (UV–vis) diffuse reflectance spectroscopy. In addition, their electrocatalytic CO2 reduction properties were explored. The extended structure CTGU-SnC-2 exhibits better electrocatalytic activity than the discrete cluster in the CO2 reduction reaction.

Electronic Supplementary Material

Download File(s)
0059_ESM.pdf (1.2 MB)
0059_ESM_CTGU-SnC-1-checkcif.pdf (151.1 KB)
0059_ESM_CTGU-SnC-1.cif (4 MB)
0059_ESM_CTGU-SnC-2-checkcif.pdf (126.2 KB)
0059_ESM_CTGU-SnC-2.cif (1.6 MB)

References

[1]

Yanagisawa, A.; Inoue, H.; Morodome, M.; Yamamoto, H. Highly chemoselective allylation of carbonyl compounds with tetraallyltin in acidic aqueous media. J. Am. Chem. Soc. 1993, 115, 10356–10357.

[2]

Durand, S.; Sakamoto, K.; Fukuyama, T.; Orita, A.; Otera, J.; Duthie, A.; Dakternieks, D.; Schulte, M.; Jurkschat, K. Cationic organotin clusters for highly efficient alcohol acetylation catalysts. Organometallics 2000, 19, 3220–3223.

[3]

Cardineau, B.; Del Re, R.; Marnell, M.; Al-Mashat, H.; Vockenhuber, M.; Ekinci, Y.; Sarma, C.; Freedman, D. A.; Brainard, R. L. Photolithographic properties of tin-oxo clusters using extreme ultraviolet light (13.5 nm). Microelectron. Eng. 2014, 127, 44–50.

[4]

Sharps, M. C.; Marsh, D. A.; Zakharov, L. N.; Hutchison, J. E.; Johnson, D. W. Implications of crystal structure on organotin carboxylate photoresists. Cryst. Res. Technol. 2017, 52, 1700081.

[5]

Zhu, Y.; Zhang, J.; Zhang, L. A core-shell type alkyl-Sn-oxo cluster of {Sn14As16} bridged by 4-aminophenylarsonate ligands and incorporated with a {Na6} cluster. Chem. Commun. 2020, 56, 1433–1435.

[6]

Zhu, Y.; Wang, Z. R.; Li, D. J.; Zhu, Y. D.; Li, Q. H.; Li, D. S.; Zhang, L. Silver-templated γ-Keggin alkyltin-oxo cluster: Electronic structure and optical limiting effect. Angew. Chem., Int. Ed. 2022, 61, e202202853.

[7]

Zhu, Y.; Li, Q. H.; Li, D. S.; Zhang, J.; Zhang, L. Functional ligand directed assembly and electronic structure of Sn18-oxo wheel nanoclusters. Chem. Commun. 2021, 57, 5159–5162.

[8]

Wang, D.; Chen, Z. N.; Ding, Q. R.; Feng, C. C.; Wang, S. T.; Zhuang, W.; Zhang, L. Rational preparation of atomically precise non-alkyl tin-Oxo clusters with theoretical to experimental insights into electrocatalytic CO2 reduction applications. CCS Chem. 2020, 3, 2607–2616.

[9]

Glowacki, B.; Lutter, M.; Schollmeyer, D.; Hiller, W.; Jurkschat, K. Novel stannatrane N(CH2CMe2O)2(CMe2CH2O)SnO- t-Bu and related oligonuclear tin(IV) oxoclusters. Two isomers in one crystal. Inorg. Chem. 2016, 55, 10218–10228.

[10]

Dong, Y. B.; Shi, H. Y.; Yang, J.; Liu, Y. Y.; Ma, J. F. Molecular dumbbell, sandwich, and paddle-wheel assembled with methylresorcin[4]arene cavitands and organooxotin clusters. Cryst. Growth Des. 2015, 15, 1546–1551.

[11]

Zhu, Y.; Zhang, L.; Zhang, J. Assembly of high-nuclearity Sn26, Sn34-oxo clusters: Solvent strategies and inorganic Sn incorporation. Chem. Sci. 2019, 10, 9125–9129.

[12]

Hutchison, D. C.; Smith, R. M.; Nyman, M. Isomerization of Na-centered alkyltin Keggin clusters. Eur. J. Inorg. Chem. 2021, 2021, 43–49.

[13]

Chandrasekhar, V.; Thilagar, P.; Bickley, J. F.; Steiner, A. Alternating hydrophilic and hydrophobic pockets in the channel structures of organostannoxane prismanes: Preferential confinement of guest molecules. J. Am. Chem. Soc. 2005, 127, 11556–11557.

[14]

Zheng, G. L.; Ma, J. F.; Su, Z. M.; Yan, L. K.; Yang, J.; Li, Y. Y.; Liu, J. F. A mixed-valence tin-oxygen cluster containing six peripheral ferrocene units. Angew. Chem., Int. Ed. 2004, 43, 2409–2411.

[15]

Prabusankar, G.; Jousseaume, B.; Toupance, T.; Allouchi, H. Organic-inorganic Sn12 and organic Sn6 oxide-hydroxide clusters. Angew. Chem., Int. Ed. 2006, 45, 1255–1258.

[16]

Xiao, X.; Shao, K. Z.; Yan, L. S.; Mei, Z. M.; Zhu, D. S.; Xu, L. A novel macrocyclic organotin carboxylate containing a nona-nuclear long ladder. Dalton Trans. 2013, 42, 15387–15390.

[17]

Holmes, R. R.; Schmid, C. G.; Chandrasekhar, V.; Day, R. O.; Holmes, J. M. Oxo carboxylate tin ladder clusters. A new structural class of organotin compounds. J. Am. Chem. Soc. 1987, 109, 1408–1414.

[18]

Wang, Q. F.; Ma, C. L.; He, G. F.; Li, Z. Synthesis and characterization of new tin derivatives derived from 3,5,6-trichlorosalicylic acid: Cage, chain and ladder X-ray crystal structures. Polyhedron 2013, 49, 177–182.

[19]

Swamy, K. C. K.; Day, R. O.; Holmes, R. R. A new structural form of tin in a cubic cluster. J. Am. Chem. Soc. 1987, 109, 5546–5548.

[20]

Liu, F. F.; Wang, D.; Chen, G. H.; Qiao, Y.; Luo, F.; Zhang, J.; Zhang, L. Alkenyl-type ligands functionalized tin-lanthanide oxo nanoclusters as molecular lithography resists. Sci. China Chem. 2023, 66, 1731–1736.

[21]

Wang, D.; Yi, X. F.; Zhang, L. Non-alkyl tin-oxo clusters as new-type patterning materials for nanolithography. Sci. China Chem. 2022, 65, 114–119.

[22]

Chandrasekhar, V.; Baskar, V.; Vittal, J. J. A new structural form of tin in a double O-capped cluster. J. Am. Chem. Soc. 2003, 125, 2392–2393.

[23]

Chandrasekhar, V.; Day, R. O.; Holmes, R. R. A new structural form of tin octahedrally coordinated in a drum-shaped molecule. Inorg. Chem. 1985, 24, 1970–1971.

[24]

Puff, H.; Reuter, H. Zur hydrolyse von monoorganylzinn-trihalogeniden III. Isolierung und röntgenstrukturanalyse von verbindungen mit dem neuartigen käfig-ion [(i-PrSn)12O14(OH)6]2+. J. Organomet. Chem. 1989, 373, 173–184.

[25]

Reuter, H. Inclusion of metal ions within a tin-oxygen cage stabilized by organic residues: Crystal structure of [( iPrSn)12O4(OH)24][Ag7I11]·NaCl·H2O·10DMSO. Angew. Chem., Int. Ed. 1991, 30, 1482–1484.

[26]

Saha, S.; Park, D. H.; Hutchison, D. C.; Olsen, M. R.; Zakharov, L. N.; Marsh, D.; Goberna-Ferrón, S.; Frederick, R. T.; Diulus, J. T.; Kenane, N. et al. Alkyltin Keggin clusters templated by sodium. Angew. Chem., Int. Ed. 2017, 56, 10140–10144.

[27]

Hutchison, D. C.; Stern, R. D.; Olsen, M. R.; Zakharov, L. N.; Persson, K. A.; Nyman, M. Alkyltin clusters: The less symmetric Keggin isomers. Dalton Trans. 2018, 47, 9804–9813.

[28]

Zhu, Y.; Olsen, M. R.; Nyman, M.; Zhang, L.; Zhang, J. Stabilizing γ-alkyltin-oxo Keggin ions by borate functionalization. Inorg. Chem. 2019, 58, 4534–4539.

[29]

Hutchison, D. C.; Stern, R. D.; Zakharov, L. N.; Persson, K. A.; Nyman, M. Butyltin Keggin ion with a rare four-coordinate Ca center. Inorg. Chem. 2020, 59, 2900–2909.

[30]

Ayari, J.; Göb, C. R.; Oppel, I. M.; Lutter, M.; Hiller, W.; Jurkschat, K. MeSi(CH2SnRO)3 (R = Ph, Me3SiCH2): Building blocks for triangular-shaped diorganotin oxide macrocycles. Angew. Chem., Int. Ed. 2020, 59, 23892–23898.

[31]

Boyle, T. J.; Doan, T. Q.; Steele, L. A. M.; Apblett, C.; Hoppe, S. M.; Hawthorne, K.; Kalinich, R. M.; Sigmund, W. M. Tin(II) amide/alkoxide coordination compounds for production of Sn-based nanowires for lithium ion battery anode materials. Dalton Trans. 2012, 41, 9349–9364.

[32]

Zhu, Y.; Li, D. S.; Zhang, J.; Zhang, L. Construction and two-dimensional assembly of double-shell Na@Sn6L6@Sn3L3 clusters through tetrahedral citrate ligands. Chem. Commun. 2022, 58, 5650–5652.

[33]

Song, S. Y.; Ma, J. F.; Yang, J.; Gao, L. L.; Su, Z. M. Synthesis of an organotin oligomer containing a heptanuclear tin phosphonate cluster by debenzylation reactions: X-ray crystal structure of {Na6(CH3OH)2(H2O)}{[(BzSn)3(PhPO3)5( µ 3 -O)(CH3O)]2Bz2Sn}·CH3OH. Organometallics 2007, 26, 2125–2128.

[34]

Zhu, Y.; Li, D. S.; Zhang, J.; Zhang, L. Sn6 and Na4 oxo clusters based non-centrosymmetric framework for solution iodine absorption and second harmonic generation response. Inorg. Chem. 2021, 60, 1985–1990.

[35]

Li, Q. L.; Liu, X. L.; Cheng, S.; Zhang, R. F.; Shi, Y.; Ma, C. L. Novel organotin complexes derived from 2,2’-selenodiacetic acid: Synthesis and biological evaluation. RSC Adv. 2016, 6, 32484–32492.

[36]

Chen, L.; Chen, Q. H.; Wu, M. Y.; Jiang, F. L.; Hong, M. C. Controllable coordination-driven self-assembly: From discrete metallocages to infinite cage-based frameworks. Acc. Chem. Res. 2015, 48, 201–210.

[37]

Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Cryst. 2015, C71, 3–8.

[38]

Spek, A. L. PLATON SQUEEZE: A tool for the calculation of the disordered solvent contribution to the calculated structure factors. Acta Cryst. 2015, C71, 9–18.

[39]

Chen, W. Z.; Yi, X. F.; Zhang, J.; Zhang, L. Heterometallic Mo-Ti oxo clusters with metal-metal bonds: Preparation and visible-light absorption behaviors. Polyoxometalates 2023, 2, 9140013.

[40]

Zhang, H. Y.; Zhao, W. L.; Li, H. Q.; Zhuang, Q. H.; Sun, Z. Q.; Cui, D. Y.; Chen, X. J.; Guo, A.; Ji, X.; An, S. et al. Latest progress in covalently modified polyoxometalates-based molecular assemblies and advanced materials. Polyoxometalates 2022, 1, 9140011.

[41]

Li, S. Q.; Li, L. J.; Tian, Y. Q.; Mu, W. L.; Meng, R. X.; Yan, J.; Liu, C. Synthesis and characterization of Ag(I) alkynyl nanoclusters utilizing MoVI-anchored thiacalix[4]arene metalloligands: Application in electrocatalytic CO2 reduction. Polyoxometalates 2024, 3, 9140038.

[42]

Zang, D. J.; Wang, H. Q. Polyoxometalate-based nanostructures for electrocatalytic and photocatalytic CO2 reduction. Polyoxometalates 2022, 1, 9140006.

[43]
Li, Z.; Yang, H. M.; Cheng, W. J.; Tian, L. Recent progress of in situ/operando characterization techniques for electrocatalytic energy conversion reaction. Chin. Chem. Lett., in press, DOI: 10.1016/j.cclet.2023.109237.
[44]
Chu, X. X.; Wang, L.; Li, J. R.; Xu, H. Surface chemical microenvironment engineering of catalysts by organic molecules for boosting electrocatalytic reaction. Chin. Chem. Lett., in press, DOI: 10.1016/j.cclet.2023.109105.
Polyoxometalates
Article number: 9140059
Cite this article:
Su Y, Chen W-J, Zhou Q, et al. Hierarchical assembly of discrete Sn8–oxo cluster and extended structure regulated by solvent strategy. Polyoxometalates, 2024, 3(3): 9140059. https://doi.org/10.26599/POM.2024.9140059

1272

Views

306

Downloads

1

Crossref

Altmetrics

Received: 22 December 2023
Revised: 18 January 2024
Accepted: 23 January 2024
Published: 04 March 2024
© The Author(s) 2024. Published by Tsinghua University Press.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the original author(s) and the source, provide a link to the license, and indicate if changes were made. See http://creativecommons.org/licenses/by/4.0/

Return