Novel structures of polyoxometalates can be obtained by confining the synthons within specific nanospaces. This capability is what the confined synthetic method excels at. Within the cavity of {P8W48}, a novel multicomponent cluster comprising cationic FeIII and CeIII heterometals and PO43− oxyanions was successfully nucleated for the first time. Alongside examining the structure and composition of this host–guest assembly, thorough investigations were conducted into the enhanced peroxidase-like activity induced by the Fenton-active metallic species. Preliminary studies on a colorimetric sensor based on [{FeIII8CeIII4O2(OH)12(H2O)8(PO4)2}(P8W48O184)]26− yielded promising results, demonstrating its ability to detect ascorbic acid with high sensitivity and specificity.
Kuzmina, M.; Herbig, M.; Ponge, D.; Sandlöbes, S.; Raabe, D. Linear complexions: Confined chemical and structural states at dislocations. Science 2015, 349, 1080–1083.
Muñoz-Santiburcio, D.; Marx, D. Confinement-controlled aqueous chemistry within nanometric slit pores. Chem. Rev. 2021, 121, 6293–6320.
Jin, Y. H.; Zhang, Q. Q.; Zhang, Y. Q.; Duan, C. Y. Electron transfer in the confined environments of metal-organic coordination supramolecular systems. Chem. Soc. Rev. 2020, 49, 5561–5600.
Wang, S. T.; Gao, X. H.; Hang, X. X.; Zhu, X. F.; Han, H. T.; Liao, W. P.; Chen, W. Ultrafine Pt nanoclusters confined in a calixarene-based {Ni24} coordination cage for high-efficient hydrogen evolution reaction. J. Am. Chem. Soc. 2016, 138, 16236–16239.
Kim, Y. T.; Ohshima, K.; Higashimine, K.; Uruga, T.; Takata, M.; Suematsu, H.; Mitani, T. Fine size control of platinum on carbon nanotubes: From single atoms to clusters. Angew. Chem., Int. Ed. 2006, 45, 407–411.
Chakraborty, P.; Nag, A.; Paramasivam, G.; Natarajan, G.; Pradeep, T. Fullerene-functionalized monolayer-protected silver clusters: [Ag29(BDT)12(C60) n ]3− ( n = 1–9). ACS Nano 2018, 12, 2415–2425.
Zhang, Y.; Liu, Y. F.; Wang, D.; Liu, J. C.; Zhao, J. W.; Chen, L. J. State-of-the-art advances in the syntheses, structures, and applications of polyoxometalate-based metal-organic frameworks. Polyoxometalates 2023, 2, 9140017.
Ding, X. X.; Yuan, Y. Y.; Zhang, Y. G.; Jiang, Z. G.; Zhan, C. H. Chiral polyoxometalate-cyclodextrin frameworks via Mn-mediated assembly: Enhanced stability and catalytic activity. Polyoxometalates 2024, 3, 9140046.
Yang, P.; Zhao, W. L.; Shkurenko, A.; Belmabkhout, Y.; Eddaoudi, M.; Dong, X. C.; Alshareef, H. N.; Khashab, N. M. Polyoxometalate-cyclodextrin metal-organic frameworks: From tunable structure to customized storage functionality. J. Am. Chem. Soc. 2019, 141, 1847–1851.
Wang, Y. H.; Tong, K. W.; Chen, C. Q.; Du, J.; Yang, P. Weak interaction-steered evolution of polyoxovanadate-based metal-organic polyhedra from transformation via interlock to packing. Chin. Chem. Lett. 2024, 35, 109066.
Liu, L. L.; Wang, Y. H.; Xiao, X. Y.; Tong, K. W.; Zhao, Y.; Chen, C. Q.; Du, J.; Yang, P. Engineering in amino acid-functionalized double-layer heteropolymolybdates: From structural control to catalytic activity. Rare Met. 2023, 42, 3345–3353.
Müller, A.; Krickemeyer, E.; Penk, M.; Rohlfing, R.; Armatage, A.; Bögge, H. Template-controlled formation of cluster shells or a type of molecular recognition: Synthesis of [HV22O54(ClO4)]6− and [H2V18O44(N3)]5−. Angew. Chem., Int. Ed. 1991, 30, 1674–1677.
Miras, H. N.; Cooper, G. J. T.; Long, D. L.; Bögge, H.; Müller, A.; Streb, C.; Cronin, L. Unveiling the transient template in the self-assembly of a molecular oxide nanowheel. Science 2010, 327, 72–74.
Renier, O.; Falaise, C.; Neal, H.; Kozma, K.; Nyman, M. Closing uranyl polyoxometalate capsules with bismuth and lead polyoxocations. Angew. Chem., Int. Ed. 2016, 55, 13480–13484.
Yang, P.; Kortz, U. Discovery and evolution of polyoxopalladates. Acc. Chem. Res. 2018, 51, 1599–1608.
Zhang, G. Y.; Wang, Y. F. Metal-oxide clusters with semiconductive heterojunction counterparts. Polyoxometalates 2023, 2, 9140020.
Wang, D.; Jiang, J.; Cao, M. Y.; Xie, S. S.; Li, Y. M.; Chen, L. J.; Zhao, J. W.; Yang, G. Y. An unprecedented dumbbell-shaped pentadeca-nuclear W-Er heterometal cluster stabilizing nanoscale hexameric arsenotungstate aggregate and electrochemical sensing properties of its conductive hybrid film-modified electrode. Nano Res. 2022, 15, 3628–3637.
Liu, X. Y.; Cui, L. M.; Jiang, J.; Ji, F.; Zhao, J. W. A unique organic-inorganic hybrid FeIII-PrIII-included 2-germano-20-tungstate and its electrochemical biosensing properties. Chin. Chem. Lett. 2022, 33, 2630–2634.
Zhao, Y.; Li, K. L.; Du, J.; Chen, C. Q.; Chen, S.; Yang, P. Binary heterogroup-templated scaffolds of polyoxopalladates as pre-catalysts for plasma-assisted ammonia synthesis. ACS Appl. Mater. Interfaces 2023, 15, 43899–43908.
Yang, P.; Mahmoud, M. E.; Xiang, Y. X.; Lin, Z. G.; Ma, X.; Christian, J. H.; Bindra, J. K.; Kinyon, J. S.; Zhao, Y.; Chen, C. Q. et al. Host-guest chemistry in discrete polyoxo-12-palladate(II) cubes [MO8Pd12L8] n − (M = ScIII, CoII, CuII, L = AsO43−; M = CdII, HgII, L = PhAsO32−): Structure, magnetism, and catalytic hydrogenation. Inorg. Chem. 2022, 61, 18524–18535.
Yang, P.; Ma, T.; Lang, Z. L.; Misirlic-Dencic, S.; Isakovic, A. M.; Bényei, A.; Čolović, M. B.; Markovic, I.; Krstić, D. Z.; Poblet, J. M. et al. Tetravalent metal ion guests in polyoxopalladate chemistry: Synthesis and anticancer activity of [MO8Pd12(PO4)8]12− (M = SnIV, PbIV). Inorg. Chem. 2019, 58, 11294–11299.
Mal, S. S.; Kortz, U. The wheel-shaped Cu20 tungstophosphate [Cu20Cl(OH)24(H2O)12(P8W48O184)]25− ion. Angew. Chem., Int. Ed. 2005, 44, 3777–3780.
Mal, S. S.; Dickman, M. H.; Kortz, U.; Todea, A. M.; Merca, A.; Bögge, H.; Glaser, T.; Müller, A.; Nellutla, S.; Kaur, N. et al. Nucleation process in the cavity of a 48-tungstophosphate wheel resulting in a 16-metal-centre iron oxide nanocluster. Chem.—Eur. J. 2008, 14, 1186–1195.
Goura, J.; Sundar, A.; Bassil, B. S.; Ćirić-Marjanović, G.; Bajuk-Bogdanović, D.; Kortz, U. Peroxouranyl-containing W48 wheel: Synthesis, structure, and detailed infrared and Raman spectroscopy study. Inorg. Chem. 2020, 59, 16789–16794.
Müller, A.; Pope, M. T.; Todea, A. M.; Bögge, H.; Van Slageren, J.; Dressel, M.; Gouzerh, P.; Thouvenot, R.; Tsukerblat, B.; Bell, A. Metal-oxide-based nucleation process under confined conditions: Two mixed-valence v6-type aggregates closing the W48 wheel-type cluster cavities. Angew. Chem., Int. Ed. 2007, 46, 4477–4480.
Sousa, F. L.; Bögge, H.; Merca, A.; Gouzerh, P.; Thouvenot, R.; Müller, A. Vectorial growth/regulations in a {P8W48}-type polyoxotungstate compartment: Trapped unusual molybdenum oxide acts as a handle. Chem. Commun. 2009, 7491–7493.
Mitchell, S. G.; Streb, C.; Miras, H. N.; Boyd, T.; Long, D. L.; Cronin, L. Face-directed self-assembly of an electronically active Archimedean polyoxometalate architecture. Nat. Chem. 2010, 2, 308–312.
Boyd, T.; Mitchell, S. G.; Gabb, D.; Long, D. L.; Song, Y. F.; Cronin, L. POMzites: A family of zeolitic polyoxometalate frameworks from a minimal building block library. J. Am. Chem. Soc. 2017, 139, 5930–5938.
Zhan, C. H.; Zheng, Q.; Long, D. L.; Vilà-Nadal, L.; Cronin, L. Controlling the reactivity of the [P8W48O184]40− inorganic ring and its assembly into POMZite inorganic frameworks with silver ions. Angew. Chem., Int. Ed. 2019, 58, 17282–17286.
Koizumi, Y.; Yonesato, K.; Yamaguchi, K.; Suzuki, K. Ligand-protecting strategy for the controlled construction of multinuclear copper cores within a ring-shaped polyoxometalate. Inorg. Chem. 2022, 61, 9841–9848.
Yonesato, K.; Yanai, D.; Yamazoe, S.; Yokogawa, D.; Kikuchi, T.; Yamaguchi, K.; Suzuki, K. Surface-exposed silver nanoclusters inside molecular metal oxide cavities. Nat. Chem. 2023, 15, 940–947.
Pichon, C.; Mialane, P.; Dolbecq, A.; Marrot, J.; Rivière, E.; Keita, B.; Nadjo, L.; Sécheresse, F. Characterization and electrochemical properties of molecular icosanuclear and bidimensional hexanuclear Cu(II) azido polyoxometalates. Inorg. Chem. 2007, 46, 5292–5301.
Zimmermann, M.; Belai, N.; Butcher, R. J.; Pope, M. T.; Chubarova, E. V.; Dickman, M. H.; Kortz, U. New lanthanide-containing polytungstates derived from the cyclic P8W48 anion: {Ln4(H2O)28[K
Korenev, V. S.; Floquet, S.; Marrot, J.; Haouas, M.; Mbomekallé, I. M.; Taulelle, F.; Sokolov, M. N.; Fedin, V. P.; Cadot, E. Oxothiomolybdenum derivatives of the superlacunary crown heteropolyanion {P8W48}: Structure of [K4{Mo4O4S4(H2O)3(OH)2}2(WO2)(P8W48O184)]30− and studies in solution. Inorg. Chem. 2012, 51, 2349–2358.
Yang, P.; Alsufyani, M.; Emwas, A. H.; Chen, C. Q.; Khashab, N. M. Lewis acid guests in a {P8W48} archetypal polyoxotungstate host: Enhanced proton conductivity via metal-Oxo cluster within cluster assemblies. Angew. Chem., Int. Ed. 2018, 57, 13046–13051.
Yu, X. S.; Cui, H. J.; Wang, Q. Z.; Li, J. S.; Su, F.; Zhang, L. C.; Sang, X. J.; Zhu, Z. M. Construction and visible-light photocatalytic performance of carboxyethyltin/transition metal-functionalized wheel-like tungstophosphates. Appl. Organomet. Chem. 2020, 34, e5720.
Kuznetsova, A. A.; Volchek, V. V.; Yanshole, V. V.; Fedorenko, A. D.; Kompankov, N. B.; Kokovkin, V. V.; Gushchin, A. L.; Abramov, P. A.; Sokolov, M. N. Coordination of Pt(IV) by {P8W48} macrocyclic inorganic cavitand: Structural, solution, and electrochemical studies. Inorg. Chem. 2022, 61, 14560–14567.
Yi, X. F.; Izarova, N. V.; Kögerler, P. Organoarsonate functionalization of heteropolyoxotungstates. Inorg. Chem. 2017, 56, 13822–13828.
Wang, K. Y.; Zhang, S.; Ding, D.; Ma, T.; Kortz, U.; Wang, C. [(SeO)4P8W48O184]32−: A tetraselenite-embedded derivative of the cyclic 48-tungsto-8-phosphate. Eur. J. Inorg. Chem. 2019, 2019, 512–516.
Niu, Y. L.; Ding, Y.; Sheng, H. X.; Sun, S.; Chen, C. Q.; Du, J.; Zang, H. Y.; Yang, P. Space-confined nucleation of semimetal-Oxo clusters within a [H7P8W48O184]33− macrocycle: Synthesis, structure, and enhanced proton conductivity. Inorg. Chem. 2022, 61, 21024–21034.
Reinoso, S. Heterometallic 3d-4f polyoxometalates: Still an incipient field. Dalton Trans. 2011, 40, 6610–6615.
Zhao, J. W.; Li, Y. Z.; Chen, L. J.; Yang, G. Y. Research progress on polyoxometalate-based transition-metal-rare-earth heterometallic derived materials: Synthetic strategies, structural overview and functional applications. Chem. Comm. 2016, 52, 4418–4445.
Das, V.; Kaushik, R.; Hussain, F. Heterometallic 3d-4f polyoxometalates: An emerging field with structural diversity to multiple applications. Coord. Chem. Rev. 2020, 413, 213271.
Li, S. R.; Liu, W. D.; Long, L. S.; Zheng, L. S.; Kong, X. J. Recent advances in polyoxometalate-based lanthanide-oxo clusters. Polyoxometalates 2023, 2, 9140022.
Brown, I. D.; Altermatt, D. Bond-valence parameters obtained from a systematic analysis of the inorganic crystal structure database. Acta Crystallogr. Sect. B 1985, B41, 244–247.
Ismail, A. H.; Bassil, B. S.; Yassin, G. H.; Keita, B.; Kortz, U. {W48} ring opening: Fe16-containing, Ln4-stabilized 49-tungsto-8-phosphate open wheel [Fe16O2(OH)23(H2O)9(P8W49O189)Ln4(H2O)20]11−. Chem.— Eur. J. 2012, 18, 6163–6166.
Xue, H.; Zhang, Z.; Pan, R.; Yang, B. F.; Liu, H. S.; Yang, G. Y. Supramolecular nanotubes constructed from 3d-4f heterometallic sandwiched polyoxotungstate dimers. CrystEngComm 2016, 18, 4643–4650.
Chen, W. L.; Li, Y. G.; Wang, Y. H.; Wang, E. B.; Zhang, Z. M. A new polyoxometalate-based 3d-4f heterometallic aggregate: A model for the design and synthesis of new heterometallic clusters. Dalton Trans. 2008, 865–867.
Ma, X.; Song, K. F.; Cao, J.; Gong, P. J.; Li, H. L.; Chen, L. J.; Zhao, J. W. Synthesis, structure and electrochemical properties of a FeIII-CeIII heterometallic sandwich-type tungstoantimonate with novel 2-D infinite structure [Ce(H2O)8][Ce(H2O)6][Fe4(H2O)10(B-β-SbW9O33)2]·16H2O. Inorg. Chem. Commun. 2015, 60, 65–70.
Azambre, B.; Hudson, M. J.; Heintz, O. Topotactic redox reactions of copper(II) and iron(III) salts within VO x nanotubes. J. Mater. Chem. 2003, 13, 385–393.
Park, P. W.; Ledford, J. S. Effect of crystallinity on the photoreduction of cerium oxide: A study of CeO2 and Ce/Al2O3 catalysts. Langmuir 1996, 12, 1794–1799.
Golunski, S. E.; Nevell, T. G.; Pope, M. I. Thermal stability and phase transitions of the oxides of antimony. Thermochim. Acta 1981, 51, 153–168.
Yamase, T. Photo-and electrochromism of polyoxometalates and related materials. Chem. Rev. 1998, 98, 307–326.
Cheng, Y.; Qin, K. J.; Zang, D. J. Polyoxometalates based nanocomposites for bioapplications. Rare Met. 2023, 42, 3570–3600.
Tang, Z. M.; Zhao, P. R.; Wang, H.; Liu, Y. Y.; Bu, W. B. Biomedicine meets Fenton chemistry. Chem. Rev. 2021, 121, 1981–2019.
Li, D.; Han, H. Y.; Wang, Y. H.; Wang, X.; Li, Y. G.; Wang, E. B. Modification of tetranuclear zirconium-substituted polyoxometalates-syntheses, structures, and peroxidase-like catalytic activities. Eur. J. Inorg. Chem. 2013, 2013, 1926–1934.
Li, X.; Zhou, K. F.; Tong, Z. B.; Yang, J. B.; Sheng, N.; Li, J. S.; Sha, J. Q. Keggin polyoxometalates based hybrid compounds containing helix/nanocages for colorimetric biosensing. J. Solid State Chem. 2018, 265, 372–380.
Xu, Y. X.; Li, P. P.; Hu, X. J.; Chen, H. Y.; Tang, Y.; Zhu, Y.; Zhu, X. H.; Zhang, Y. Y.; Liu, M. L.; Yao, S. Z. Polyoxometalate nanostructures decorated with CuO nanoparticles for sensing ascorbic acid and Fe2+ ions. ACS Appl. Nano Mater. 2021, 4, 8302–8313.
Liu, L.; Sun, C. Q.; Yang, J.; Shi, Y.; Long, Y. J.; Zheng, H. Z. Fluorescein as a visible-light-induced oxidase mimic for signal-amplified colorimetric assay of carboxylesterase by an enzymatic cascade reaction. Chem.—Eur. J. 2018, 24, 6148–6154.
Walling, C.; Goosen, A. Mechanism of the ferric ion catalyzed decomposition of hydrogen peroxide. Effect of organic substrates. J. Am. Chem. Soc. 1973, 95, 2987–2991.
He, J.; Yang, X. F.; Men, B.; Wang, D. S. Interfacial mechanisms of heterogeneous fenton reactions catalyzed by iron-based materials: A review. J. Environ. Sci. 2016, 39, 97–109.
Xu, T. Y.; Zhu, R. L.; Zhu, G. Q.; Zhu, J. X.; Liang, X. L.; Zhu, Y. P.; He, H. P. Mechanisms for the enhanced photo-Fenton activity of ferrihydrite modified with BiVO4 at neutral pH. Appl. Catal. B Environ. 2017, 212, 50–58.
Bokare, A. D.; Choi, W. Review of iron-free fenton-like systems for activating H2O2 in advanced oxidation processes. J. Hazard. Mater. 2014, 275, 121–135.
Yang, Q.; Li, C. Y.; Li, J. H.; Arabi, M.; Wang, X. Y.; Peng, H. L.; Xiong, H.; Choo, J.; Chen, L. X. Multi-emitting fluorescence sensor of MnO2-OPD-QD for the multiplex and visual detection of ascorbic acid and alkaline phosphatase. J. Mater. Chem. A 2020, 8, 5554–5561.