AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (11 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Taming of heteropoly acids into adhesive electrodes using amino acids for the development of flexible two-dimensional supercapacitors

Chuanling MuZhanglei DuWen Li ( )
State key laboratory of supramolecular structure and materials, college of chemistry, Jilin University, Qianjin Avenue 2699, Changchun 130012, China
Show Author Information

Graphical Abstract

Abstract

The development of heteropoly acid (HPA)-based functional soft materials is an important topic in material science and energy devices. The noncovalent supramolecular strategy has continued to evolve in its capacity to create innovative HPA materials with increasingly complex functions that are not accessible using conventional covalent synthesis. In this study, we explored a type of HPA-containing conductive adhesive via a simple noncovalent strategy. We demonstrated that concomitant ionic bonds, hydrogen bonds, charge–transfer interactions, π–π stacking, and hydrophobic effects enable aromatic amino acids, HPAs, and carbon materials to crosslink with each other. Consequently, the formed soft materials exhibited collective advantages, such as exceptional wet adhesion to flexible substrates and electrolytes, adaptive and deformable properties, and conduction and reversible redox behavior. These features allow us to fabricate flexible two-dimensional (2D) supercapacitors (SCs) by conveniently injecting all-in-one adhesives onto flexible substrates. The capacitance retention of the fabricated flexible SC was 92% during bending and folding deformation. In particular, the adhesives can be patterned into tandem 2D SCs for high-voltage output with metal-free interconnects.

Electronic Supplementary Material

Download File(s)
0062_ESM.pdf (1.2 MB)

References

[1]

Feng, S. X.; Wang, X.; Wang, M. L.; Bai, C.; Cao, S. T.; Kong, D. S. Crumpled MXene electrodes for ultrastretchable and high-area-capacitance supercapacitors. Nano Lett. 2021, 21, 7561–7568.

[2]

Huang, H.; Lin, C. M.; Hua, Z. F.; Guo, J. J.; Lu, D. D.; Ni, Y. H.; Cao, S. L.; Ma, X. J. Fabrication of ultrathin, flexible, all-in-one paper supercapacitor with high electrochemical performance based on multi-layer forming in paper sheet formation technology. Chem. Eng. J. 2022, 448, 137589.

[3]

Ren, K.; Liu, Z.; Wei, T.; Fan, Z. J. Recent developments of transition metal compounds-carbon hybrid electrodes for high energy/power supercapacitors. Nano-Micro Lett. 2021, 13, 129.

[4]

Wang, H.; Zhao, P. F.; Zhang, X. M.; Zhang, S.; Lu, X. L.; Qiu, Z. P.; Ren, K.; Xu, Z.; Yao, R. X.; Wei, T. et al. Holey graphene oxide-templated construction of nano nickel-based metal-organic framework for highly efficient asymmetric supercapacitor. Nano Res. 2022, 15, 9047–9056.

[5]

Liu, R. N.; Chen, L. L.; Mo, F.; Song, H. Y.; Yang, G.; Chen, C. X.; Wu, X. L.; Huang, Y. C.; Fan, Z. J. Porous cobalt-nickel phosphides prepared from Al-doped NiCo-LDH precursors for supercapacitor and electrocatalysis applications. Chem. Eng. J. 2023, 455, 140545.

[6]

Cheng, D. M.; Gao, Z. X.; Wang, W. W.; Li, S. Q.; Li, B.; Zang, H. Y. Zwitterion-dissociated polyoxometalate electrolytes for solid-state supercapacitors. Polyoxometalates 2023, 2, 9140019.

[7]

Zeb, Z.; Huang, Y. C.; Chen, L. L.; Zhou, W. B.; Liao, M. H.; Jiang, Y. Y.; Li, H. T.; Wang, L. M.; Wang, L.; Wang, H. et al. Comprehensive overview of polyoxometalates for electrocatalytic hydrogen evolution reaction. Coord. Chem. Rev. 2023, 482, 215058.

[8]

Zhang, J. W.; Huang, Y. C.; Li, G.; Wei, Y. G. Recent advances in alkoxylation chemistry of polyoxometalates: From synthetic strategies, structural overviews to functional applications. Coord. Chem. Rev. 2019, 378, 395–414.

[9]

Lu, D. L.; Zhang, X. J.; Chen, H. T.; Lin, J. J.; Liu, Y. R.; Chang, B.; Qiu, F.; Han, S.; Zhang, F. A high performance solid-state asymmetric supercapacitor based on anderson-type polyoxometalate-doped graphene aerogel. Res. Chem. Intermed. 2019, 45, 3237–3250.

[10]

Lin, H. L.; Huang, Q.; Wang, J. Z.; Jiang, J. Z.; Liu, F.; Chen, Y. W.; Wang, C.; Lu, D. L.; Han, S. Self-assembled graphene/polyaniline/Co3O4 ternary hybrid aerogels for supercapacitors. Electrochim. Acta 2016, 191, 444–451.

[11]

Chen, H. Y.; Chang, X.; Chen, D. M.; Liu, J. B.; Liu, P.; Xue, Y.; Lin, H. L.; Han, S. Graphene-karst cave flower-like Ni-Mn layered double oxides nanoarrays with energy storage electrode. Electrochim. Acta 2016, 220, 36–46.

[12]

Azadmanjiri, J.; Srivastava, V. K.; Kumar, P.; Wang, J.; Yu, A. M. Graphene-supported 2D transition metal oxide heterostructures. J. Mater. Chem. A 2018, 6, 13509–13537.

[13]

Li, Y. H.; Liu, H.; Xu, J.; Liu, Y. Y.; Wang, M. R.; Li, J.; Cui, H. T. Hierarchical nanostructure-tuned super-high electrochemical stability of nickel cobalt sulfide. J. Mater. Chem. A 2018, 6, 19788–19797.

[14]

Duay, J.; Gillette, E.; Liu, R.; Lee, S. B. Highly flexible pseudocapacitor based on freestanding heterogeneous MnO2/conductive polymer nanowire arrays. Phys. Chem. Chem. Phys. 2012, 14, 3329–3337.

[15]

Zhang, Z. Y.; Xiao, F.; Wang, S. Hierarchically structured MnO2/graphene/carbon fiber and porous graphene hydrogel wrapped copper wire for fiber-based flexible all-solid-state asymmetric supercapacitors. J. Mater. Chem. A 2015, 3, 11215–11223.

[16]

Poonam; Sharma, K.; Arora, A.; Tripathi, S. K. Review of supercapacitors: Materials and devices. J. Energy Storage 2019, 21, 801–825.

[17]

Wang, K. B.; Xun, Q.; Zhang, Q. C. Recent progress in metal-organic frameworks as active materials for supercapacitors. EnergyChem 2020, 2, 100025.

[18]

Zhang, L.; Chen, Z. Q. Polyoxometalates: Tailoring metal oxides in molecular dimension toward energy applications. Int. J. Energy Res. 2020, 44, 3316–3346.

[19]

Li, S. J.; Li, N.; Li, G.; Ma, Y. B.; Huang, M. Y.; Xia, Q. C.; Zhao, Q. Y.; Chen, X. N. Silver-modified polyniobotungstate for the visible light-induced simultaneous cleavage of C–C and C–N bonds. Polyoxometalates 2023, 2, 9140024.

[20]

Li, S. R.; Liu, W. D.; Long, L. S.; Zheng, L. S.; Kong, X. J. Recent advances in polyoxometalate-based lanthanide-oxo clusters. Polyoxometalates 2023, 2, 9140022.

[21]

Wang, G.; Li, J. L.; Shang, L, C.; He, H. B.; Cui, T. T.; Chai, S. C.; Zhao, C. J.; Wu, L. X.; Li, H. L. Nanostructured polymer composite electrolytes with self-assembled polyoxometalate networks for proton conduction. CCS Chem. 2022, 4, 151–161.

[22]

Zhang, S. S.; Liu, R. J.; Streb, C.; Zhang, G. J. Design and synthesis of novel polyoxometalate-based binary and ternary nanohybrids for energy conversion and storage. Polyoxometalates 2023, 2, 9140037.

[23]

Yamada, A.; Goodenough, J. B. Keggin-type heteropolyacids as electrode materials for electrochemical supercapacitors. J. Electrochem. Soc. 1998, 145, 737–743.

[24]

Cuentas-Gallegos, A. K.; Lira-Cantú, M.; Casañ-Pastor, N.; Gómez-Romero, P. Nanocomposite hybrid molecular materials for application in solid-state electrochemical supercapacitors. Adv. Funct. Mater. 2005, 15, 1125–1133.

[25]

Cheng, D. M.; Li, B.; Sun, S.; Zhu, L. J.; Li, Y.; Wu, X. L.; Zang, H. Y. Proton-conducting polyoxometalates as redox electrolytes synergistically boosting the performance of self-healing solid-state supercapacitors with polyaniline. CCS Chem. 2020, 2, 1649–1658.

[26]

Chen, Y. Y.; Han, M.; Tang, Y. J.; Bao, J. C.; Li, S. L.; Lan, Y. Q.; Dai, Z. H. Polypyrrole-polyoxometalate/reduced graphene oxide ternary nanohybrids for flexible, all-solid-state supercapacitors. Chem. Commun. 2015, 51, 12377–12380.

[27]

Li, R.; He, C. G.; Cheng, L.; Lin, G. Y.; Wang, G. C.; Shi, D. A.; Li, R. K. Y.; Yang, Y. K. Polyoxometalate-enabled photoreduction of graphene oxide to bioinspired nacre-like composite films for supercapacitor electrodes. Compos. B Eng. 2017, 121, 75–82.

[28]

Dubal, D. P.; Suarez-Guevara, J.; Tonti, D.; Enciso, E.; Gomez-Romero, P. A high voltage solid state symmetric supercapacitor based on graphene-polyoxometalate hybrid electrodes with a hydroquinone doped hybrid gel-electrolyte. J. Mater. Chem. A 2015, 3, 23483–23492.

[29]

Wang, M. L.; Yu, Y. F.; Cui, M. Z.; Cao, X.; Liu, W. F.; Wu, C.; Liu, X. G.; Zhang, T. Y.; Huang, Y. Z. Development of polyoxometalate-anchored 3D hybrid hydrogel for high-performance flexible pseudo-solid-state supercapacitor. Electrochim. Acta 2020, 329, 135181.

[30]

Mu, C. L.; Fang, J.; Nie, J. L.; Fu, L.; Li, W. Embedding hydrogel electrodes into hydrogel Electrolyte: An 3D protecting strategy for stretchable high-performance supercapacitor. Chem. Eng. J. 2024, 484, 149505.

[31]

Guo, H. K.; Li, L. B.; Xu, X. L.; Zeng, M. H.; Chai, S. C.; Wu, L. X.; Li, H. L. Semi-solid superprotonic supramolecular polymer electrolytes based on deep eutectic solvents and polyoxometalates. Angew. Chem., Int. Ed. 2022, 61, e202210695.

[32]

Hwang, S. K.; Patil, S. J.; Chodankar, N. R.; Huh, Y. S.; Han, Y. K. An aqueous high-performance hybrid supercapacitor with MXene and polyoxometalates electrodes. Chem. Eng. J. 2022, 427, 131854.

[33]

Zheng, Z.; Li, M.; Zhou, Q. J.; Cai, L. K.; Yin, J.-F.; Cao, Y. J.; Yin, P. C. Polyoxometalate-poly(ethylene oxide) nanocomposites for flexible anhydrous solid-state proton conductors. ACS Appl. Nano Mater. 2021, 4, 811–819.

[34]

Wang, M. L.; Zhang, Y.; Zhang, T. Y.; Li, Y.; Cui, M. Z.; Cao, X.; Lu, Y.; Peng, D. D.; Liu, W. F.; Liu, X. G. et al. Confinement of single polyoxometalate clusters in molecular-scale cages for improved flexible solid-state supercapacitors. Nanoscale 2020, 12, 11887–11898.

[35]

Mu, C. L.; Wang, X.; Ma, Z. Y.; Liu, X. H.; Li, W. Redox and conductive underwater adhesive: An innovative electrode material for convenient construction of flexible and stretchable supercapacitors. J. Mater. Chem. A 2022, 10, 7207–7217.

[36]

Gao, Y. F.; Zheng, S. H.; Fu, H. L.; Ma, J. X.; Xu, X.; Guan, L.; Wu, H. H.; Wu, Z. S. Three-dimensional nitrogen doped hierarchically porous carbon aerogels with ultrahigh specific surface area for high-performance supercapacitors and flexible micro-supercapacitors. Carbon 2020, 168, 701–709.

[37]

Xiao, H.; Wu, Z. S.; Zhou, F.; Zheng, S. H.; Sui, D.; Chen, Y. S.; Bao, X. H. Stretchable tandem micro-supercapacitors with high voltage output and exceptional mechanical robustness. Energy Storage Mater. 2018, 13, 233–240.

[38]

Zhang, W. L.; Jiang, Q., Lei, Y. J.; Alshareef, H. N. Wettability-driven assembly of electrochemical microsupercapacitors. ACS Appl. Mater. Interfaces 2019, 11, 20905–20914.

[39]

Zheng, S. H.; Ma, J. M.; Wu, Z. S.; Zhou, F.; He, Y. B.; Kang, F. Y.; Cheng, H. M.; Bao, X. H. All-solid-state flexible planar lithium ion micro-capacitors. Energy Environ. Sci. 2018, 11, 2001–2009.

[40]

Liu, X. H.; Xu, J.; Xie, X. M.; Ma, Z. Y.; Zheng, T. T.; Wu, L. X.; Li, B.; Li, W. Heteropoly acid-driven assembly of glutathione into redox-responsive underwater adhesive. Chem. Commun. 2020, 56, 11034–11037.

[41]

Xie, X. M.; Zheng, T. T.; Li, W. Recent progress in ionic coassembly of cationic peptides and anionic species. Macromol. Rapid Commun. 2020, 41, 2000534.

[42]

Liu, X. H.; Ma, Z. Y.; Nie, J. L.; Fang, J.; Li, W. Exploiting redox-complementary peptide/polyoxometalate coacervates for spontaneously curing into antimicrobial adhesives. Biomacromolecules 2022, 23, 1009–1019.

[43]

Li, X. D.; Du, Z. L.; Song, Z. Y.; Li, B.; Wu, L. X.; Liu, Q. P.; Zhang, H. Y.; Li, W. Bringing hetero-polyacid-based underwater adhesive as printable cathode coating for self-powered electrochromic aqueous batteries. Adv. Funct. Mater. 2018, 28, 1800599.

[44]

Xu, J.; Li, X. D.; Li, J. F.; Li, X. Y.; Li, B.; Wang, Y.; Wu, L. X.; Li, W. Wet and functional adhesives from one-step aqueous self-assembly of natural amino acids and polyoxometalates. Angew. Chem., Int. Ed. 2017, 56, 8731–8735.

[45]

Liu, X. H.; Xie, X. M.; Du, Z. L.; Li, B.; Wu, L. X.; Li, W. Aqueous self-assembly of arginine and K8SiW11O39: Fine-tuning the formation of a coacervate intended for sprayable anticorrosive coatings. Soft Matter 2019, 15, 9178–9186.

[46]

Finke, R. G.; Droege, M. W.; Domaille, P. J. Trivacant heteropolytungstate derivatives. 3. Rational syntheses, characterization, two-dimensional 183W NMR, and properties of P2W18M4(H2O)2O6810− and P4W30M4(H2O)2O11216− (M = cobalt, copper, zinc). Inorg. Chem 1987, 26, 3886–3896.

[47]

Rohlfing, D. F.; Kuhn, A. Preparation and characterization of polyoxometalate-modified carbon nanosheets. Carbon 2006, 44, 1942–1948.

[48]

Fei, B.; Lu, H. F.; Hu, Z. G.; Xin, J. H. Solubilization, purification and functionalization of carbon nanotubes using polyoxometalate. Nanotechnology 2006, 17, 1589–1593.

[49]

Tuinstra, F.; Koenig, J. L. Raman spectrum of graphite. J. Chem. Phys. 1970, 53, 1126–1130.

[50]

Navik, R.; Gai, Y. Z.; Wang, W. C.; Zhao, Y. P. Curcumin-assisted ultrasound exfoliation of graphite to graphene in ethanol. Ultrason. Sonochem. 2018, 48, 96–102.

[51]

Grabill, L.; Riemann, A. Conformational impact on amino acid-surface π-π interactions on a (7, 7) single-walled carbon nanotube: A molecular mechanics approach. J. Phys. Chem. A 2018, 122, 1713–1726.

[52]

Feyer, V.; Plekan, O.; Ptasińska, S.; Iakhnenko, M.; Tsud, N.; Prince, K. C. Adsorption of histidine and a histidine tripeptide on Au (111) and Au (110) from acidic solution. J. Phys. Chem. C 2012, 116, 22960–22966.

[53]

Gall, R. D.; Hill, C. L.; Walker, J. E. Carbon powder and fiber-supported polyoxometalate catalytic materials. Preparation, characterization, and catalytic oxidation of dialkyl sulfides as mustard (HD) analogues. Chem. Mater. 1996, 8, 2523–2527.

[54]

Rahim, M. A.; Björnmalm, M.; Suma, T.; Faria, M.; Ju, Y.; Kempe, K.; Müllner, M.; Ejima, H.; Stickland, A. D.; Caruso, F. Metal-phenolic supramolecular gelation. Angew. Chem., Int. Ed. 2016, 55, 13803–13807.

[55]

Yang, M.; Choi, B. G.; Jung, S. C.; Han, Y. K.; Huh, Y. S.; Lee, S. B. Polyoxometalate-coupled graphene via polymeric ionic liquid linker for supercapacitors. Adv. Funct. Mater 2014, 24, 7301–7309.

[56]

Ma, X. Y.; Yu, K.; Yuan, J.; Cui, L. P.; Lv, J. H.; Dai, W. T.; Zhou, B. B. Multinuclear transition metal sandwich-type polytungstate derivatives for enhanced electrochemical energy storage and bifunctional electrocatalysis performances. Inorg. Chem. 2020, 59, 5149–5160.

[57]

Boussema, F.; Gross, A. J.; Hmida, F.; Ayed, B.; Majdoub, H.; Cosnier, S.; Maaref, A.; Holzinger, M. Dawson-type polyoxometalate nanoclusters confined in a carbon nanotube matrix as efficient redox mediators for enzymatic glucose biofuel cell anodes and glucose biosensors. Biosens. Bioelectron. 2018, 109, 20–26.

[58]

Dubal, D. P.; Chodankar, N. R.; Vinu, A.; Kim, D. H.; Gomez-Romero, P. Asymmetric supercapacitors based on reduced graphene oxide with different polyoxometalates as positive and negative electrodes. ChemSusChem 2017, 10, 2742–2750.

[59]

Soram, B. S.; Dai, J. Y.; Kshetri, T.; Kim, N. H.; Lee, J. H. Vertically grown and intertwined Co(OH)2 nanosheet@Ni-mesh network for transparent flexible supercapacitor. Chem. Eng. J. 2020, 391, 123540.

[60]

Ruiz, V.; Suárez-Guevara, J.; Gomez-Romero, P. Hybrid electrodes based on polyoxometalate-carbon materials for electrochemical supercapacitors. Electrochem. Commun. 2012, 24, 35–38.

[61]

Wang, S.; Li, H. L.; Li, S.; Liu, F.; Wu, D. Q.; Feng, X. L.; Wu, L. X. Electrochemical-reduction-assisted assembly of a polyoxometalate/graphene nanocomposite and its enhanced lithium-storage performance. Chem.—Eur. J. 2013, 19, 10895–10902.

[62]

Zhu, D.; Yan, M. L.; Chen, R. R.; Liu, Q.; Liu, J. Y.; Yu, J.; Zhang, H. S.; Zhang, M. L.; Liu, P. L.; Li, J. Q. et al. 3D Cu(OH)2 nanowires/carbon cloth for flexible supercapacitors with outstanding cycle stability. Chem. Eng. J. 2019, 371, 348–355.

[63]

Sheng, K. X.; Sun, Y. Q.; Li, C.; Yuan, W. J.; Shi, G. Q. Ultrahigh-rate supercapacitors based on eletrochemically reduced graphene oxide for ac line-filtering. Sci. Rep. 2012, 2, 247.

[64]

Wang, S.; Wang, X.; Sun, C. L.; Wu, Z. S. Room-temperature fast assembly of 3D macroscopically porous graphene frameworks for binder-free compact supercapacitors with high gravimetric and volumetric capacitances. J. Energy Chem. 2021, 61, 23–28.

[65]

Mandal, S.; Pal, A.; Arun, R. K.; Chanda, N. Gold nanoparticle embedded paper with mechanically exfoliated graphite as flexible supercapacitor electrodes. J. Electroanal. Chem. 2015, 755, 22–26.

[66]

Suh, S.; Kim, K.; Park, J.; Kim, W. Ultrafast flexible PEDOT: PSS supercapacitor with outstanding volumetric capacitance for AC line filtering. Chem. Eng. J. 2023, 463, 142377.

[67]

Xiang, X.; Zhang, W. J.; Yang, Z. P.; Zhang, Y. Y.; Zhang, H. J.; Zhang, H.; Guo, H. T.; Zhang, X. T.; Li, Q. W. Smart and flexible supercapacitor based on a porous carbon nanotube film and polyaniline hydrogel. RSC Adv. 2016, 6, 24946–24951.

[68]

Shen, L. X.; Du, L. H.; Tan, S. Z.; Zang, Z. G.; Zhao, C. X.; Mai, W. J. Flexible electrochromic supercapacitor hybrid electrodes based on tungsten oxide films and silver nanowires. Chem. Commun. 2016, 52, 6296–6299.

[69]

Qin, J. Q.; Zhou, F.; Xiao, H.; Ren, R. Y.; Wu, Z. S. Mesoporous polypyrrole-based graphene nanosheets anchoring redox polyoxometalate for all-solid-state micro-supercapacitors with enhanced volumetric capacitance. Sci. China Mater. 2018, 61, 233–242.

[70]

Yang, M. H.; Hong, S. B.; Yoon, J. H.; Kim, D. S.; Jeong, S. W.; Yoo, D. E.; Lee, T. J.; Lee, K. G.; Lee, S. J.; Choi, B. G. Fabrication of flexible, redoxable, and conductive nanopillar arrays with enhanced electrochemical performance. ACS Appl. Mater. Interfaces 2016, 8, 22220–22226.

[71]

AL-Ghaus, Z.; Akbarinejad, A.; Zhu, B. C.; Travas-Sejdic, J. Polyluminol-polyoxometalate hybrid hydrogels as flexible and soft supercapacitor electrodes. J. Mater. Chem. A 2021, 9, 20783–20793.

[72]

Guo, H. K.; Zeng, M. H.; Li, X.; He, H. B.; Wu, L. X.; Li, H. L. Multifunctional enhancement of proton-conductive, stretchable, and adhesive performance in hybrid polymer electrolytes by polyoxometalate nanoclusters. ACS Appl. Mater. Interfaces 2021, 13, 30039–30050.

[73]

Sun, J. Y.; Wang, W.; Yu, D. NiCo2O4 nanosheet-decorated carbon nanofiber electrodes with high electrochemical performance for flexible supercapacitors. J. Electron. Mater. 2019, 48, 3833–3843.

[74]

Zhang, Q.; Li, Y. M.; Zhu, J. H.; Lan, L. Z.; Li, C. J.; Mao, J. F.; Wang, F. J.; Zhang, Z.; Wang, L. Ultra-low temperature flexible supercapacitor based on hierarchically structured pristine polypyrrole membranes. Chem. Eng. J. 2021, 420, 129712.

[75]

Pope, M. T.; Varga, G. M. Jr. Heteropoly blues. I. Reduction stoichiometries and reduction potentials of some 12-tungstates. Inorg. Chem. 1966, 5, 1249–1254.

[76]

Keita, B.; Nadjo, L. New aspects of the electrochemistry of heteropolyacids: Part IV. Acidity dependent cyclic voltammetric behaviour of phosphotungstic and silicotungstic heteropolyanions in water and N, N-dimethylformamide. J. Electroanal. Chem. Interfacial Electrochem. 1987, 227, 77–98.

[77]

Himeno, S.; Osakai, T.; Saito, A. Voltammetric characterization of α-and β-dodecamolybdophosphates in aqueous organic solutions. Bull. Chem. Soc. Jpn. 1989, 62, 1335–1337.

Polyoxometalates
Article number: 9140062
Cite this article:
Mu C, Du Z, Li W. Taming of heteropoly acids into adhesive electrodes using amino acids for the development of flexible two-dimensional supercapacitors. Polyoxometalates, 2024, 3(3): 9140062. https://doi.org/10.26599/POM.2024.9140062

2596

Views

385

Downloads

5

Crossref

0

Scopus

Altmetrics

Received: 24 December 2023
Revised: 05 February 2024
Accepted: 23 February 2024
Published: 29 March 2024
© The Author(s) 2024. Published by Tsinghua University Press.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the original author(s) and the source, provide a link to the license, and indicate if changes were made. See http://creativecommons.org/licenses/by/4.0/

Return