AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (7 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Fabrication of macroporous POMs/biochar materials for fast degradation of phthalic acid esters through adsorption coupled with aerobic oxidation

Qiwen Wang1,§Jiaxin Wang1,§Dan Zhang1,2 ( )Yuannan Chen1Jian Wang1Xiaohong Wang1 ( )
Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
School of Materials Science and Engineering, Beihua University, Jilin City 132013, China

§ Qiwen Wang and Jiaxin Wang contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

Macroporous H5PMo10V2O40(n)/biochar (abbreviated as HPMoV(n)/biochar, where n is the loading amount of HPMo: 12 wt.%, 28 wt.%, 44 wt.%, 53 wt.%, and 63 wt.%) were fabricated from popcorn biocarbon and H5PMo10V2O40. The materials exhibited a pore size of 8–50 μm and high specific surface areas, allowing them to efficiently catalyze the degradation of phthalic acid esters (PAEs) in water. HPMoV(n)/biochar contained double-functional sites with strong Brønsted acidity and redox properties; additionally, biochar promoted electron transfer between the polyanions and PAEs and confined the generation of reactive oxygen species inside the pores. At the same time, macropores and high porosity endowed the materials with high adsorption capacities toward PAEs, even long carbon-chain esters such as diallyl phthalate and diethylhexyl phthalate. These characteristics allowed HPMoV(44)/biochar to degrade 80%–88% of PAEs within 90 min through tandem hydrolysis–oxidation. The mineralization of diethyl phthalate was confirmed by the 72.5% and 64.4% reductions in chemical oxygen demand and total organic carbon, respectively, at atmospheric pressure. HPMoV(44)/biochar exhibited heterogeneity and high stability in the degradation of diethyl phthalate. Furthermore, the material could be reused at least eight times with only 1.9% and 3.0% loss of mass and activity, respectively.

Electronic Supplementary Material

Download File(s)
0064_ESM.pdf (4.2 MB)

References

[1]

Yin, X. Y.; Bi, H. X.; Song, H.; He, J. Y.; Ma, Y. Y.; Fang, T. T.; Han, Z. G. Photoactive hourglass-type M{P4Mo6}2 networks for efficient removal of hexavalent chromium. Polyoxometalates 2023, 2, 9140027.

[2]

Li, J.; Zhang, D.; Chi, Y. N.; Hu, C. W. Catalytic application of polyoxovanadates in the selective oxidation of organic molecules. Polyoxometalates 2022, 1, 9140012.

[3]

Zang, D. J.; Wang, H. Q. Polyoxometalate-based nanostructures for electrocatalytic and photocatalytic CO2 reduction. Polyoxometalates 2022, 1, 9140006.

[4]

Duan, S. J.; Xu, X. Y.; Chen, W. L.; Zhi, J. J.; Li, F. R. Grain boundaries passivation of high efficiency and stable perovskite photodetector by polyoxometalate-based composite SiW11@ZIF-8. Polyoxometalates 2022, 1, 9140003.

[5]

Yue, D.; Lei, J. H.; Peng, Y.; Li, J. S.; Du, X. D. Hierarchical ordered meso/macroporous H3PW12O40/SiO2 catalysts with superior oxidative desulfurization activity. J. Porous Mater. 2018, 25, 727–734.

[6]

Du, Y.; Zhou, L. N.; Guo, Z. R.; Du, X. D.; Lei, J. H. Preparation of ordered meso/macroporous HPW/titania-silica catalyst for efficient oxidative desulfurization of model fuel. J. Porous Mater. 2019, 26, 1069–1077.

[7]

Yue, D.; Lei, J. H.; Zhou, L. N.; Guo, Z. R.; Du, X. D.; Li, J. S. Three-dimensional ordered macroporous HPW/titania-alumina catalysts for catalytic oxidative desulfurization of fuels. J. Porous Mater. 2019, 26, 133–144.

[8]

Du, Y.; Yang, P.; Zhou, S. Y.; Li, J. S.; Du, X. D.; Lei, J. H. Direct synthesis of ordered meso/macrostructured phosphotungstic acid/SiO2 by EISA method and its catalytic performance of fuel oil. Mater. Res. Bull. 2018, 97, 42–48.

[9]

Johnson, B. J. S.; Stein, A. Surface modification of mesoporous, macroporous, and amorphous silica with catalytically active polyoxometalate clusters. Inorg. Chem. 2001, 40, 801–808.

[10]

Zhang, Y. F.; Wang, H.; Yao, Q. Q.; Yan, F.; Cui, C. Y.; Sun, M. Y.; Zhang, H. Y. Facile and green decoration of Pd nanoparticles on macroporous carbon by polyoxometalate with enhanced electrocatalytic ability. RSC Adv. 2016, 6, 39618–39626.

[11]

Genovese, M.; Lian, K. Polyoxometalate modified pine cone biochar carbon for supercapacitor electrodes. J. Mater. Chem. A. 2017, 5, 3939–3947.

[12]

Almohalla, M.; Rodriguez-Ramos, I.; Guerrero-Ruiz, A. Comparative study of three heteropolyacids supported on carbon materials as catalysts for ethylene production from bioethanol. Catal. Sci. Technol. 2017, 7, 1892–1901.

[13]

Zhang, Y. J.; Zhao, M. Y.; Wang, H.; Hu, H. Y.; Liu, R.; Huang, Z. Q.; Chen, C. J.; Chen, D.; Feng, Z. F. Damaged starch derived carbon foam-supported heteropolyacid for catalytic conversion of cellulose: Improved catalytic performance and efficient reusability. Bioresour. Technol. 2019, 288, 121532.

[14]

Liang, T.; Chen, C. L.; Li, X.; Zhang, J. Popcorn-derived porous carbon for energy storage and CO2 capture. Langmuir 2016, 32, 8042–8049.

[15]

Zhong, Y.; Xia, X. H.; Deng, S. J.; Zhan, J. Y.; Fang, R. Y.; Xia, Y.; Wang, X. L.; Zhang, Q.; Tu, J. P. Popcorn inspired porous macrocellular carbon: Rapid puffing fabrication from rice and its applications in lithium-sulfur batteries. Adv. Energy Mater. 2018, 8, 1701110.

[16]

Yu, Y.; Qiao, N.; Wang, D. J.; Zhu, Q. Z.; Fu, F.; Cao, R. Q.; Wang, R.; Liu, W.; Xu, B. Fluffy honeycomb-like activated carbon from popcorn with high surface area and well-developed porosity for ultra-high efficiency adsorption of organic dyes. Bioresour. Technol. 2019, 285, 121340.

[17]

Paluselli, A.; Fauvelle, V.; Galgani, F.; Sempéré, R. Phthalate release from plastic fragments and degradation in seawater. Environ. Sci. Technol. 2019, 53, 166–175.

[18]

Li, X. T.; Wan, J. Q.; Wang, Y.; Yan, Z. C.; Chi, H. Y.; Ding, S. Mechanism of accurate recognition and catalysis of diethyl phthalate (DEP) in wastewater by novel MIL100 molecularly imprinted materials. Appl. Catal. B Environ. 2020, 266, 118591.

[19]

Azevedo, R.; Oliveira, N.; Maia, C.; Verde, I. Effects of di(2-etilhexil) phthalate on human umbilical artery. Chemosphere 2019, 228, 278–286.

[20]

Müller, A.; Österlund, H.; Nordqvist, K.; Marsalek, J.; Viklander, M. Building surface materials as sources of micropollutants in building runoff: A pilot study. Sci. Total Environ. 2019, 680, 190–197.

[21]

Yang, G. C. C. Integrated electrokinetic processes for the remediation of phthalate esters in river sediments: A mini-review. Sci. Total Environ. 2019, 659, 963–972.

[22]

Li, X.; Li, J. P.; Zhu, J. X.; Hao, S. J.; Fang, G. Z.; Liu, J. F.; Wang, S. Degradation of phthalic acid esters (PAEs) by an enzyme mimic and its application in the degradation of intracellular DEHP. Chem. Commun. 2019, 55, 13458–13461.

[23]

Li, Y. H.; Chang, F. M.; Huang, B.; Song, Y. P.; Zhao, H. Y.; Wang, K. J. Activated carbon preparation from pyrolysis char of sewage sludge and its adsorption performance for organic compounds in sewage. Fuel 2020, 266, 117053.

[24]

Zhou, P.; Zhang, J.; Xiong, Z. K.; Liu, Y.; Huo, X. W.; Cheng, X.; Li, W. S.; Cheng, F.; Zhang, Y. L. C60 fullerol promoted Fe(III)/H2O2 fenton oxidation: Role of photosensitive Fe(III)-Fullerol complex. Appl. Catal. B Environ. 2020, 265, 118264.

[25]

Zhao, X. K.; Yang, G. P.; Wang, Y. J.; Gao, X. C. Photochemical degradation of dimethyl phthalate by Fenton reagent. J. Photochem. Photobiol. A Chem. 2004, 161, 215–220.

[26]

Net, S.; Sempéré, R.; Delmont, A.; Paluselli, A.; Ouddane, B. Occurrence, fate, behavior and ecotoxicological state of phthalates in different environmental matrices. Environ. Sci. Technol. 2015, 49, 4019–4035.

[27]

Xiao, J.; Wang, C.; Liu, H. Fenton-like degradation of dimethyl phthalate enhanced by Quinone species. J. Hazard. Mater. 2020, 382, 121007.

[28]

Chen, N.; Fang, G. D.; Zhu, C. Y.; Wu, S.; Liu, G. X.; Dionysiou, D. D.; Wang, X. L.; Gao, J.; Zhou, D. M. Surface-bound radical control rapid organic contaminant degradation through peroxymonosulfate activation by reduced Fe-bearing smectite clays. J. Hazard. Mater. 2020, 389, 121819.

[29]

Tong, M.; Yuan, S. H.; Ma, S. C.; Jin, M. G.; Liu, D.; Cheng, D.; Liu, X. X.; Gan, Y. Q.; Wang, Y. X. Production of abundant hydroxyl radicals from oxygenation of subsurface sediments. Environ. Sci. Technol. 2016, 50, 214–221.

[30]

Lillicrap, A.; Macken, A.; Wennberg, A. C.; Grung, M.; Rundberget, J. T.; Fredriksen, L.; Scheie, A. A.; Benneche, T.; d'Auriac, M. A. Environmental fate and effects of novel quorum sensing inhibitors that can control biofilm Formation. Chemosphere 2016, 164, 52–58.

[31]

Manning, M. R.; Lowe, D. C.; Moss, R. C.; Bodeker, G. E.; Allan, W. Short-term variations in the oxidizing power of the atmosphere. Nature 2005, 436, 1001–1004.

[32]

Li, S. J.; Li, N.; Li, G.; Ma, Y. B.; Huang, M. Y.; Xia, Q. C.; Zhao, Q. Y.; Chen, X. N. Silver-modified polyniobotungstate for the visible light-induced simultaneous cleavage of C-C and C-N bonds. Polyoxometalates 2023, 2, 9140024.

[33]

Chen, J.; Xu, W. J.; Jiang, M. Z.; Chen, J.; Jia, H. P. Polyoxometallate functionalizing CeO2 via redox-etching precipitation to synergistically catalyze oxidation of gaseous chlorinated pollutants: From lab to practice. Appl. Catal. B Environ. 2020, 278, 119263.

[34]

Zhao, S.; Wang, X. H.; Huo, M. X. Catalytic wet air oxidation of phenol with air and micellar molybdovanadophosphoric polyoxometalates under room condition. Appl. Catal. B Environ. 2010, 97, 127–134.

[35]

Xu, J.; Yan, S. Q.; Li, J. X.; Wang, S. T.; Wang, X. H.; Huo, M. X.; Jiang, Z. J. Degradation of phenol by air and polyoxometalate nanofibers using a continuous mode. RSC Adv. 2014, 4, 25404–25409.

[36]

Wei, Y. N.; Li, C. X.; Zhu, C. T.; Zhang, Y. L.; Zhu, Z.; Chen, Y.; Li, X.; Yan, Y. S. Oxygen vacancy and support adsorption synergistic effect in aerobic oxidation of HMF to FDCA: A case study using nitrogen-doped porous carbon supported Bi-CeO2. J. Taiwan Inst. Chem. Eng. 2022, 138, 104439.

[37]
Wang, L.; Li, J. J.; Jin, M. Y.; Wang, X. K.; Xu, L. J.; Oh, W. C.; Xue, C. G.; Yang, B. J. Design of a novel magnetic composite catalyst with highly efficient cobalt circulation for activating peroxymonosulfate to degrade tetracycline. J. Ind. Eng. Chem., in press, DOI: 10.1016/j.jiec.2023.12.042.
[38]

Yuan, B. L.; Li, X. Z.; Graham, N. Reaction pathways of dimethyl phthalate degradation in TiO2-UV-O2 and TiO2-UV-Fe(VI) systems. Chemosphere 2008, 72, 197–204.

[39]

Shuai, W. J.; Liu, C.; Fang, G. D.; Zhou, D. M.; Gao, J. Nano-α-Fe2O3 enhanced photocatalytic degradation of diethyl phthalate ester by citric acid/UV (300-400 nm): A mechanism study. J. Photochem. Photobiol. A Chem. 2018, 360, 78–85.

[40]

Sun, Z. Y.; Feng, L. S.; Fang, G. D.; Chu, L. G.; Zhou, D. M.; Gao, J. Nano Fe2O3 embedded in montmorillonite with citric acid enhanced photocatalytic activity of nanoparticles towards diethyl phthalate. J. Environ. Sci. 2021, 101, 248–259.

[41]

Han, S.; Mao, D. N.; Wang, H. J.; Guo, H. An insightful analysis of dimethyl phthalate degradation by the collaborative process of DBD plasma and graphene-WO3 nanocomposites. Chemosphere 2022, 291, 132774.

[42]

Wen, G.; Wang, S. J.; Ma, J.; Huang, T. L.; Liu, Z. Q.; Zhao, L.; Xu, J. L. Oxidative degradation of organic pollutants in aqueous solution using zero valent copper under aerobic atmosphere condition. J. Hazard. Mater. 2014, 275, 193–199.

[43]

Shariati, M.; Rostami, A.; Imanzadeh, G.; Kheirjou, S. Enzymatic regeneration of DDQ in aerobic oxidation of sulfides and oxidative coupling of thiols: New bioinspired cooperative catalytic system. Mol. Catal. 2018, 461, 48–53.

[44]

Gao, D. W.; Wen, Z. D. Phthalate esters in the environment: A critical review of their occurrence, biodegradation, and removal during wastewater treatment processes. Sci. Total Environ. 2016, 541, 986–1001.

[45]

Gani, K. M.; Tyagi, V. K.; Kazmi, A. A. Occurrence of phthalates in aquatic environment and their removal during wastewater treatment processes: A review. Environ. Sci. Pollut. Res. Int. 2017, 24, 17267–17284.

[46]

Zhang, X. L.; Feng, M. B.; Qu, R. J.; Liu, H.; Wang, L. S.; Wang, Z. Y. Catalytic degradation of diethyl phthalate in aqueous solution by persulfate activated with Nano-scaled magnetic CuFe2O4/MWCNTs. Chem. Eng. J. 2016, 301, 1–11.

[47]

Ma, Y. S.; Du, K. F.; Guo, Y. F.; Tang, M. Y.; Yin, H. Y.; Mao, X. H.; Wang, D. H. Electrolytic core-shell Co@C for diethyl phthalate degradation. Chem. Eng. J. 2022, 431, 134065.

[48]

Tsigdinos, G. A.; Hallada, C. J. Molybdovanadophosphoric acids and their salts. I. Investigation of methods of preparation and characterization. Inorg. Chem. 1968, 7, 437–441.

[49]

Zhang, D.; Li, Y. M.; Gao, Y. N.; Bawa, M.; Huo, M. X.; Wang, X. H.; Zhu, S. Y. Fast degradation of phthalate acid esters by polyoxometalate nanocatalysts through adsorption, esterolysis and oxidation. J. Hazard. Mater. 2019, 368, 788–796.

[50]

Yue, B.; Tan, D. J.; Yan, S. R.; Zhou, Y.; Zhu, K. K.; Pan, J. F.; Zhuang, J. H.; He, H. Y. Preparation of MoO3-V2O5 nanowires with controllable Mo/V ratios inside SBA-15 channels using a chemical approach with heteropoly acid. Chin. J. Chem. 2005, 23, 32–36.

[51]
Chen, X. L.; Souvanhthong, B.; Wang, H.; Zheng, H. W.; Wang, X. H.; Huo, M. X. Polyoxometalate-based Ionic liquid as thermoregulated and environmentally friendly catalyst for starch oxidation. Appl. Catal. B Environ. 2013 , 138139, 161–166.
[52]

Yu, M.; Han, Y. Y.; Li, Y.; Li, J.; Wang, L. J. Improving electrochemical activity of activated carbon derived from popcorn by NiCo2S4 nanoparticle coating. Appl. Surf. Sci. 2019, 463, 1001–1010.

[53]

Ahmadi, E.; Gholami, M.; Farzadkia, M.; Nabizadeh, R.; Azari, A. Study of moving bed biofilm reactor in diethyl phthalate and diallyl phthalate removal from synthetic wastewater. Bioresour. Technol. 2015, 183, 129–135.

[54]

Huang, J. Y.; Li, X. F.; Ma, M. J.; Li, D. L. Removal of di-(2-ethylhexyl) phthalate from aqueous solution by UV/peroxymonosulfate: Influencing factors and reaction pathways. Chem. Eng. J. 2017, 314, 182–191.

[55]

Li, F. R.; Wang, T.; Li, Y. J.; Xu, X. Y.; Ma, C. H.; Chen, W. L.; Zhu, G. S. Heteropoly blue/protonation-defective graphitic carbon nitride heterojunction for the photo-driven nitrogen reduction reaction. Inorg. Chem. 2021, 60, 5829–5839.

[56]

Weinstock, I. A.; Schreiber, R. E.; Neumann, R. Dioxygen in polyoxometalate mediated reactions. Chem. Rev. 2018, 118, 2680–2717.

[57]

Neumann, R. Activation of molecular oxygen, polyoxometalates, and liquid-phase catalytic oxidation. Inorg. Chem. 2010, 49, 3594–3601.

[58]

Li, Z. H.; Yi, X. H.; Wang, Q. W.; Li, Y. M.; Li, D. T.; Palkovits, R.; Beine, A. K.; Liu, C. G.; Wang, X. H. Selective production of glycolic acid from cellulose promoted by acidic/redox polyoxometalates via oxidative hydrolysis. ACS Catal. 2023, 13, 4575–4586.

[59]

Mbage, B.; Li, Y. M.; Si, H. P.; Zhang, X. Y.; Li, Y.; Wang, X. H.; Salah, A.; Zhang, K. Z. Fabrication of folate functionalized polyoxometalate nanoparticle to simultaneously detect H2O2 and sarcosine in colorimetry. Sens. Actuators B Chem. 2020, 304, 127429.

[60]

Zhang, X. Y.; Li, Y. M.; Li, Y.; Wang, S. T.; Wang, X. H. Polyoxometalate immobilized on graphene via click reaction for simultaneous dismutation of H2O2 and oxidation of sulfur mustard simulant. ACS Appl. Nano Mater. 2019, 2, 6971–6981.

[61]

Li, X.-H.; He, P.; Wang, T.; Zhang, X.-W.; Chen, L.-W.; Li, Y.-G. Keggin-type polyoxometalate-based ZIF-67 for enhanced photocatalytic nitrogen fixation. ChemSusChem 2020, 13, 2769–2778.

[62]

Sun, C.; Chen, T.; Huang, Q. X.; Duan, X. G.; Zhan, M. X.; Ji, L. J.; Li, X. D.; Yan, J. H. Selective production of singlet oxygen from zinc-etching hierarchically porous biochar for sulfamethoxazole degradation. Environ. Pollut. 2021, 290, 117991.

[63]

Qi, M.; Hülsmann, M.; Godt, A. Synthesis and hydrolysis of 4-chloro-pymta and 4-Iodo-pymta esters and their oxidative degradation with Cu(I/II) and oxygen. Synthesis 2016, 48, 3773–3784.

[64]

Fu, Z. W.; Wan, H.; Cui, Q.; Xie, J. H.; Tang, Y. J.; Guan, G. F. Hydrolysis of carboxylic acid esters catalyzed by a carbon-based solid acid. React. Kinet. Mech. Catal. 2011, 104, 313–321.

[65]

Huo, Y.; Zhang, D.; Wu, J. H.; Wang, X. Z.; Wang, X. H.; Shao, C. L.; Crittenden, J. C.; Huo, M. X. Oxidation of phthalate acid esters using hydrogen peroxide and polyoxometalate/graphene hybrids. J. Hazard. Mater. 2022, 422, 126867.

[66]

Okoli, C. P.; Adewuyi, G. O.; Zhang, Q.; Diagboya, P. N.; Guo, Q. J. Mechanism of dialkyl phthalates removal from aqueous solution using γ-cyclodextrin and starch based polyurethane polymer adsorbents. Carbohydr. Polym. 2014, 114, 440–449.

[67]

Lei, Y.; Zhu, C. Z.; Lu, J.; Zhu, Y. C.; Zhu, M. Y.; Chen, T. H.; Peng, S. C. Photochemical reaction kinetics and mechanisms of diethyl phthalate with N (III) in the atmospheric aqueous environment. J. Photochem. Photobiol. A Chem. 2018, 362, 21–30.

[68]

Sheldon, R. A.; Wallau, M.; Arends, I. W. C. E.; Schuchardt, U. Heterogeneous catalysts for liquid-phase oxidations: Philosophers' stones or Trojan horses? Acc. Chem. Res. 1998, 31, 485–493.

Polyoxometalates
Article number: 9140064
Cite this article:
Wang Q, Wang J, Zhang D, et al. Fabrication of macroporous POMs/biochar materials for fast degradation of phthalic acid esters through adsorption coupled with aerobic oxidation. Polyoxometalates, 2024, 3(3): 9140064. https://doi.org/10.26599/POM.2024.9140064

929

Views

166

Downloads

1

Crossref

Altmetrics

Received: 21 January 2024
Revised: 18 March 2024
Accepted: 01 April 2024
Published: 22 April 2024
© The Author(s) 2024. Published by Tsinghua University Press.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the original author(s) and the source, provide a link to the license, and indicate if changes were made. See http://creativecommons.org/licenses/by/4.0/

Return