AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (11 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Reduced phosphomolybdate as photoassisted electrochemical crystalline sensor for trace Cr(VI) detection

Hao SongMeng-Si GuoJie-Fei WangYu-Qing LiuHao-Xue BiJing DuWen-Ting AnYuan-Yuan Ma ( )Zhan-Gang Han ( )
Hebei Key Laboratory of Organic Functional Molecules, National Demonstration Center for Experimental Chemistry Education, Testing and Analysis Center, College of Chemistry and Materials Science, Hebei Normal University, Shijiazhuang 050024, China
Show Author Information

Graphical Abstract

Abstract

The development of a sensitive and efficient detection technology for trace toxic hexavalent chromium (Cr(VI)) in water is a pressing concern. In this study, an hourglass-type phosphomolybdate-based metal–organic network with the formula [Na0.5Cu5.5(H2O)2(btmbp)4][Mn(H2O)3]2{Mn[H6P4Mo6O31]2}·10H2O (1, btmbp = 4,4'-bis((1H-1,2,4-triazol-1-yl)methyl)biphenyl) was hydrothermally synthesized. The crystal network consists of a ladder-like two-dimensional layered structure constructed by vertical connections of one-dimensional (1D) [Na0.5Cu5.5(H2O)2(btmbp)4]6+ metal–organic chains and 1D inorganic polyanionic chains. Compound 1 exhibits excellent electrochemical property and a wide light absorption range including visible light to accelerate the electron transfer in redox processes. When serving as a photoassisted electrochemical (PAEC) sensor for trace Cr(VI) detection, compound 1 exhibits a high sensitivity of 330.5 μA·μM−1 and a low detection limit of 0.95 nM (98.79 ppt) along with high anti-interference ability and excellent PAEC detection stability, outperforming most reported polyoxometalate-based sensors and equaling noble-metal sensors, far satisfying World Health Organization standards for Cr(VI) concentration in drinking water. This work provides a new photoelectrochemical sensor material for monitoring environmental pollutants.

Electronic Supplementary Material

Download File(s)
0065_ESM.pdf (1,002.3 KB)
0065_ESM_sq.cif (1.2 MB)
0065_ESM_sq_cifreport.pdf (143.4 KB)

References

[1]

Niu, J. Q.; An, W. T.; Zhang, X. J.; Ma, Y. Y.; Han, Z. G. Ultra-trace determination of hexavalent chromium in a wide pH range triggered by heterometallic Cu-Mn centers modified reduced phosphomolybdate hybrids. Chem. Eng. J. 2021, 418, 129408.

[2]

Zhao, K.; Ge, L. Y.; Wong, T. I.; Zhou, X. D.; Lisak, G. Gold-silver nanoparticles modified electrochemical sensor array for simultaneous determination of chromium(III) and chromium(VI) in wastewater samples. Chemosphere 2021, 281, 130880.

[3]

Wang, Y.; Ma, J. X.; Zhang, Y.; Xu, N.; Wang, X. L. A series of cobalt-based coordination polymer crystalline materials as highly sensitive electrochemical sensors for detecting trace Cr(VI), Fe(III) ions, and ascorbic acid. Cryst. Growth Des. 2021, 21, 4390–4397.

[4]

Fang, Y.; Wen, J.; Zhang, H. B.; Wang, Q.; Hu, X. H. Enhancing Cr(VI) reduction and immobilization by magnetic core-shell structured NZVI@MOF derivative hybrids. Environ. Pollut. 2020, 260, 114021.

[5]

Chen, X.; Ke, X. X.; Liu, Y.; Weerasooriya, R.; Li, H.; Wu, Y. C. Photocatalytically induced Au/mpg-C3N4 nanocomposites for robust electrochemical detection of Cr(VI) in tannery wastewater. J. Environ. Chem. Eng. 2021, 9, 104642.

[6]

Bi, H. X.; Yin, X. Y.; He, J. Y.; Song, H.; Lu, S. J.; Ma, Y. Y.; Han, Z. G. Conjugated organic component-functionalized hourglass-type phosphomolybdates for visible-light photocatalytic Cr(VI) reduction in wide pH range. Rare Met. 2023, 42, 3638–3650.

[7]

Zhang, X. J.; Ma, Y. Y.; Bi, H. X.; Yin, X. Y.; Song, H.; Liu, M. H.; Han, Z. G. Wheel-shaped molybdenum(V) cobalt-phosphate cluster as a highly sensitive bifunctional photoelectrochemical sensor for the trace determination of Cr(VI) and tetracycline. Inorg. Chem. Front. 2022, 9, 6457–6467.

[8]

Hemmatkhah, P.; Bidari, A.; Jafarvand, S.; Milani Hosseini, M. R.; Assadi, Y. Speciation of chromium in water samples using dispersive liquid-liquid microextraction and flame atomic absorption spectrometry. Microchim. Acta 2009, 166, 69–75.

[9]

Zhen, N.; Dong, J.; Lin, Z. G.; Lu, W.; Li, J.; Chi, Y. N.; Hu, C. W. A rhombus-like tetrameric vanadoniobate containing pseudo-sandwich-type {Li V2O8(Nb5O14)2} and its electrocatalytic activity for the selective oxidation of benzyl alcohol. Inorg. Chem. 2023, 62, 13824–13831.

[10]

Zhao, Y. N.; Li, W. L.; Li, Y. Q.; Qiu, T. Y.; Mu, X.; Ma, Y. Z.; Zhao, Y.; Zhang, J. P.; Zhang, J. W.; Li, Y. G. et al. 3D covalent polyoxovanadate-organic framework as an anode for high-performance lithium-ion batteries. Adv. Funct. Mater. 2023, 33, 2306598.

[11]

Weng, X. Y.; Huang, J. Q.; Ye, H. Z.; Xu, H.; Cai, D. Q.; Wang, D. F. A high-performance electrochemical sensor for sensitive detection of tetracycline based on a Zr-UiO-66/MWCNTs/AuNPs composite electrode. Anal. Methods 2022, 14, 3000–3010.

[12]

Liu, Y. F.; Hu, C. W.; Yang, G. P. Recent advances in polyoxometalates acid-catalyzed organic reactions. Chin. Chem. Lett. 2023, 34, 108097.

[13]

Yin, X. Y.; Zhang, Y. Q.; Ma, Y. Y.; He, J. Y.; Song, H.; Han, Z. G. Bifunctional sensors based on phosphomolybdates for detection of inorganic hexavalent chromium and organic tetracycline. Inorg. Chem. 2022, 61, 13174–13183.

[14]

Wang, X. L.; Qin, C.; Wang, E. B.; Su, Z. M.; Li, Y. G.; Xu, L. Self-assembly of nanometer-scale [Cu24I10L12]14+ cages and ball-shaped keggin clusters into a (4,12)-connected 3D framework with photoluminescent and electrochemical properties. Angew. Chem., Int. Ed. 2006, 45, 7411–7414.

[15]

Pang, Y. J.; Li, Y. W.; Xu, G. Q.; Hu, Y. T.; Kou, Z. K.; Feng, Q.; Lv, J.; Zhang, Y.; Wang, J.; Wu, Y. C. Z-scheme carbon-bridged Bi2O3/TiO2 nanotube arrays to boost photoelectrochemical detection performance. Appl. Catal. B Environ. 2019, 248, 255–263.

[16]

De Mello Florêncio, T.; De Araújo, K. S.; Antonelli, R.; De Toledo Fornazari, A. L.; Da Cunha, P. C. R.; Da Silva Bontempo, L. H.; De Jesus Motheo, A.; Granato, A. C.; Malpass, G. R. P. Photo-assisted electrochemical degradation of simulated textile effluent coupled with simultaneous chlorine photolysis. Environ. Sci. Pollut. Res. 2016, 23, 19292–19301.

[17]

Zhou, Z. H.; Zhang, H.; Qian, X. M.; Li, C. X.; Deng, K. Q. The composite of bismuth oxyiodide-bismuth/nitrogen-doped carbon for photoreduction and electrochemical/photoelectrochemical dual-model sensing of Cr(VI). Anal. Chim. Acta 2023, 1253, 341092.

[18]

Zhao, L. L.; Chen, H. Y.; Tang, Y.; Li, P. P.; Zhu, X. H.; Liu, J. Y.; Liu, M. L.; Zhang, Y. Y.; Yao, S. Z. Ag2S QDs integration with MnO2 nanosheets for the sensitive detection of Cr (VI) via the redox reaction induced photoelectrochemical variation. Anal. Chim. Acta 2023, 1270, 341471.

[19]

Wang, W. J.; Han, Z. G.; Wang, X. X.; Zhao, C.; Yu, H. T. Polyanionic clusters [M(P4Mo6)2] (M = Ni, Cd) as effective molecular catalysts for the electron-transfer reaction of ferricyanide to ferrocyanide. Inorg. Chem. 2016, 55, 6435–6442.

[20]

He, J. Y.; Bi, H. X.; Liu, Y. Q.; Guo, M. S.; An, W. T.; Ma, Y. Y.; Han, Z. G. Bridging component strategy in phosphomolybdate-based sensors for electrochemical determination of trace Cr(VI). Inorg. Chem. 2024, 63, 842–851.

[21]

Zhang, Y. L.; Shan, J. Q.; Zhang, L. L.; Zhou, S. H.; Yang, X. F.; Liao, J. J. Insights to the enhanced photoelectrochemical sensing of Cr(VI) by piezoelectric effect based on ZnO/MoS2 heterojunction nanoarrays: Piezoelectric field-induced II-type to Z-scheme system. Sens. Actuators B Chem. 2023, 396, 134563.

[22]

Du, J.; Ma, Y. Y.; Tan, H. Q.; Kang, Z. H.; Li, Y. G. Progress of electrochemical CO2 reduction reactions over polyoxometalate-based materials. Chin. J. Catal. 2021, 42, 920–937.

[23]

Zhang, J.; Li, Y.; Wang, F.; Mei, H.; Wu, H. M. Construction of polydopamine (PDA) functionalized CeO2/In2S3 heterojunction for photoelectrochemical monitoring of glucose and hexavalent chromium. Sens. Actuators B Chem. 2023, 378, 133206.

[24]

Meng, L. X.; Zhang, Y.; Wang, J. L.; Zhou, B. X.; Xu, Z. Q.; Shi, J. J. Construction of MIL-125 derived 2D TiO2@C nanocake/Au/3D peony-like BiOI Z-scheme heterojunction for sensitive and facile photoelectrochemical sensing assay of Cr (VI) based on competitive consumption of surface sacrificial agent. Sens. Actuators B Chem. 2023, 396, 134578.

[25]

Jin, W.; Yan, K. Recent advances in electrochemical detection of toxic Cr(VI). RSC Adv. 2015, 5, 37440–37450.

[26]

Hu, J. Y.; Li, Z.; Zhai, C. Y.; Zeng, L. X.; Zhu, M. S. Photo-assisted simultaneous electrochemical detection of multiple heavy metal ions with a metal-free carbon black anchored graphitic carbon nitride sensor. Anal. Chim. Acta 2021, 1183, 338951.

[27]

Fang, T.; Yang, X. M.; Zhang, L. Z.; Gong, J. M. Ultrasensitive photoelectrochemical determination of chromium(VI) in water samples by ion-imprinted/formate anion-incorporated graphitic carbon nitride nanostructured hybrid. J. Hazard. Mater. 2016, 312, 106–113.

[28]

Cheng, D.; Wu, H. M.; Feng, C. Q.; Zhang, Y. Q.; Ding, Y.; Mei, H. Highly sensitive detection of chromium (VI) by photoelectrochemical sensor based on p-n heterojunction of carbon nitride-modified BiOI. J. Alloys Compd. 2021, 882, 160690.

[29]

Bhanjana, G.; Rana, P.; Chaudhary, G. R.; Dilbaghi, N.; Kim, K. H.; Kumar, S. Manganese oxide nanochips as a novel electrocatalyst for direct redox sensing of hexavalent chromium. Sci. Rep. 2019, 9, 8050.

[30]

Adhikari, S.; Mandal, S.; Kim, D. H. 1D/2D constructed Bi2S3/Bi2O2Co3 direct Z-scheme heterojunction: A versatile photocatalytic material for boosted photodegradation, photoreduction and photoelectrochemical detection of water-based contaminants. J. Hazard. Mater. 2021, 418, 126263.

[31]

Wang, Y. L.; Ma, Y. Y.; Zhao, Q.; Hou, L.; Han, Z. G. Polyoxometalate-based crystalline catalytic materials for efficient electrochemical detection of Cr(Ⅵ). Sensors Actuat. B Chem. 2020, 305, 127469.

[32]

Geng, C. Y.; Niu, J. Q.; Zhao, D.; Jin, X. X.; Liu, J. J.; Liu, X. Q.; Wong, D. K. Y. Evaluation of electrocatalysis of hourglass-shaped polyoxometallates with different transition metals towards hydrogen peroxide transformed from superoxide radicals in living cell mitochondria. Chem. Eng. J. 2023, 475, 146302.

[33]

He, P.; Ran, L.; Li, C.; Wang, W. W.; Zhang, C.; Ma, R. Z.; Li, Y. N.; Zhang, Y. S.; Deng, L. W.; Yan, J. Drawing inspiration from nature: Trinitarian strategies for designing polyoxometalates and metal-organic framework-based biomimetic microhoneycomb electromagnetic wave-absorbing materials. Inorg. Chem. 2024, 63, 1613–1624.

[34]

Lv, J. Q.; Lang, Z. L.; Fu, J. Q.; Lan, Q.; Liu, R. J.; Zang, H. Y.; Li, Y. G.; Ye, D. D.; Streb, C. Molecular iron oxide clusters boost the oxygen reduction reaction of platinum electrocatalysts at near-neutral pH. Angew. Chem., Int. Ed. 2022, 61, e202202650.

[35]

Yu, F. Y.; Lang, Z. L.; Zhou, Y. J.; Feng, K.; Tan, H. Q.; Zhong, J.; Lee, S. T.; Kang, Z. H.; Li, Y. G. Revealing hydrogen evolution performance of single-atom platinum electrocatalyst with polyoxometalate molecular models. ACS Energy Lett. 2021, 6, 4055–4062.

[36]

Huang, R.; Wang, W. W.; Zhang, C.; He, P.; Han, Y. Y.; Chen, N.; Yan, J. A bi-component polyoxometalate-derivative cathode material showed impressive electrochemical performance for the aqueous zinc-ion batteries. Chin. Chem. Lett. 2022, 33, 3955–3960.

[37]

Yu, F. Y.; Lang, Z. L.; Yin, L. Y.; Feng, K.; Xia, Y. J.; Tan, H. Q.; Zhu, H. T.; Zhong, J.; Kang, Z. H.; Li, Y. G. Pt-O bond as an active site superior to Pt0 in hydrogen evolution reaction. Nat. Commun. 2020, 11, 490.

[38]

Nie, Y. M.; Li, S. H.; Lin, M. Y.; Yan, J. A micro-environment tuning approach for enhancing the catalytic capabilities of lanthanide containing polyoxometalate in the cyanosilylation of ketones. Chem. Commun. 2020, 56, 3809–3812.

[39]

Zhang, S. M.; Wang, Y.; Ma, Y. Y.; Li, Z. B.; Du, J.; Han, Z. G. Three-dimensional silver-containing polyoxotungstate frameworks for photocatalytic aerobic oxidation of benzyl alcohol. Inorg. Chem. 2022, 61, 20596–20607.

[40]

Bi, H. X.; Hou, L.; Yin, X. Y.; Ma, Y. Y.; Han, Z. G. Central metals to guide the bandgap of hourglass-type polyoxometalate hybrids as photocatalyst for the reduction of Cr(VI). Cryst. Growth Des. 2022, 22, 738–746.

[41]

Wang, X. T.; Mao, W. J.; Wang, D. S.; Hu, X. L.; Liu, B. L.; Su, Z. M. Hourglass shaped polyoxometalate-based materials as electrochemical sensors for the detection of trace Cr(VI) in a wide pH range. Talanta 2023, 257, 124270.

[42]

Du, J.; Ma, Y. Y.; Xin, X.; Na, H.; Zhao, Y. N.; Tan, H. Q.; Han, Z. G.; Li, Y. G.; Kang, Z. H. Reduced polyoxometalates and bipyridine ruthenium complex forming a tunable photocatalytic system for high efficient CO2 reduction. Chem. Eng. J. 2020, 398, 125518.

[43]

Liu, Y. F.; Zeng, G. D.; Cheng, Y. T.; Chen, L.; Liu, Y. H.; Wei, Y. G.; Yang, G. P. A H4SiW12O40-catalyzed three-component tandem reaction for the synthesis of 3,3-disubstituted isoindolinones. Chin. Chem. Lett. 2024, 35, 108480.

[44]

Cui, W. J.; Zhang, S. M.; Tian, Z. Y.; Li, C.; Wang, Y. M.; Yu, B. R.; Ma, Y. Y.; Han, Z. G. Hydrogen bond-mediated polyoxometalate-based metal-organic networks for efficient and selective oxidation of aryl alkenes to aldehydes. Tungsten 2022, 4, 109–120.

[45]

Liu, Y. F.; Hu, Q. L.; Chen, X. J.; Li, K.; Luo, P.; Yang, G. P. Two sandwich-type uranyl-containing polytungstates catalyze aerobic synthesis of benzimidazoles. Rare Met. 2024, 43, 1316–1322.

[46]

An, W. T.; Zhang, X. J.; Niu, J. Q.; Ma, Y. Y.; Han, Z. G. Unusual hexa-nuclear cadmium cluster functionalized phosphomolybdate as effective photoelectrochemical sensor for trace Cr(Ⅵ) detection. Chin. Chem. Lett. 2022, 33, 4400–4404.

[47]

Liu, Q. Q.; Lu, J. J.; Lin, H. Y.; Wang, X. L.; Chang, Z. H.; Chen, Y. Z.; Zhang, Y. C. Polyoxometalate-based metal-organic complexes constructed from a new bis-pyrimidine-amide ligand with high capacitance performance and selectivity for the detection of Cr(Ⅵ). Chin. Chem. Lett. 2022, 33, 4389–4394.

[48]

An, W. T.; Wu, X. Y.; Niu, J. Q.; Ma, Y. Y.; Han, Z. G. Synthesis and characterization of hourglass-type phosphomolybdate for electrochemical detection of Cr(VI). Journal of Hebei Normal University (Natural Science Edition) 2021, 45, 275–282.

Polyoxometalates
Article number: 9140065
Cite this article:
Song H, Guo M-S, Wang J-F, et al. Reduced phosphomolybdate as photoassisted electrochemical crystalline sensor for trace Cr(VI) detection. Polyoxometalates, 2024, 3(4): 9140065. https://doi.org/10.26599/POM.2024.9140065

1234

Views

280

Downloads

9

Crossref

Altmetrics

Received: 15 February 2024
Revised: 02 April 2024
Accepted: 22 April 2024
Published: 17 May 2024
© The Author(s) 2024. Published by Tsinghua University Press.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the original author(s) and the source, provide a link to the license, and indicate if changes were made. See http://creativecommons.org/licenses/by/4.0/

Return