AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (7.5 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Cyclohexanone hydrogenation to cyclohexanol on phosphomolybdate supported Pt single-atom catalyst: A density functional theory study

Shuang Wu1Congcong Zhao1Yujiao Dong2Likai Yan1 ( )
Institute of Functional Material Chemistry, Key Laboratory of Polyoxometalate Science of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun 130022, China
Show Author Information

Graphical Abstract

Abstract

Single-atom catalysts possess novel and unique properties and excellent catalytic activities because of their distinct geometric and electronic structures. In this study, we investigated the catalytic mechanism of the cyclohexanone hydrogenation by Pt@Na3PMA (PMA = PMo12O403−) using density functional theory calculations. Our findings indicate that the potential anchoring site for a single Pt atom is a fourfold hollow site on PMA. The bonding interaction between Pt and PMA arises from both ionic and covalent interactions of the Pt−O bond. The calculated adsorption energy suggests that the coadsorption of H2 and C6H10O molecules on Pt@Na3PMA exhibits high thermal stability. Furthermore, we proposed a catalytic cycle for the hydrogenation of cyclohexanone by Pt@Na3PMA, demonstrating that the hydrogenation of the carbonyl oxygen atom in cyclohexanone is the rate-determining step. Throughout the reaction, Na3PMA acts as an “electron sponge”, for accepting and donating electrons. It is expected that the results presented in this work will provide valuable insights into the hydrogenation of cyclohexanone.

Electronic Supplementary Material

Download File(s)
0070_ESM.pdf (976.5 KB)

References

[1]

Hattori, H.; Ide, Y.; Ogo, S.; Inumaru, K.; Sadakane, M.; Sano, T. Efficient and selective photocatalytic cyclohexane oxidation on a layered titanate modified with iron oxide under sunlight and CO2 atmosphere. ACS Catal. 2012, 2, 1910–1915.

[2]

Zhao, Z. P.; Long, X. Y.; Millan, M.; Yuan, G. M.; Cui, Z. W.; Dong, Z. J.; Cong, Y.; Zhang, J.; Li, X. K. The influence of carbon supports and their surface modification on aqueous phase highly selective hydrogenation of phenol to cyclohexanol over different Ni/carbon catalysts. Carbon 2023, 213, 118227.

[3]

Ge, F.; Xia, H. H.; Li, J.; Xue, Y. Q.; Su, J. T.; Yang, X. H.; Jiang, J. C.; Zhou, M. H. Lignin meets MOFs: Lignin derived metal carbon material for the catalytic hydrotreatment of guaiacol to cyclohexanol. Chem. Eng. J. 2023, 473, 145375.

[4]

Zhang, K. L.; Meng, Q. L.; Wu, H. H.; Yan, J.; Mei, X. L.; An, P. F.; Zheng, L. R.; Zhang, J.; He, M. Y.; Han, B. X. Selective hydrodeoxygenation of aromatics to cyclohexanols over Ru single atoms supported on CeO2. J. Am. Chem. Soc. 2022, 144, 20834–20846.

[5]

Liu, T.; Tian, Z. P.; Zhang, W. J.; Luo, B. W.; Lei, L. B.; Wang, C.; Liu, J. P.; Shu, R. Y.; Chen, Y. Selective hydrodeoxygenation of lignin-derived phenols to alkyl cyclohexanols over highly dispersed RuFe bimetallic catalysts. Fuel 2023, 339, 126916.

[6]

Zhu, Y. F.; Gao, L.; Wen, L. Y.; Zong, B. N.; Wang, H.; Qiao, M. H. Cyclohexene esterification-hydrogenation for efficient production of cyclohexanol. Green Chem. 2021, 23, 1185–1192.

[7]

Jindal, M.; Kumar, A.; Rawat, S.; Yang, B.; Thallada, B. Reductive catalytic cracking of industrial phenolics mixture to selective cyclohexanols. Appl. Catal. A: Gen. 2023, 653, 119068.

[8]

Liu, X. H.; Jia, W. D.; Xu, G. Y.; Zhang, Y.; Fu, Y. Selective hydrodeoxygenation of lignin-derived phenols to cyclohexanols over Co-based catalysts. ACS Sustainable Chem. Eng. 2017, 5, 8594–8601.

[9]

Song, Z. Y.; Ren, D. Z.; Wang, T.; Jin, F. M.; Jiang, Q. H.; Huo, Z. B. Highly selective hydrothermal production of cyclohexanol from biomass-derived cyclohexanone over Cu powder. Catal. Today 2016, 274, 94–98.

[10]

Kobayashi, Y.; Tada, S.; Kondo, M.; Fujiwara, K.; Mizoguchi, H. Intermetallic YIr2 nanoparticles with negatively charged Ir active sites for catalytic hydrogenation of cyclohexanone to cyclohexanol. Catal. Sci. Technol. 2022, 12, 3088–3093.

[11]

Li, W. L.; Liu, S. Z.; Wang, H. Y.; Gao, B.; Tu, C. Y.; Luo, Y. B. La-doped Zr-beta zeolite as efficient catalyst for reduction of cyclohexanone to cyclohexanol via the MPV process. Catal. Commun. 2020, 133, 105845.

[12]

Bhar, S.; Guha, S. The remarkable role of water during the chemoselective reduction of ketones mediated by metallic aluminium. Tetrahedron Lett. 2004, 45, 3775–3777.

[13]

Campbell, E. J.; Zhou, H. Y.; Nguyen, S. T. Catalytic Meerwein-Pondorf-Verley reduction by simple aluminum complexes. Org. Lett. 2001, 3, 2391–2393.

[14]

Fujihara, T.; Semba, K.; Terao, J.; Tsuji, Y. Copper-catalyzed hydrosilylation with a bowl-shaped phosphane ligand: Preferential reduction of a bulky ketone in the presence of an aldehyde. Angew. Chem. 2010, 122, 1514–1518.

[15]
Huheey, J. E.; Keiter, E. A.; Keiter, R. L. Inorganic Chemistry: Principles of Structure and Reactivity, 4th ed.; HarperCollins College Publishers: New York, 1993.
[16]

Hu, Q. L.; Li, K.; Chen, X. J.; Liu, Y. F.; Yang, G. P. Polyoxometalate catalysts for the synthesis of N-heterocycles. Polyoxometalates 2024, 3, 9140048.

[17]

Wei, Y. W.; Xue, D.; Lei, Q.; Wang, C.; Xiao, J. L. Cyclometalated iridium complexes for transfer hydrogenation of carbonyl groups in water. Green Chem. 2013, 15, 629–634.

[18]

Spasyuk, D.; Smith, S.; Gusev, D. G. Replacing phosphorus with sulfur for the efficient hydrogenation of esters. Angew. Chem., Int. Ed. 2013, 52, 2538–2542.

[19]

Wang, H.; Cui, Y. Z.; Shi, J. H.; Tao, X.; Zhu, G. S. Porous carbon supported Lewis acid-base sites as metal-free catalysts for the carbonylation of glycerol with urea. Appl. Catal. B: Environ. 2023, 330, 122457.

[20]

Zhang, S.; Lu, S. H.; Zhang, P.; Tian, J. X.; Shi, L.; Ling, C. Y.; Zhou, Q. H.; Wang, J. L. Accelerated discovery of single-atom catalysts for nitrogen fixation via machine learning. Energy Environ. Mater. 2023, 6, e12304.

[21]

Chen, Y. Z.; Sun, H. L.; Gates, B. C. Prototype atomically dispersed supported metal catalysts: Iridium and platinum. Small 2021, 17, 2004665.

[22]

Zhang, W. H.; Fu, Q.; Luo, Q. Q.; Sheng, L.; Yang, J. L. Understanding single-atom catalysis in view of theory. JACS Au 2021, 1, 2130–2145.

[23]

Ren, Y. J.; Tang, Y.; Zhang, L. L.; Liu, X. Y.; Li, L.; Miao, S.; Su, D. S.; Wang, A. Q.; Li, J.; Zhang, T. Unraveling the coordination structure-performance relationship in Pt1/Fe2O3 single-atom catalyst. Nat. Commun. 2019, 10, 4500.

[24]

Su, J. N.; Zhuang, L. Z.; Zhang, S. S.; Liu, Q. J.; Zhang, L. Z.; Hu, G. Z. Single atom catalyst for electrocatalysis. Chin. Chem. Lett. 2021, 32, 2947–2962.

[25]

Zhai, Y. L.; Zhu, Z. J.; Zhu, C. Z.; Chen, K. L.; Zhang, X. J.; Tang, J.; Chen, J. Single-atom catalysts boost nitrogen electroreduction reaction. Mater. Today 2020, 38, 99–113.

[26]

Wang, Q. S.; Zhang, D. F.; Chen, Y.; Fu, W. F.; Lv, X. J. Single-atom catalysts for photocatalytic reactions. ACS Sustainable Chem. Eng. 2019, 7, 6430–6443.

[27]

Zhu, C. Z.; Fu, S. F.; Shi, Q. R.; Du, D.; Lin, Y. H. Single-atom electrocatalysts. Angew. Chem., Int. Ed. 2017, 56, 13944–13960.

[28]

Xu, H.; Zhao, Y. T.; Wang, Q.; He, G. Y.; Chen, H. Q. Supports promote single-atom catalysts toward advanced electrocatalysis. Coor. Chem. Rev. 2022, 451, 214261.

[29]

Li, L. L.; Chang, X.; Lin, X. Y.; Zhao, Z. J.; Gong, J. L. Theoretical insights into single-atom catalysts. Chem. Soc. Rev. 2020, 49, 8156–8178.

[30]

Speck, F. D.; Paul, M. T. Y.; Ruiz-Zepeda, F.; Gatalo, M.; Kim, H.; Kwon, H. C.; Mayrhofer, K. J. J.; Choi, M.; Choi, C. H.; Hodnik, N. et al. Atomistic insights into the stability of Pt single-atom electrocatalysts. J. Am. Chem. Soc. 2020, 142, 15496–15504.

[31]

Zhang, H. B.; Lu, X. F.; Wu, Z. P.; Lou, X. W. D. Emerging multifunctional single-atom catalysts/nanozymes. ACS Cent. Sci. 2020, 6, 1288–1301.

[32]

Liu, D.; Wan, X. Y.; Kong, T. T.; Han, W. W.; Xiong, Y. J. Single-atom-based catalysts for photoelectrocatalysis: Challenges and opportunities. J. Mater. Chem. A 2022, 10, 5878–5888.

[33]

Song, P.; Luo, M.; Liu, X. Z.; Xing, W.; Xu, W. L.; Jiang, Z.; Gu, L. Zn single atom catalyst for highly efficient oxygen reduction reaction. Adv. Funct. Mater. 2017, 27, 1700802.

[34]

Lv, C. Q.; Liu, J. H.; Guo, Y.; Li, X. M.; Wang, G. C. DFT + U investigation on the adsorption and initial decomposition of methylamine by a Pt single-atom catalyst supported on rutile (110) TiO2. Appl. Surf. Sci. 2016, 389, 411–418.

[35]

Peterson, E. J.; DeLaRiva, A. T.; Lin, S.; Johnson, R. S.; Guo, H.; Miller, J. T.; Kwak, J. H.; Peden, C. H. F.; Kiefer, B.; Allard, L. F. et al. Low-temperature carbon monoxide oxidation catalysed by regenerable atomically dispersed palladium on alumina. Nat. Commun. 2014, 5, 4885.

[36]

Kwak, J. H.; Lee, J.; Szanyi, J.; Peden, C. H. F. Modification of the acid/base properties of γ-Al2O3 by oxide additives: An ethanol TPD investigation. Catal. Today 2016, 265, 240–244.

[37]

Song, Z. Q.; Li, W. Y.; Niu, F. S.; Xu, Y. H.; Niu, L.; Yang, W. R.; Wang, Y.; Liu, J. Q. A novel method to decorate Au clusters onto graphene via a mild co-reduction process for ultrahigh catalytic activity. J. Mater. Chem. A 2017, 5, 230–239.

[38]

Kondinski, A. Superchaotropic polyoxometalates as membrane carriers. Polyoxometalates 2024, 3, 9140058.

[39]

Li, J.; Liu, J.; Zhang, T. Preface to the special issue of the international symposium on single-atom catalysis (ISSAC-2016). Chin. J. Catal. 2017, 38, 1431.

[40]

Zheng, N. F.; Zhang, T. Preface: Single-atom catalysts as a new generation of heterogeneous catalysts. Natl. Sci. Rev. 2018, 5, 625.

[41]

Zhang, B.; Asakura, H.; Zhang, J.; Zhang, J. G.; De, S.; Yan, N. Stabilizing a platinum1 single-atom catalyst on supported phosphomolybdic acid without compromising hydrogenation activity. Angew. Chem., Int. Ed. 2016, 55, 8319–8323.

[42]

Song, Y. Z.; Janjua, M. R. S. A.; Jamil, S.; Haroon, M.; Nasir, S.; Nisar, Z.; Zafar. A.; Nawaz, N.; Batool, A.; Abdul-Aziz. The NLO properties of hybrid materials based on molybdate/hexamolybdate derivatives: A theoretical perspective for electro-optic modulation. Synth. Met. 2014, 198, 277–284.

[43]

Haroon, M.; Janjua, M. R. S. A. Prediction of NLO response of substituted organoimido hexamolybedate: First theoretical framework based on p-anisidine adduct [Mo6O18(p-MeOC6H4N)]2-. Mater. Today Commun. 2021, 26, 101880.

[44]

Haroon, M.; Janjua, M. R. S. A. Computationally assisted design and prediction of remarkably boosted NLO response of organoimido-substituted hexamolybdates. J. Phys. Org. Chem. 2022, 35, e4353.

[45]

Janjua, M. R. S. A. Quantum mechanical design of efficient second-order nonlinear optical materials based on heteroaromatic imido-substituted hexamolybdates: First theoretical framework of POM-based heterocyclic aromatic rings. Inorg. Chem. 2012, 51, 11306–11314.

[46]

Haroon, M.; Mahmood, R.; Janjua, M. R. S. A. An interesting behavior and nonlinear optical (NLO) response of hexamolybdate metal cluster: Theoretical insight into electro-optic modulation of hybrid composites. J. Clust. Sci. 2017, 28, 2693–2708.

[47]
Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H. et al. Gaussian 16, Rev. C.01; Gaussian, Inc.: Wallingford, CT, USA, 2019.
[48]

Lee, C.; Yang, W. T.; Parr, R. G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785–789.

[49]

Becke, A. D. A new mixing of Hartree-Fock and local density-functional theories. J. Chem. Phys. 1993, 98, 1372–1377.

[50]

Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.; Frisch, M. J. Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J. Phys. Chem. 1994, 98, 11623–11627.

[51]

Thanthiriwatte, K. S.; Hohenstein, E. G.; Burns, L. A.; Sherrill, C. D. Assessment of the performance of DFT and DFT-D methods for describing distance dependence of hydrogen-bonded interactions. J. Chem. Theory Comput. 2011, 7, 88–96.

[52]

Petersson, G. A.; Tensfeldt, T. G.; Montgomery, J. A. Jr. A complete basis set model chemistry. III. The complete basis set-quadratic configuration interaction family of methods. J. Chem. Phys. 1991, 94, 6091–6101.

[53]

Hay, P. J.; Wadt, W. R. Ab initio effective core potentials for molecular calculations Potentials for K to Au including the outermost core orbitals. J. Chem. Phys. 1985, 82, 299–310.

[54]

Francl, M. M.; Pietro, W. J.; Hehre, W. J.; Binkley, J. S.; Gordon, M. S.; Defrees, D. J.; Pople, J. A. Self-consistent molecular orbital methods. XXIII. A polarization-type basis set for second-row elements. J. Chem. Phys. 1982, 77, 3654–3665.

[55]

Hariharan, P. C.; Pople, J. A. The influence of polarization functions on molecular orbital hydrogenation energies. Theor. Chim. Acta 1973, 28, 213–222.

[56]

Zhao, Y.; Truhlar, D. G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. 2008, 120, 215–241.

[57]

Andrae, D.; Häußermann, U.; Dolg, M.; Stoll, H.; Preuß, H. Energy-adjusted ad initio pseudopotentials for the second and third row transition elements. Theor. Chim. Acta 1990, 77, 123–141.

[58]

Dolg, M.; Wedig, U.; Stoll, H.; Preuss, H. Energy-adjusted ab initio pseudopotentials for the first row transition elements. J. Chem. Phys. 1987, 86, 866–872.

[59]

Cancès, E.; Mennucci, B.; Tomasi, J. A new integral equation formalism for the polarizable continuum model: Theoretical background and applications to isotropic and anisotropic dielectrics. J. Chem. Phys. 1997, 107, 3032–3041.

[60]

Glendening, E. D.; Landis, C. R.; Weinhold, F. NBO 7.0: New vistas in localized and delocalized chemical bonding theory. J. Comput. Chem. 2019, 40, 2234–2241

[61]

Lu, T.; Chen, F. W. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580–592.

[62]

Zhang, B.; Sun, G.; Ding, S. P.; Asakura, H.; Zhang, J.; Sautet, P.; Yan, N. Atomically dispersed Pt1-polyoxometalate catalysts: How does metal-support interaction affect stability and hydrogenation activity? J. Am. Chem. Soc. 2019, 141, 8185–8197.

[63]

Lu, T.; Chen, F. W. Calculation of molecular orbital composition. Acta Chim. Sinica 2011, 69, 2393–2406.

Polyoxometalates
Article number: 9140070
Cite this article:
Wu S, Zhao C, Dong Y, et al. Cyclohexanone hydrogenation to cyclohexanol on phosphomolybdate supported Pt single-atom catalyst: A density functional theory study. Polyoxometalates, 2024, 3(4): 9140070. https://doi.org/10.26599/POM.2024.9140070

496

Views

99

Downloads

1

Crossref

Altmetrics

Received: 07 April 2024
Revised: 25 May 2024
Accepted: 11 June 2024
Published: 03 July 2024
© The Author(s) 2024. Published by Tsinghua University Press.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the original author(s) and the source, provide a link to the license, and indicate if changes were made. See http://creativecommons.org/licenses/by/4.0/

Return