AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (31.8 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article | Open Access

Recent advances in {P4Mo6}-based polyoxometalates

Wenrui DengZihao ZhuYijian SunHui Xu ( )Suijun LiuHerui Wen
School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Crystalline Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, China
Show Author Information

Graphical Abstract

Abstract

The reduced phosphomolybdate {P4Mo6X31}n (X = O or OH) ({P4Mo6}) is an important member of polyoxometalates (POMs), characterized by fully reduced Mo atoms, multiple oxygen coordination sites, and excellent optical response and electrochemical properties, which have attracted extensive interest from researchers. Over the past few decades, the development of {P4Mo6}-based POMs has been relatively slow compared to classical polyoxometalates. Most studies have primarily focused on synthesizing novel structures and some investigations into properties such as photocatalytic degradation of organic dyes, and electrocatalytic reduction of hydrogen peroxide. Recently, {P4Mo6}-based POMs have attracted increasing interest owing to their unique structural advantages and potential applications in photocatalysis, electrocatalysis, electrochemical sensors, and proton conduction. This review summarizes the development of {P4Mo6}-based POMs over the past decade, focusing on their structures, synthesis, and applications across various fields, as well as the use of {P4Mo6}-based POMs as precursors in nanocomposites and their applications. Despite these advances, challenges remain, such as improving the scalability of {P4Mo6}-based POMs and intensively studying the relationship between structures and performance. Future research will likely explore potential energy storage and conversion applications, including hydrogen evolution reaction (HER), oxygen evolution reaction (OER), and battery materials. This review aims to provide researchers with a comprehensive understanding of this area and to guide future developments of {P4Mo6}-based POMs.

References

[1]

Qian, D. Q.; Lin, Y. D.; Xiao, H. P.; Wu, B.; Li, X. X.; Zheng, S. T. Advances in coinage-metal-substituted polyoxometalates: A review. Polyoxometalates 2024, 3, 9140040.

[2]

Hu, Q. L.; Li, K.; Chen, X. J.; Liu, Y. F.; Yang, G. P. Polyoxometalate catalysts for the synthesis of N-heterocycles. Polyoxometalates 2024, 3, 9140048.

[3]

Ding, J. H.; Liu, Y. F.; Tian, Z. T.; Lin, P. J.; Yang, F.; Li, K.; Yang, G, P.; Wei, Y. G. Uranyl-silicotungstate-containing hybrid building units {α-SiW9} and {γ-SiW10} with excellent catalytic activities in the three-component synthesis of dihydropyrimidin-2(1H)-ones. Inorg. Chem. Front. 2023, 10, 3195–3201.

[4]

Liu, Y. F.; Lin, X. L.; Ming, B. M.; Hu, Q. L.; Liu, H. Q.; Chen, X. J.; Liu, Y. H.; Yang, G. P. Three polyoxometalate-based Ag-organic compounds as heterogeneous catalysts for the synthesis of benzimidazoles. Inorg. Chem. 2024, 63, 5681–5688.

[5]

Liu, Y. F.; Hu, Q. L.; Chen, X. J.; Li, K.; Luo, P.; Yang, G. P. Two sandwich-type uranyl-containing polytungstates catalyze aerobic synthesis of benzimidazoles. Rare Met. 2024, 43, 1316–1322.

[6]

Liu, Y. F.; Hu, C. W.; Yang, G. P. Recent advances in polyoxometalates acid-catalyzed organic reactions. Chin. Chem. Lett. 2023, 34, 108097.

[7]

Wang, S. S.; Yang, G. Y. Recent advances in polyoxometalate-catalyzed reactions. Chem. Rev. 2015, 115, 4893–4962.

[8]

Li, K.; Liu, Y. F.; Yang, G. P.; Zheng, Z. J.; Lin, X. L.; Zhang, Z. B.; Li, S. J.; Liu, Y. H.; Wei, Y. G. Highly-stable Silverton-type UIV-containing polyoxomolybdate frameworks for the heterogeneous catalytic synthesis of quinazolinones. Green Chem. 2024, 26, 6454–6460.

[9]

Li, K.; Liu, Y. F.; Lin, X. L.; Yang, G. P. Copper-containing polyoxometalate-based metal-organic frameworks as heterogeneous catalysts for the synthesis of N-heterocycles. Inorg. Chem. 2022, 61, 6934–6942.

[10]

Clemente-Juan, J. M.; Coronado, E.; Gaita-Ariño, A. Magnetic polyoxometalates: From molecular magnetism to molecular spintronics and quantum computing. Chem. Soc. Rev. 2012, 41, 7464–7478.

[11]

Lun, H. J.; Zhang, Z. M.; Sun, Y. H.; Wang, M. M.; Cai, J. J.; Liang, X. Y.; Li, Y. M.; Bai, Y. N-N-bridged polynuclear POM-based coordination polymers based on a V-type Ligand: Proton conduction and magnetism. Inorg. Chem. 2023, 62, 17093–17101.

[12]

Wang, L. S.; Wang, Y.; Lv, C. L.; Guo, C.; Xing, F. Y.; Dong, Y. J.; Xie, Z.; Zhou, S. Y.; Wei, Y. G. Polyoxometalates with tunable third-order nonlinear optical and superbroadband optical limiting properties. Inorg. Chem. Front. 2022, 9, 4413–4424.

[13]

Housaindokht, M. R.; Jamshidi, A.; Janati-Fard, F. Recent advances in polyoxometalates for spectroscopic sensors: A review. J. Mater. Sci. 2022, 57, 13871–13902.

[14]

Chen, L.; Geng, J.; Guo, Z.; Huang, X. J. Polyoxometalates-based functional materials in chemiresistive gas sensors and electrochemical sensors. TrAC Trends Anal. Chem. 2023, 167, 117233.

[15]

Hu, H. B.; Lian, L. F.; Ji, X.; Zhao, W. L.; Li, H. Q.; Chen, W.; Miras, H. N.; Song, Y. F. Polyoxometalate (POM)-based battery materials: Correlation between dimensionality of support material and energy storage performance. Coord. Chem. Rev. 2024, 503, 215640.

[16]

Zhang, Q.; Li, F. Y.; Xu, L. Application of polyoxometalates in third-generation solar cells. Polyoxometalates 2023, 2, 9140018.

[17]

Liu, Y. F.; Zeng, G. D.; Cheng, Y. T.; Chen, L.; Liu, Y. H.; Wei, Y. G.; Yang, G. P. A H4SiW12O40-catalyzed three-component tandem reaction for the synthesis of 3,3-disubstituted isoindolinones. Chin. Chem. Lett. 2024, 35, 108480.

[18]

Zhang, J. W.; Huang, Y. C.; Li, G.; Wei, Y. G. Recent advances in alkoxylation chemistry of polyoxometalates: From synthetic strategies, structural overviews to functional applications. Coord. Chem. Rev. 2019, 378, 395–414.

[19]

Yu, K.; Zhou, B. B.; Yu, Y.; Su, Z. H.; Wang, C. M.; Wang, C. X.; Gao, S.; Chen, Y. Self-assembly of four one-dimensional molybdenum(V) phosphates linked by strontium and transition metal. Inorg. Chim. Acta 2012, 384, 8–17.

[20]

Liu, J.; Wang, E. B.; Wang, X. L.; Xiao, D. R.; Fan, L. L. An interesting fourfold interpenetrating network constructed by polyoxometalates and metal-organic coordination complexes: [CuI5(bpy)5(H2O)2][CuII(H2O)3]2CuII[P4MoV6O25(OH)6]2]·H3O+·2H2O. J. Mol. Sci. 2008, 876, 206–210.

[21]

Niu, J. Q.; An, W. T.; Zhang, X. J.; Ma, Y. Y.; Han, Z. G. Ultra-trace determination of hexavalent chromium in a wide pH range triggered by heterometallic Cu-Mn centers modified reduced phosphomolybdate hybrids. Chem. Eng. J. 2021, 418, 129408.

[22]

Bi, H. X.; Hou, L.; Yin, X. Y.; Ma, Y. Y.; Han, Z. G. Central metals to guide the bandgap of hourglass-type polyoxometalate hybrids as photocatalyst for the reduction of Cr(VI). Cryst. Growth Des. 2022, 22, 738–746.

[23]

Haushalter, R. C.; Lai, F. W. [Et4N]6[Na14Mo24P17O97(OH)31]·xH2O: A hollow cluster filled with 12Na⊕ions and a H3PO4 molecule. Angew. Chem. Int. Ed. 1989, 28, 743–746.

[24]

Wang, X. T.; Mao, W. J.; Wang, D. S.; Hu, X. L.; Liu, B. L.; Su, Z. M. Hourglass shaped polyoxometalate-based materials as electrochemical sensors for the detection of trace Cr(VI) in a wide pH range. Talanta 2023, 257, 124270.

[25]

Gao, Z. X.; Sun, S.; Li, B.; Cheng, D. M.; Wang, Y. H.; Zang, H. Y.; Li, Y. G. Design and synthesis of phosphomolybdate coordination compounds based on {P4Mo6} structural units and their proton conductivity. Tungsten 2023, 5, 67–74.

[26]

Guo, H. L.; Xing, X. X.; Mao, S. X.; Feng, T.; Fan, Y. H.; Qin, Z. J.; Pang, J. Y.; Bai, Y.; Dang, D. B. Two three-dimensional Fe(II) frameworks based on {P4Mo6} tetrameric clusters exhibiting efficient visible-light photocatalytic properties for the degradation of Cr(VI) and methylene blue. Dalton Trans. 2022, 51, 18090–18098.

[27]

Liu, X. D.; Xu, N.; Liu, X. H.; Guo, Y. Y.; Wang, X. L. A new {P4Mo6}-based complex as a highly efficient heterogeneous catalyst for the oxidation of alkylbenzenes under mild conditions. CrystEngComm 2024, 26, 364–369.

[28]

Li, N. F.; Li, C.; Zhou, J. L.; Xiang, X. Y.; Wang, J. L.; Xu, Y. Construction of Co/Ni-modified P4Mo6 compounds for photocatalytic CO2 conversion. J. Mol. Struct. 2024, 1298, 137105.

[29]

Yin, X. Y.; Bi, H. X.; Song, H.; He, J. Y.; Ma, Y. Y.; Fang, T. T.; Han, Z. G. Photoactive hourglass-type M{P4Mo6}2 networks for efficient removal of hexavalent chromium. Polyoxometalates 2023, 2, 9140027.

[30]

Wang, X. L.; Liu, X. D.; Xu, N.; Liu, X. H.; Guo, Y. Y.; Zhang, X. Y.; Li, X. H. An important photocatalysis oxidation: Selective oxidation of aniline to azobenzene over a {P4Mo6}-based crystalline catalyst under visible-light irradiation at room temperature. Inorg. Chem. 2023, 62, 12181–12186.

[31]

Wang, X. T.; Mao, W. J.; Song, Y. J.; Meng, F. X.; Hu, X. L.; Liu, B. L.; Su, Z. M. Hourglass-type polyoxometalate-based crystalline material as an efficient proton-conducting solid electrolyte. Inorg. Chem. 2021, 60, 18912–18917.

[32]

Hou, L.; Zhang, Y. Q.; Ma, Y. Y.; Wang, Y. L.; Hu, Z. F.; Gao, Y. Z.; Han, Z. G. Reduced phosphomolybdate hybrids as efficient visible-light photocatalysts for Cr(VI) reduction. Inorg. Chem. 2019, 58, 16667–16675.

[33]

Yin, X. Y.; Zhang, Y. Q.; Ma, Y. Y.; He, J. Y.; Song, H.; Han, Z. G. Bifunctional sensors based on phosphomolybdates for detection of inorganic hexavalent chromium and organic tetracycline. Inorg. Chem. 2022, 61, 13174–13183.

[34]

Du, J.; Ma, Y. Y.; Xin, X.; Na, H.; Zhao, Y. N.; Tan, H. Q.; Han, Z. G.; Li, Y. G.; Kang, Z. H. Reduced polyoxometalates and bipyridine ruthenium complex forming a tunable photocatalytic system for high efficient CO2 reduction. Chem. Eng. J. 2020, 398, 125518.

[35]

Han, Z. G.; Xin, X.; Zheng, R.; Yu, H. T. Influence of Pb element on the catalytic properties of {P4Mo6}-polyoxometalate for redox reactions. Dalton Trans. 2018, 47, 3356–3365.

[36]

Xie, S. L.; Liu, J.; Dong, L. Z.; Li, S. L.; Lan, Y. Q.; Su, Z. M. Hetero-metallic active sites coupled with strongly reductive polyoxometalate for selective photocatalytic CO2-to-CH4 conversion in water. Chem. Sci. 2019, 10, 185–190.

[37]

Guo, H. L.; Wang, Y. K.; Qu, X. J.; Li, H. Y.; Yang, W.; Bai, Y.; Dang, D. B. Three-dimensional interpenetrating frameworks based on {P4Mo6} tetrameric clusters and filled with in situ generated alkyl viologens. Inorg. Chem. 2020, 59, 16430–16440.

[38]

Li, Y. J.; Zhu, N.; Su, Z. X.; Hu, X. L.; Dou, Z. Y.; Su, Z. M. An hourglass-shaped nickel-based polyoxometalate crystalline material as a highly efficient bifunctional electrocatalyst for the oxygen evolution reaction and detection of H2O2. Inorg. Chem. Front. 2024, 11, 2598–2607.

[39]

Liu, Y. H.; Cui, L. P.; Yu, K.; Wang, M. L.; Ma, Y. J.; Lv, J. H.; Liu, X. Z.; Zhou, B. B. The reduced phosphomolybdate as dual-functional electrocatalyst and electrochemical sensor for detecting hydrogen peroxide and dopamine. J. Solid State Chem. 2022, 312, 123209.

[40]

Wang, X. X.; Wang, J. J.; Geng, Z. K.; Qian, Z.; Han, Z. G. Phosphomolybdate assembly as a low-cost catalyst for the reduction of toxic Cr(VI) in aqueous solution. Dalton Trans. 2017, 46, 7917–7925.

[41]

Wu, P. F.; Wang, Y.; Huang, B.; Xiao. Z. C. Anderson-type polyoxometalates: From structures to functions. Nanoscale. 2021, 13, 7119–7133.

[42]

Li, A.-J.; Huang, S.-L.; Yang, G.-Y. Anderson-type polyoxometalates for catalytic applications. Dalton Trans. 2023, 52, 18133–18136.

[43]

Zhuang, Q.-H.; Sun, Z.-Q.; Lin, C.-G.; Qi. B.; Song, Y.-F. Latest progress in asymmetrically functionalized Anderson-type polyoxometalates. Inorg. Chem. Front. 2023, 10, 1695–1711.

[44]

Shi, F. N.; Paz, F. A. A.; Girginova, P. I.; Nogueira, H. I. S.; Rocha, J.; Amaral, V. S.; Klinowski, J.; Trindade, T. A novel cobalt(II)-molybdenum(V) phosphate organic-inorganic hybrid polymer. J. Solid State Chem. 2006, 179, 1497–1505.

[45]

Li, J. N.; Du, Z. Y.; Li, N. F.; Han, Y. M.; Zang, T. T.; Yang, M. X.; Liu, X. M.; Wang, J. L.; Mei, H.; Xu, Y. Two three-dimensional polyanionic clusters [M(P4Mo6)2] (M = Co, Zn) exhibiting excellent photocatalytic CO2 reduction performance. Dalton Trans. 2021, 50, 9137–9143.

[46]

Liu, X. M.; Kang, R. K.; Wang, J. L.; Li, J. N.; Chen, Q. L.; Xu, Y. A purely inorganic Quasi-Keggin polyoxometalate for photocatalytic conversion of carbon dioxide to carbon monoxide. ChemPlusChem 2021, 86, 1014–1020.

[47]

Du, D. Y.; Qin, J. S.; Wang, C. G.; Liu, X. C.; Li, S. L.; Su, Z. M.; Wang, X. L.; Lan, Y. Q.; Wang, E. B. Redox-active polyoxometalate-based crystalline material-immobilized noble metal nanoparticles: Spontaneous reduction and synergistic catalytic activity. J. Mater. Chem. 2012, 22, 21040–21044.

[48]

Streb, C.; Long, D. L.; Cronin, L. Influence of organic amines on the self-assembly of hybrid polyoxo-molybdenum(V) phosphate frameworks. CrystEngComm 2006, 8, 629–634.

[49]

Liu, X. Z.; Lin, B. Z.; He, L. W.; Huang, X. F.; Chen, Y. L. Synthesis and characterization of new two-dimensional molybdenum(V) phosphates: (Hen)6[M2(H2O)Mo12O24(OH)6(H2PO4)3(HPO4)4(PO4)]·4H2O (M= K, Na). J. Mol. Struct. 2008, 877, 72–78.

[50]

Zhang, Y. Q.; Zhou, L. Y.; Ma, Y. Y.; Dastafkan, K.; Zhao, C.; Wang, L. Z.; Han, Z. G. Stable monovalent aluminum(I) in a reduced phosphomolybdate cluster as an active acid catalyst. Chem. Sci. 2021, 12, 1886–1890.

[51]

Tian, X. R.; Hou, L.; Wang, J. J.; Xin, X.; Zhang, H.; Ma, Y. Y.; Wang, Y. L.; Zhang, L. N.; Han, Z. G. Novel fully reduced phosphomolybdates for highly efficient removal of inorganic hexavalent chromium and the organic dye methylene blue. Dalton Trans. 2018, 47, 15121–15130.

[52]

Xin, X.; Tian, X. R.; Yu, H. T.; Han, Z. G. Synthesis of hybrid phosphomolybdates and application as highly stable and effective catalyst for the reduction of Cr(VI). Inorg. Chem. 2018, 57, 11474–11481.

[53]

Tian, X. R.; Zhang, Y. Q.; Ma, Y. Y.; Zhao, Q.; Han, Z. G. Hourglass-type polyoxometalate-based crystalline materials as efficient cooperating photocatalysts for the reduction of Cr(VI) and oxidation of dyes. Catal. Sci. Technol. 2020, 10, 2593–2601.

[54]

Wang, X. L.; Cao, J. J.; Liu, G. C.; Lin, H. Y.; Tian, A. X. Ligands directed versatile cadmium-bis(triazole) metal-organic fragments to generate three new two dimensional complexes based on polymolybdenum phosphate. Inorg. Chim. Acta. 2013, 402, 6–11.

[55]

Chang, W. J.; Jiang, Y. C.; Wang, S. L.; Lii, K. H. Hydrothermal synthesis of a three-dimensional organic-inorganic hybrid network formed by poly(oxomolybdophosphate) anions and nickel coordination cations. Inorg. Chem. 2006, 45, 6586–6588.

[56]

Ma, Y.; Li, Y. G.; Wang, E. B.; Lu, Y.; Wang, X. L.; Xu, X. X. Self-assembly of four new extended architectures based on reduced polyoxometalate clusters and cadmium complexes. J. Solid State Chem. 2006, 179, 2367–2375.

[57]

Du, D. Y.; Qin, J. S.; Wang, T. T.; Li, S. L.; Su, Z. M.; Shao, K. Z.; Lan, Y. Q.; Wang, X. L.; Wang, E. B. Polyoxometalate-based crystalline tubular microreactor: Redox-active inorganic-organic hybrid materials producing gold nanoparticles and catalytic properties. Chem. Sci. 2012, 3, 705–710.

[58]

Du, D. Y.; Qin, J. S.; Li, Y. G.; Li, S. L.; Lan, Y. Q.; Wang, X. L.; Shao, K. Z.; Su, Z. M.; Wang, E. B. An unprecedented 3D 8-connected pure inorganic framework based on nanosized {[Na12PO16H24] [P4Mo6O31H6]4}15-clusters and zinc cations. Chem. Commun. 2011, 47, 2832–2834.

[59]

Dong, Y. Y.; Dong, Z. M.; Zhang, Z. B.; Liu, Y. H.; Cheng, W. W.; Miao, H.; He, X. X.; Xu, Y. POM constructed from super-sodalite cage with extra-large 24-membered channels: Effective sorbent for uranium adsorption. ACS Appl. Mater. Interfaces 2017, 9, 22088–22092.

[60]

Zhang, X.; Yi, Z. H.; Zhao, L. Y.; Chen, Q.; Wang, X. L.; Xu, J. Q.; Xia, W. J.; Yang, C. pH-dependent assembly of a series of inorganic-organic hybrid molybdenum(V) phosphate. CrystEngComm 2010, 12, 595–603.

[61]

Wei, C. X.; Chen, J. X.; Huang, Y. B.; Lan, T. Y.; Li, Z. S.; Zhang, W. J.; Zhang, Z. C. Syntheses, structures and properties of two molybdenum phosphates [(H20P8MoV12CdO62)-(C4H14N3)2]·2C4H13N3·8H2O and [(H2P2MoVI5O23)(C4H14N3)-(C4H15N3)(H3O)]·3H2O. J. Mol. Struct. 2006, 798, 117–125.

[62]

Yu, K.; Chen, W. L.; Zhou, B. B.; Li, Y. G.; Yu, Y.; Su, Z. H.; Gao, S.; Chen, Y. New extended poly(oxomolybdophosphates) based on strontium(II) linkers. CrystEngComm 2011, 13, 3417–3424.

[63]

Bi, H. X.; Yin, X. Y.; He, J. Y.; Song, H.; Lu, S. J.; Ma, Y. Y.; Han, Z. G. Conjugated organic component-functionalized hourglass-type phosphomolybdates for visible-light photocatalytic Cr(VI) reduction in wide pH range. Rare Met. 2023, 42, 3638–3650.

[64]

Benseghir, Y.; Solé-Daura, A.; Mialane, P.; Marrot, J.; Dalecky, L.; Béchu, S.; Frégnaux, M.; Gomez-Mingot, M.; Fontecave, M.; Mellot-Draznieks, C. et al. Understanding the photocatalytic reduction of CO2 with heterometallic molybdenum(V) phosphate polyoxometalates in aqueous media. ACS Catal. 2021, 12, 453–464.

[65]

Bi, H. X.; Yin, X. Y.; Zhang, X. J.; Ma, Y. Y.; Han, Z. G. Efficient visible-light-driven reduction of hexavalent chromium catalyzed by conjugated organic species modified hourglass-type phosphomolybdate hybrids. CrystEngComm 2022, 24, 1002–1009.

[66]

Zhang, Y. Q.; Hou, L.; Bi, H. X.; Fang, X. X.; Ma, Y. Y.; Han, Z. G. Organic moiety-regulated photocatalytic performance of phosphomolybdate hybrids for hexavalent chromium reduction. Chem. Asian J. 2021, 16, 1584–1591.

[67]

Li, K.; Liu, T.; Ying, J.; Tian, A. X.; Wang, X. L. Recent research progress on polyoxometalate-based electrocatalysts in energy generation. J. Mater. Chem. A 2024, 12, 13576–13604.

[68]

Ma, T.; Yan, R.; Wu, X. Z.; Wang, M.; Yin, B.; Li, S.; Cheng, C.; Thomas, A. Polyoxometalate-structured materials: Molecular fundamentals and electrocatalytic roles in energy conversion. Adv. Mater. 2024, 36, 2310283.

[69]

Bromberg, L.; Ozbek, N.; Tan, K. J.; Su, X.; Padhye, L. P.; Alan Hatton, T. Iron phosphomolybdate complexes in electrocatalytic reduction of aqueous disinfection byproducts. Chem. Eng. J. 2021, 408, 127354.

[70]

Mondal, B.; Jana, A.; Roy, J.; Mata, A. C.; Nair, A. S.; Mahendranath, A.; Roy, S.; Pathak, B.; Ajayan, P. M.; Pradeep, T. Structure and electrocatalytic performance of cocrystallized ternary molybdenum oxosulfide clusters for efficient water splitting. ACS Mater. Lett. 2023, 5, 3306–3315.

[71]

Kajal, N.; Singh, V.; Gupta, R.; Gautam, S. Metal organic frameworks for electrochemical sensor applications: A review. Environ. Res. 2022, 204, 112320.

[72]

Kempahanumakkagari, S.; Vellingiri, K.; Deep, A.; Kwon, E. E.; Bolan, N.; Kim, K.-H. Metal-organic framework composites as electrocatalysts for electrochemical sensing applications. Coord. Chem. Rev. 2018, 357, 105–129.

[73]

Wang, D.; Liu, L. L.; Jiang, J.; Chen, L. J.; Zhao, J. W. Polyoxometalate-based composite materials in electrochemistry: State-of-the-art progress and future outlook. Nanoscale. 2020, 12, 5705–5718.

[74]

Zhang, X. X.; Bao, Y. Y.; Bai, Y. F.; Chen, Z. Z.; Li, J.; Feng, F. In situ electrochemical reduction assisted assembly of a graphene-gold nanoparticles@polyoxometalate nanocomposite film and its high response current for detection of hydrogen peroxide. Electrochim. Acta 2019, 300, 380–388.

[75]

Xing, R. M.; Tong, L. Y.; Zhao, X. Y.; Liu, H. L.; Ma, P. T.; Zhao, J. W.; Liu, X. Q.; Liu S. H. Rapid and sensitive electrochemical detection of myricetin based on polyoxometalates/SnO2/gold nanoparticles ternary nanocomposite film electrode. Sens. Actuators B: Chem. 2019, 283, 35–41.

[76]

Zhang, L. H.; Wang, Q. W.; Qi, Y.; Li, L.; Wang, S. T.; Wang, X. H. An ultrasensitive sensor based on polyoxometalate and zirconium dioxide nanocomposites hybrids material for simultaneous detection of toxic clenbuterol and ractopamine. Sens. Actuators B: Chem. 2019, 288, 347–355.

[77]

Wang, Y. L.; Ma, Y. Y.; Zhao, Q.; Hou, L.; Han, Z. G. Polyoxometalate-based crystalline catalytic materials for efficient electrochemical detection of Cr(VI). Sens. Actuators B: Chem. 2020, 305, 127469.

[78]

An, W. T.; Zhang, X. J.; Niu, J. Q.; Ma, Y. Y.; Han, Z. G. Unusual hexa-nuclear cadmium cluster functionalized phosphomolybdate as effective photoelectrochemical sensor for trace Cr(VI) detection. Chin. Chem. Lett. 2022, 33, 4400–4404.

[79]

Song, H.; Guo, M. S.; Wang, J. F.; Liu, Y. Q.; Bi, H. X.; Du, J.; An, W. T.; Ma, Y. Y.; Han, Z. G. Reduced phosphomolybdate as photoassisted electrochemical crystalline sensor for trace Cr(VI) detection. Polyoxometalates 2024, 3, 9140065.

[80]

Wang, J. L.; Xu, N.; Chang, Z. H.; Wang, X. L. {P4Mo6}-based complex modified by graphite applied in electrochemical ultra-trace detection of nitro-antibiotics under strongly acidic conditions. Cryst. Growth Des. 2023, 23, 694–703.

[81]

Li, B.; Meng, Y. X.; Liu, Q. Q.; Chen, X. Y.; Liu, X.; Zang, H. Y. The assembly of [Mo2O2S2]2+ based on polydentate phosphonate templates and their proton conductivity. Chem. Commun. 2023, 59, 13446–13449.

[82]

Yang, L.; Ma, P. T.; Zhou, Z.; Wang, J. P.; Niu, J. Y. A crown-shaped 24-molybdate cluster constructed by organotriphosphonate ligand. Inorg. Chem. 2013, 52, 8285–8287.

[83]

Tong, X.; Wu, X. F.; Wu, Q. Y.; Zhu, W. M.; Cao, F. H.; Yan, W. F. Pentadecatungstotrivanadodiphosphoric heteropoly acid with Dawson structure: Synthesis, conductivity and conductive mechanism. Dalton Trans. 2012, 41, 9893–9896.

[84]

Li, S. R.; Liu, W. D.; Long, L. S.; Zheng, L. S.; Kong, X. J. Recent advances in polyoxometalate-based lanthanide-oxo clusters. Polyoxometalates 2023, 2, 9140022.

[85]

Nakamura, O.; Kodama, T.; Ogino, I.; Miyake, Y. High-conductivity solid proton conductors: Dodecamolybdophosphoric acid and dodecatungstophosphoric acid crystals. Chem. Lett. 1979, 8, 17–18.

[86]

Inukai, M.; Horike, S.; Itakura, T.; Shinozaki, R.; Ogiwara, N.; Umeyama, D.; Nagarkar, S.; Nishiyama, Y.; Malon, M.; Hayashi, A. et al. Encapsulating mobile proton carriers into structural defects in coordination polymer crystals: High anhydrous proton conduction and fuel cell application. J. Am. Chem. Soc. 2016, 138, 8505–8511.

[87]

Yang, P.; Alsufyani, M.; Emwas, A. H.; Chen, C. Q.; Khashab, N. M. Lewis acid guests in a {P8W48} archetypal polyoxotungstate host: Enhanced proton conductivity via metal-oxo cluster within cluster assemblies. Angew. Chem. 2018, 130, 13230–13235.

[88]

Li, Z.; Lin, L. D.; Yu, H.; Li, X. X.; Zheng, S. T. All-inorganic ionic porous material based on giant spherical polyoxometalates containing core-shell K6@K36-water cage. Angew. Chem., Int. Ed. 2018, 57, 15777–15781.

[89]

Zhang, S.; Lu, Y.; Sun, X. W.; Li, Z.; Dang, T. Y.; Zhang, Z.; Tian, H. R.; Liu, S. X. Purely inorganic frameworks based on polyoxometalate clusters with abundant phosphate groups: Single-crystal to single-crystal structural transformation and remarkable proton conduction. Chem. Commun. 2020, 56, 391–394.

[90]

Du, Z. Y.; Chen, Z.; Kang, R. K.; Han, Y. M.; Ding, J.; Cao, J. P.; Jiang, W.; Fang, M.; Mei, H.; Xu, Y. Two 2D layered P4Mo6 clusters with potential bifunctional properties: Proton conduction and CO2 photoreduction. Inorg. Chem. 2020, 59, 12876–12883.

[91]

Yin, X. K.; Zhang, Z. C.; Yao, K. Q.; Xu, X. X.; Wang, Y. Hydrophobic POM electrocatalyst achieves low voltage “Charge” in Zn-air battery coupled with bisphenol A degradation. Chem.—Eur. J. 2021, 27, 8774–8781.

[92]

Wang, L. S.; Dong, B. C.; Xu, X. X.; Wang, Y. Molybdophosphate derived MoP based electrocatalyst as cathode for Sn–H+ battery to generate H2 and electricity simultaneously. J. Solid State Chem. 2019, 277, 602–610.

[93]

Li, B.; Kong, D. R.; Liu, L. H.; Yang, M.; Zhang, X. F.; Deng, Z. P.; Huo, L. H.; Gao, S. Facile synthesis of copper and carbon co-doped peanut shell-like Mo2C/Mo3P electrocatalysts for ultra-sensitive amperometric detection of hydrogen peroxide. Microchem. J. 2022, 181, 107795.

[94]

Cui, X. L.; Tao, Y. X.; Xu, X. X.; Yang, G. P. P-doping optimized d-band center position in MoO2 with enhanced oxygen reduction reaction and oxygen evolution reaction activities for rechargeable Zn-air battery. J. Power Sources 2023, 557, 232519.

[95]

Zheng, Y.; Xu, X. X.; Chen, J.; Wang, Q. Surface O2- regulation on POM electrocatalyst to achieve accurate 2e/4e-ORR control for H2O2 production and Zn-air battery assemble. Appl. Catal. B: Environ. 2021, 285, 119788.

[96]

Niu, J. Q.; Geng, C. Y.; Liu, X. Q.; O'Mullane, A. P. Transformation of a new polyoxometalate into multi-metal active sites on ZIF-derived carbon nanotubes as bifunctional cathode catalyst and dendrite-free anode coating for Zn-air batteries. Chem. Eng. J. 2023, 468, 143607.

[97]

He, J. Y.; Bi, H. X.; Liu, Y. Q.; Guo, M. S.; An, W. T.; Ma, Y. Y.; Han, Z. G. Bridging component strategy in phosphomolybdate-based sensors for electrochemical determination of trace Cr(VI). Inorg. Chem. 2024, 63, 842–851.

[98]

Wang, X. L.; Cao, J. J.; Liu, G. C.; Tian, A. X.; Li, N.; Luan, J. A multifunctional reduced molybdophosphate-based 3D metal-organic framework induced by a rigid triazole and a flexible bis(triazole) mixed ligand. Inorg. Chem. Commun. 2014, 47, 108–111.

[99]

Li, W.; Zhu, J. N.; Shen, N. N.; Xiong, W. W.; Huang, X. Y. Assembling [M(P4Mo6)2] (M = Na, Mn, Na/Cu) dimeric clusters via transition metal/sodium ions into 0D to 3D phosphomolybdates. CrystEngComm 2019, 21, 971–980.

[100]

Wang, W. J.; Han, Z. G.; Wang, X. X.; Zhao, C.; Yu, H. T. Polyanionic clusters [M(P4Mo6)2] (M = Ni, Cd) as effective molecular catalysts for the electron-transfer reaction of ferricyanide to ferrocyanide. Inorg. Chem. 2016, 55, 6435–6442.

[101]

Yan, D. W.; Fu, J.; Zheng, L.; Zhang, Z. B.; Xu, Y.; Zhu, X. L.; Zhu, D. R. Effects of organoamine template and transition metal coordination mode on the self-assembly of reduced polyoxomolybdenum phosphate. CrystEngComm 2011, 13, 5133–5141.

[102]

Cao, J. P.; Ren, Y. H.; Ding, H. X.; Shang, J. N.; Yue, B.; He, H. Y. {(P4Mo6)2Zn}-based hybrid: Synthesis, structure, and proton conductivity. Inorg. Chem. Commun. 2023, 155, 111053.

[103]

Zhang, H.; Yu, K.; Lv, J. H.; Wang, C. M.; Wang, C. X.; Zhou, B. B. Assembly of three organic-inorganic hybrid supramolecular materials based on reduced molybdenum(V) phosphates. J. Solid State Chem. 2014, 217, 22–30.

[104]

Wang, J. L.; Liu, X. H.; Chang, Z. H.; Xu, N.; Wang, X. L. Two new manganese-based phosphomolybdate compounds as electrochemical sensors for the highly sensitive trace determination of heavy metal Cr(VI) ions. CrystEngComm 2023, 25, 3953–3958.

[105]

Zhang, Y. N.; Zhou, B. B.; Sha, Q. Q.; Su, Z. H.; Liu, H. A new three-dimensional 4,8-connected inorganic open framework based on manganese phosphomolybdate with (41261284)(46)2 topology. Inorg. Chem. Commun. 2010, 13, 550–553.

[106]

Zhang, L. J.; Zhou, Y. S.; Li, X. Q.; Li, Y. H. Coordination chemistry of the magic inorganic building block {FeII[Mo6P4O31]2}: Hydrothermal synthesis and crystal structure of a new reduced ferrous molybdophosphate. J. Clust. Sci. 2007, 18, 921–933.

[107]

He, X.; Zhang, P.; Song, T. Y.; Mu, Z. C.; Yu, J. H.; Wang, Y.; Xu, J. N. Hydrothermal synthesis and structure of a molybdenum(VI) phosphate cluster and a three dimensional cobalt molybdenum(V) phosphate. Polyhedron 2004, 23, 2153–2159.

[108]

Xu, X. X.; Zhang, X.; Liu, X. X.; Sun, T.; Wang, Y. H. Self-assembly of reduced molybdophosphate-based supramolecular architectures and the study of their magnetic properties. Transition Met. Chem. 2009, 34, 571–577.

[109]

Ma, Y.; Li, Y. G.; Wang, E. B.; Lu, Y.; Wang, X. L.; Xu, X. X. Synthesis and characterization of two new inorganic-organic hybrid cobalt molybdenum(V) phosphates. J. Coord. Chem. 2007, 60, 719–732.

[110]

Xin, X.; Hu, N.; Ma, Y. Y.; Wang, Y. L.; Hou, L.; Zhang, H.; Han, Z. G. Polyoxometalate-based crystalline materials as a highly sensitive electrochemical sensor for detecting trace Cr(VI). Dalton Trans. 2020, 49, 4570–4577.

[111]

Lin, B. Z.; Liu, X. Z.; Xu, B. H.; Wang, Q. Q.; Xiao, Z. J. Two new molybdenum(V) phosphates containing sandwich-shaped clusters with zero- and three-dimensional structures. Solid State Sci. 2008, 10, 1517–1524.

[112]

Geng, C. Y.; Niu, J. Q.; Zhao, D.; Jin, X. X.; Liu, J. J.; Liu, X. Q.; Wong, D. K. Y. Evaluation of electrocatalysis of hourglass-shaped polyoxometallates with different transition metals towards hydrogen peroxide transformed from superoxide radicals in living cell mitochondria. Chem. Eng. J. 2023, 475, 146302.

[113]

Zhang, H.; Yu, K.; Li, J. S.; Wang, C. M.; Lv, J. H.; Chen, Z. Y.; Cai, H. H.; Zhou, B. B. The highest connected pure inorganic 3D framework assembled by {P4Mo6} cluster and alkali metal potassium. RSC Adv. 2015, 5, 3552–3559.

[114]

Wang, X. L.; Cao, J. J.; Hou, J. L.; Liu, G. C.; Zhao, D.; Liu, X. J.; Li, N.; Tian, A. X. One inorganic-organic hybrid derived from reduced molybdophosphate and trinuclear cadmium(II) fragment. Chin. Chem. Lett. 2013, 24, 877–880.

[115]

Guo, H. X.; Liu, S. X. Hydrothermal synthesis and crystal structure of a novel 1D molybdenum(V) phosphate with mixed-valence cobalt coordination cations. J. Mol. Struct. 2005, 741, 229–234.

[116]

Ma, Y.; Li, Y. G.; Wang, E. B.; Lu, Y.; Qin, C.; Xu, X. X. Syntheses, structure characterizations and fluorescent properties of two reduced molybdenum (V) phosphates functionalized by zinc coordination complexes. J. Clust. Sci. 2006, 17, 167–181.

[117]

De, Q.; Xu, X. X. Building polyoxometalate “Nano-Walls” on 3D porous carbon paper: A solar steam generation system for water purification. Chem.—Eur. J. 2020, 26, 7923–7929.

[118]

Guo, Y. Y.; Liu, X. H.; Du, L.; Xiao, R.; Xu, N.; Wang, X. L. Three-dimensional nickel-containing phosphomolybdate supramolecular networks: A multifunctional platform for organic catalysis and electrocatalysis. Polyhedron 2024, 253, 116912.

Polyoxometalates
Article number: 9140071
Cite this article:
Deng W, Zhu Z, Sun Y, et al. Recent advances in {P4Mo6}-based polyoxometalates. Polyoxometalates, 2024, 3(4): 9140071. https://doi.org/10.26599/POM.2024.9140071

360

Views

54

Downloads

0

Crossref

Altmetrics

Received: 01 April 2024
Revised: 21 May 2024
Accepted: 13 June 2024
Published: 02 September 2024
© The Author(s) 2024. Published by Tsinghua University Press.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the original author(s) and the source, provide a link to the license, and indicate if changes were made. See http://creativecommons.org/licenses/by/4.0/

Return