AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (4.8 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Single-molecule manipulation of copper nanoclusters for modulating nonlinear optics

Xuekun Gong1,§Zhuang-Hua Liu2,§Qinghua Xu1,§Lin Wang2Qingxiang Guo3Jian Zhang2Qiao-Hong Li2 ( )Wei-Hui Fang2 ( )Hui Shen1 ( )
College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
College of Chemical Engineering, Inner Mongolia University of Technology, Hohhot 010051, China

§Xuekun Gong, ZhuangHua Liu, and Qinghua Xu contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

The detailed elucidation of structure–property relationships at the molecular level in metal nanoclusters is highly valuable for advancing structure design and optimizing performance. However, effectively manipulating metal nanoclusters’ physical and chemical properties at the single-molecule level remains a significant challenge. Here, we demonstrate that single-molecule chemistry can effectively control the third-order nonlinear optical (NLO) performance of structurally precise copper nanoclusters. We present two analogous clusters, [Cu25(RS)18H10]3− (Cu25) and [Cu26(RS)18H10(PPh3)]2− (Cu26, where RSH is 2-fluorobenzenethiol), whose structures were determined in this study. Both clusters feature a Cu13 core in a centered cuboctahedron configuration with similar shell structures. However, Cu26 includes an additional PPh3Cu+ unit. This single structural difference significantly changes their properties, including optical characteristics and stability. Compared to Cu25, Cu26 exhibits enhanced optical limiting (OL) activity. Theoretical calculations indicate that the substantial electron transfer from the PPh3 ligand to the metal core enhances the NLO performance of Cu26. This study highlights the potential of structurally precise copper nanoclusters as OL materials and advances the understanding of nanoparticulate material fabrication using a single-molecule strategy.

Electronic Supplementary Material

Download File(s)
0072_ESM.pdf (2.1 MB)

References

[1]

Gao, C. B.; Lyu, F.; Yin, Y. D. Encapsulated metal nanoparticles for catalysis. Chem. Rev. 2021, 121, 834–881.

[2]

Xie, C. L.; Niu, Z. Q.; Kim, D.; Li, M. F.; Yang, P. D. Surface and interface control in nanoparticle catalysis. Chem. Rev. 2020, 120, 1184–1249.

[3]

Zeng, H.; Li, J.; Liu, J. P.; Wang, Z. L.; Sun, S. H. Exchange-coupled nanocomposite magnets by nanoparticle self-assembly. Nature 2002, 420, 395–398.

[4]

Bell, A. T. The impact of nanoscience on heterogeneous catalysis. Science 2003, 299, 1688–1691.

[5]

Cai, Y. Y.; Choi, Y. C.; Kagan, C. R. Chemical and physical properties of photonic noble-metal nanomaterials. Adv. Mater. 2023, 35, 2108104.

[6]

Wu, G.; Zheng, X. S.; Cui, P. X.; Jiang, H. Y.; Wang, X. Q.; Qu, Y. T.; Chen, W. X.; Lin, Y.; Li, H.; Han, X. et al. A general synthesis approach for amorphous noble metal nanosheets. Nat. Commun. 2019, 10, 4855.

[7]

Chen, Y.; Lai, Z. C.; Zhang, X.; Fan, Z. X.; He, Q. Y.; Tan, C. L.; Zhang, H. Phase engineering of nanomaterials. Nat. Rev. Chem. 2020, 4, 243–256.

[8]

Liu, P. X.; Qin, R. X.; Fu, G.; Zheng, N. F. Surface coordination chemistry of metal nanomaterials. J. Am. Chem. Soc. 2017, 139, 2122–2131.

[9]

Dieperink, M.; Scalerandi, F.; Albrecht, W. Correlating structure, morphology and properties of metal nanostructures by combining single-particle optical spectroscopy and electron microscopy. Nanoscale 2022, 14, 7460–7472.

[10]

Owen, J. The coordination chemistry of nanocrystal surfaces. Science 2015, 347, 615–616.

[11]

Jin, R. C.; Pei, Y.; Tsukuda, T. Controlling nanoparticles with atomic precision. Acc. Chem. Res. 2019, 52, 1.

[12]

Konishi, K.; Iwasaki, M.; Shichibu, Y. Phosphine-ligated gold clusters with core+exo geometries: Unique properties and interactions at the ligand-cluster interface. Acc. Chem. Res. 2018, 51, 3125–3133.

[13]

Sharma, S.; Chakrahari, K. K.; Saillard, J. Y.; Liu, C. W. Structurally precise dichalcogenolate-protected copper and silver superatomic nanoclusters and their alloys. Acc. Chem. Res. 2018, 51, 2475–2483.

[14]

Jin, R. C.; Zeng, C. J.; Zhou, M.; Chen, Y. X. Atomically precise colloidal metal nanoclusters and nanoparticles: Fundamentals and opportunities. Chem. Rev. 2016, 116, 10346–10413.

[15]

Jing, W. T.; Shen, H.; Qin, R. X.; Wu, Q. Y.; Liu, K. L.; Zheng, N. F. Surface and interface coordination chemistry learned from model heterogeneous metal nanocatalysts: From atomically dispersed catalysts to atomically precise clusters. Chem. Rev. 2023, 123, 5948–6002.

[16]

Jadzinsky, P. D.; Calero, G.; Ackerson, C. J.; Bushnell, D. A.; Kornberg, R. D. Structure of a thiol monolayer-protected gold nanoparticle at 1.1 Å resolution. Science 2007, 318, 430–433.

[17]

Liu, L. J.; Wang, Z. Y.; Wang, Z. Y.; Wang, R.; Zang, S. Q.; Mak, T. C. W. Mediating CO2 electroreduction activity and selectivity over atomically precise copper clusters. Angew. Chem., Int. Ed. 2022, 61, e202205626.

[18]

Bao, Y. Z.; Wu, X. H.; Yin, B.; Kang, X.; Lin, Z. D.; Deng, H. J.; Yu, H. Z.; Jin, S.; Chen, S.; Zhu, M. Z. Structured copper-hydride nanoclusters provide insight into the surface-vacancy-defect to non-defect structural evolution. Chem. Sci. 2022, 13, 14357–14365.

[19]

Sun, X. L.; Tang, X. K.; Gao, Y. L.; Zhao, Y. J.; Wu, Q. Y.; Cao, D. X.; Shen, H. An atomically precise Ag18Cu8 nanocluster with rich alkynyl-metal coordination structures and unique SbF6- assembling modes. Nanoscale 2023, 15, 2316–2322.

[20]

Ji, S. Y.; Peng, D.; Sun, F.; You, Q.; Wang, R. G.; Yan, N.; Zhou, Y.; Wang, W. Y.; Tang, Q.; Xia, N. et al. Coexistent, competing tunnelling, and hopping charge transport in compressed metal nanocluster crystals. J. Am. Chem. Soc. 2023, 145, 24012–24020.

[21]

Matus, M. F.; Häkkinen, H. Understanding ligand-protected noble metal nanoclusters at work. Nat. Rev. Mater. 2023, 8, 372–389.

[22]

Yao, Q. F.; Yuan, X.; Chen, T. K.; Leong, D. T.; Xie, J. P. Engineering functional metal materials at the atomic level. Adv. Mater. 2018, 30, 1802751.

[23]

Li, Y. L.; Wang, J.; Luo, P.; Ma, X. H.; Dong, X. Y.; Wang, Z. Y.; Du, C. X.; Zang, S. Q.; Mak, T. C. W. Cu14 cluster with partial Cu(0) character: Difference in electronic structure from isostructural silver analog. Adv. Sci. (Weinh.) 2019, 6, 1900833.

[24]

Wei, X.; Lv, Y.; Shen, H. L.; Li, H.; Kang, X.; Yu, H. Z.; Zhu, M. Z. Secondary ligand engineering of nanoclusters: Effects on molecular structures, supramolecular aggregates, and optical properties. Aggregate 2023, 4, e246.

[25]

Chakrahari, K. K.; Liao, J. H.; Kahlal, S.; Liu, Y. C.; Chiang, M. H.; Saillard, J.; Liu, C. W. [Cu13{S2CN n Bu2}6(acetylide)4]+: A two-electron superatom. Angew. Chem., Int. Ed. 2016, 55, 14704–14708.

[26]

Dhayal, R. S.; Liao, J. H.; Wang, X. P.; Liu, Y. C.; Chiang, M.; Kahlal, S.; Saillard, J. Y.; Liu, C. W. Diselenophosphate-induced conversion of an achiral [Cu20H11{S2P(O i Pr)2}9] into a Chiral [Cu20H11{Se2P(O i Pr)2}9] polyhydrido nanocluster. Angew. Chem., Int. Ed. 2015, 54, 13604–13608.

[27]

Dong, C. W.; Huang, R. W.; Sagadevan, A.; Yuan, P.; Gutiérrez-Arzaluz, L.; Ghosh, A.; Nematulloev, S.; Alamer, B.; Mohammed, O. F.; Hussain, I. et al. Isostructural nanocluster manipulation reveals pivotal role of one surface atom in click chemistry. Angew. Chem., Int. Ed. 2023, 62, e202307140.

[28]

Gunawardene, P. N.; Martin, J.; Wong, J. M.; Ding, Z. F.; Corrigan, J. F.; Workentin, M. S. Controlling the structure, properties and surface reactivity of clickable azide-functionalized Au25(SR)18 nanocluster platforms through regioisomeric ligand modifications. Angew. Chem., Int. Ed. 2022, 61, e202205194.

[29]

Kang, X.; Wang, S. X.; Song, Y. B.; Jin, S.; Sun, G. D.; Yu, H. Z.; Zhu, M. Z. Bimetallic Au2Cu6 nanoclusters: Strong luminescence induced by the aggregation of copper(I) complexes with gold(0) species. Angew. Chem., Int. Ed. 2016, 55, 3611–3614.

[30]

Qu, M.; Zhang, F. Q.; Wang, D. H.; Li, H.; Hou, J. J.; Zhang, X. M. Observation of non-FCC copper in alkynyl-protected Cu53 nanoclusters. Angew. Chem., Int. Ed. 2020, 59, 6507–6512.

[31]

Shen, H.; Xu, Z.; Hazer, M. S. A.; Wu, Q. Y.; Peng, J.; Qin, R. X.; Malola, S.; Teo, B. K.; Häkkinen, H.; Zheng, N. F. Surface coordination of multiple ligands endows N-heterocyclic carbene-stabilized gold nanoclusters with high robustness and surface reactivity. Angew. Chem., Int. Ed. 2021, 60, 3752–3758.

[32]

Yonesato, K.; Yamazoe, S.; Yokogawa, D.; Yamaguchi, K.; Suzuki, K. A molecular hybrid of an atomically precise silver nanocluster and polyoxometalates for H2 cleavage into protons and electrons. Angew. Chem., Int. Ed. 2021, 60, 16994–16998.

[33]

Liu, X.; Yao, G.; Cheng, X. L.; Xu, J. Y.; Cai, X.; Hu, W. G.; Xu, W. W.; Zhang, C. F.; Zhu, Y. Cd-driven surface reconstruction and photodynamics in gold nanoclusters. Chem. Sci. 2021, 12, 3290–3294.

[34]

Shen, H.; Tian, G. L.; Xu, Z.; Wang, L. Z.; Wu, Q.; Zhang, Y. H.; Teo, B. K.; Zheng, N. F. N-Heterocyclic carbene coordinated metal nanoparticles and nanoclusters. Coord. Chem. Rev. 2022, 458, 214425.

[35]

Chiu, T. H.; Liao, J. H.; Gam, F.; Wu, Y. Y.; Wang, X. P.; Kahlal, S.; Saillard, J. Y.; Liu, C. W. Hydride-containing eight-electron Pt/Ag superatoms: Structure, bonding, and multi-NMR studies. J. Am. Chem. Soc. 2022, 144, 10599–10607.

[36]

Kulkarni, V. K.; Khiarak, B. N.; Takano, S.; Malola, S.; Albright, E. L.; Levchenko, T. I.; Aloisio, M. D.; Dinh, C. T.; Tsukuda, T.; Häkkinen, H. et al. N-Heterocyclic carbene-stabilized hydrido Au24 nanoclusters: Synthesis, structure, and electrocatalytic reduction of CO2. J. Am. Chem. Soc. 2022, 144, 9000–9006.

[37]

Qian, H. F.; Eckenhoff, W. T.; Zhu, Y.; Pintauer, T.; Jin, R. C. Total structure determination of thiolate-protected Au38 nanoparticles. J. Am. Chem. Soc. 2010, 132, 8280–8281.

[38]

Shen, H.; Wang, L. Z.; López-Estrada, O.; Hu, C. Y.; Wu, Q. Y.; Cao, D. X.; Malola, S.; Teo, B. K.; Häkkinen, H.; Zheng, N. F. Copper-hydride nanoclusters with enhanced stability by N-heterocyclic carbenes. Nano Res. 2021, 14, 3303–3308.

[39]

Shen, H.; Xiang, S. J.; Xu, Z.; Liu, C.; Li, X. H.; Sun, C. F.; Lin, S. C.; Teo, B. K.; Zheng, N. F. Superatomic Au13 clusters ligated by different N-heterocyclic carbenes and their ligand-dependent catalysis, photoluminescence, and proton sensitivity. Nano Res. 2020, 13, 1908–1911.

[40]

Kang, X.; Chong, H.; Zhu, M. Z. Au25(SR)18: The captain of the great nanocluster ship. Nanoscale 2018, 10, 10758–10834.

[41]

Yang, H. Y.; Wang, Y.; Huang, H. Q.; Gell, L.; Lehtovaara, L.; Malola, S.; Häkkinen, H.; Zheng, N. F. All-thiol-stabilized Ag44 and Au12Ag32 nanoparticles with single-crystal structures. Nat. Commun. 2013, 4, 2422.

[42]

Zhou, Q.; Kaappa, S.; Malola, S.; Lu, H.; Guan, D. W.; Li, Y. J.; Wang, H. C.; Xie, Z. X.; Ma, Z. B.; Häkkinen, H. et al. Real-space imaging with pattern recognition of a ligand-protected Ag374 nanocluster at sub-molecular resolution. Nat. Commun. 2018, 9, 2948.

[43]

Yan, N.; Xia, N.; Liao, L. W.; Zhu, M.; Jin, F. M.; Jin, R. C.; Wu, Z. K. Unraveling the long-pursued Au144 structure by X-ray crystallography. Sci. Adv. 2018, 4, eaat7259.

[44]

Takano, S.; Hirai, H.; Nakashima, T.; Iwasa, T.; Taketsugu, T.; Tsukuda, T. Photoluminescence of doped superatoms M@Au12 (M = Ru, Rh, Ir) homoleptically capped by (Ph2)PCH2P(Ph2): Efficient room-temperature phosphorescence from Ru@Au12. J. Am. Chem. Soc. 2021, 143, 10560–10564.

[45]

Takano, S.; Tsukuda, T. Chemically modified gold/silver superatoms as artificial elements at nanoscale: Design principles and synthesis challenges. J. Am. Chem. Soc. 2021, 143, 1683–1698.

[46]

Shibu, E. S.; Muhammed, M. A. H.; Tsukuda, T.; Pradeep, T. Ligand exchange of Au25SG18 leading to functionalized gold clusters: Spectroscopy, kinetics, and luminescence. J. Phys. Chem. C 2008, 112, 12168–12176.

[47]

Ma, G. Y.; Sun, F.; Qiao, L.; Shen, Q. L.; Wang, L.; Tang, Q.; Tang, Z. H. Atomically precise alkynyl-protected Ag20Cu12 nanocluster: Structure analysis and electrocatalytic performance toward nitrate reduction for NH3 synthesis. Nano Res. 2023, 16, 10867–10872.

[48]

Sun, C. F.; Mammen, N.; Kaappa, S.; Yuan, P.; Deng, G. C.; Zhao, C. W.; Yan, J. Z.; Malola, S.; Honkala, K.; Häkkinen, H. et al. Atomically precise, thiolated copper-hydride nanoclusters as single-site hydrogenation catalysts for ketones in mild conditions. ACS Nano 2019, 13, 5975–5986.

[49]

Li, G. J.; Sui, X.; Cai, X.; Hu, W. G.; Liu, X.; Chen, M. Y.; Zhu, Y. Precisely constructed silver active sites in gold nanoclusters for chemical fixation of CO2. Angew. Chem., Int. Ed. 2021, 60, 10573–10576.

[50]

Soldan, G.; Aljuhani, M. A.; Bootharaju, M. S.; AbdulHalim, L. G.; Parida, M. R.; Emwas, A. H.; Mohammed, O. F.; Bakr, O. M. Gold doping of silver nanoclusters: A 26-fold enhancement in the luminescence quantum yield. Angew. Chem., Int. Ed. 2016, 55, 5749–5753.

[51]

Yuan, S. F.; Lei, Z.; Guan, Z. J.; Wang, Q. M. Atomically precise preorganization of open metal sites on gold nanoclusters with high catalytic performance. Angew. Chem., Int. Ed. 2021, 60, 5225–5229.

[52]

Shen, H.; Wu, Q. Y.; Hazer, M. S. A.; Tang, X. K.; Han, Y. Z.; Qin, R. X.; Ma, C. X.; Malola, S.; Teo, B. K.; Häkkinen, H. et al. Regioselective hydrogenation of alkenes over atomically dispersed Pd sites on NHC-stabilized bimetallic nanoclusters. Chem 2022, 8, 2380–2392.

[53]

Shen, H.; Mizuta, T. An atomically precise alkynyl-protected PtAg42 superatom nanocluster and its structural implications. Chem.—Asian J. 2017, 12, 2904–2907.

[54]

Nguyen, T. A. D.; Jones, Z. R.; Leto, D. F.; Wu, G.; Scott, S. L.; Hayton, T. W. Ligand-exchange-induced growth of an atomically precise Cu29 nanocluster from a smaller cluster. Chem. Mater. 2016, 28, 8385–8390.

[55]

Du, Y. X.; Sheng, H. T.; Astruc, D.; Zhu, M. Z. Atomically precise noble metal nanoclusters as efficient catalysts: A bridge between structure and properties. Chem. Rev. 2020, 120, 526–622.

[56]

Han, B. L.; Liu, Z.; Feng, L.; Wang, Z.; Gupta, R. K.; Aikens, C. M.; Tung, C. H.; Sun, D. Polymorphism in atomically precise Cu23 nanocluster incorporating tetrahedral [Cu4]0 kernel. J. Am. Chem. Soc. 2020, 142, 5834–5841.

[57]

Lee, S.; Bootharaju, M. S.; Deng, G. C.; Malola, S.; Häkkinen, H.; Zheng, N. F.; Hyeon, T. [Pt2Cu34(PET)22Cl4]2–: An atomically precise, 10-electron PtCu bimetal nanocluster with a direct Pt–Pt bond. J. Am. Chem. Soc. 2021, 143, 12100–12107.

[58]

Li, H.; Wang, P.; Zhu, C.; Zhang, W.; Zhou, M.; Zhang, S.; Zhang, C. F.; Yun, Y. P.; Kang, X.; Pei, Y. et al. Triple-helical self-assembly of atomically precise nanoclusters. J. Am. Chem. Soc. 2022, 144, 23205–23213.

[59]

Tang, Q.; Lee, Y.; Li, D. Y.; Choi, W.; Liu, C. W.; Lee, D.; Jiang, D. E. Lattice-hydride mechanism in electrocatalytic CO2 reduction by structurally precise copper-hydride nanoclusters. J. Am. Chem. Soc. 2017, 139, 9728–9736.

[60]

Qin, Z. X.; Hu, S.; Han, W. H.; Li, Z. W.; Xu, W. W.; Zhang, J. J.; Li, G. Tailoring optical and photocatalytic properties by single-Ag-atom exchange in Au13Ag12(PPh3)10Cl8 nanoclusters. Nano Res. 2022, 15, 2971–2976.

[61]

Baghdasaryan, A.; Bürgi, T. Copper nanoclusters: Designed synthesis, structural diversity, and multiplatform applications. Nanoscale 2021, 13, 6283–6340.

[62]

Kawawaki, T.; Kataoka, Y.; Hirata, M.; Iwamatsu, Y.; Hossain, S.; Negishi, Y. Toward the creation of high-performance heterogeneous catalysts by controlled ligand desorption from atomically precise metal nanoclusters. Nanoscale Horiz. 2021, 6, 409–448.

[63]

Li, Z. M.; Liu, C.; Abroshan, H.; Kauffman, D. R.; Li, G. Au38S2(SAdm)20 photocatalyst for one-step selective aerobic oxidations. ACS Catal. 2017, 7, 3368–3374.

[64]

Qin, Z. X.; Sharma, S.; Wan, C. Q.; Malola, S.; Xu, W. W.; Häkkinen, H.; Li, G. A homoleptic alkynyl-ligated [Au13Ag16L24]3− cluster as a catalytically active eight-electron superatom. Angew. Chem., Int. Ed. 2021, 60, 970–975.

[65]

Cao, Y. T.; Fung, V.; Yao, Q. F.; Chen, T. K.; Zang, S. Q.; Jiang, D. E.; Xie, J. P. Control of single-ligand chemistry on thiolated Au25 nanoclusters. Nat. Commun. 2020, 11, 5498.

[66]

Gunawardene, P. N.; Corrigan, J. F.; Workentin, M. S. Golden opportunity: A clickable azide-functionalized [Au25(SR)18] nanocluster platform for interfacial surface modifications. J. Am. Chem. Soc. 2019, 141, 11781–11785.

[67]

Song, Y. B.; Lv, Y.; Zhou, M.; Luo, T. Y.; Zhao, S.; Rosi, N. L.; Yu, H. Z.; Zhu, M. Z.; Jin, R. C. Single-ligand exchange on an Au–Cu bimetal nanocluster and mechanism. Nanoscale 2018, 10, 12093–12099.

[68]

Dhayal, R. S.; Van Zyl, W. E.; Liu, C. W. Polyhydrido copper clusters: Synthetic advances, structural diversity, and nanocluster-to-nanoparticle conversion. Acc. Chem. Res. 2016, 49, 86–95.

[69]

Huang, R. W.; Yin, J.; Dong, C. W.; Maity, P.; Hedhili, M. N.; Nematulloev, S.; Alamer, B.; Ghosh, A.; Mohammed, O. F.; Bakr, O. M. [Cu23(PhSe)16(Ph3P)8(H)6]·BF4: Atomic-level insights into cuboidal polyhydrido copper nanoclusters and their quasi-simple cubic self-assembly. ACS Mater. Lett. 2021, 3, 90–99.

[70]

Dhayal, R. S.; Liao, J. H.; Kahlal, S.; Wang, X. P.; Liu, Y. C.; Chiang, M. H.; Van Zyl, W. E.; Saillard, J. Y.; Liu, C. W. [Cu32(H)20{S2P(O i Pr)2}12]: The largest number of hydrides recorded in a molecular nanocluster by neutron diffraction. Chem.—Eur. J. 2015, 21, 8369–8374.

[71]

Tanase, T.; Nakamae, K.; Ura, Y.; Nakajima, T. Fine tunable metal assemblies constrained by multidentate phosphine ligands. Coord. Chem. Rev. 2022, 466, 214581.

[72]

Cotton, F. A.; Murillo, C. A.; Roy, L. E.; Zhou, H. C. Heteronuclear chains of four metal atoms including one quadruply bonded dimetal unit. Dichromium and dimolybdenum compounds with appended copper(I) atoms. Inorg. Chem. 2000, 39, 1743–1747.

[73]

Sun, J.; Yan, X. D.; Wang, L. Z.; Xie, Z. L.; Tian, G. L.; Wang, L.; He, A. Y. S.; Li, S. M.; Guo, Q. X.; Chaolumen et al. Decorating an anticuboctahedral copper kernel with labile surface coatings for controlling optical and catalytic properties. Inorg. Chem. 2023, 62, 9005–9013.

[74]

Bezman, S. A.; Churchill, M. R.; Osborn, J. A.; Wormald, J. Preparation and crystallographic characterization of a hexameric triphenylphosphinecopper hydride cluster. J. Am. Chem. Soc. 1971, 93, 2063–2065.

[75]

Dhayal, R. S.; Liao, J. H.; Lin, Y. R.; Liao, P. K.; Kahlal, S.; Saillard, J. Y.; Liu, C. W. A nanospheric polyhydrido copper cluster of elongated triangular orthobicupola array: Liberation of H2 from solar energy. J. Am. Chem. Soc. 2013, 135, 4704–4707.

[76]

Liu, C. Y.; Yuan, S. F.; Wang, S.; Guan, Z. J.; Jiang, D. E.; Wang, Q. M. Structural transformation and catalytic hydrogenation activity of amidinate-protected copper hydride clusters. Nat. Commun. 2022, 13, 2082.

[77]

Dong, G. L.; Pan, Z. H.; Han, B. L.; Tao, Y. W.; Chen, X.; Luo, G. G.; Sun, P. P.; Sun, C. F.; Sun, D. Multi-layer 3D chirality and double-helical assembly in a copper nanocluster with a triple-helical Cu15 core. Angew. Chem., Int. Ed. 2023, 62, e202302595.

[78]

Ghosh, A.; Huang, R. W.; Alamer, B.; Abou-Hamad, E.; Hedhili, M. N.; Mohammed, O. F.; Bakr, O. M. [Cu61(StBu)26S6Cl6H14]+: A core-shell superatom nanocluster with a quasi- J36 Cu19 core and an “18-crown-6” metal-sulfide-like stabilizing belt. ACS Mater. Lett. 2019, 1, 297–302.

[79]

Yuan, P.; Chen, R. H.; Zhang, X. M.; Chen, F. J.; Yan, J. Z.; Sun, C. F.; Ou, D. H.; Peng, J.; Lin, S. C.; Tang, Z. C. et al. Ether-soluble Cu53 nanoclusters as an effective precursor of high-quality CuI films for optoelectronic applications. Angew. Chem., Int. Ed. 2019, 58, 835–839.

[80]

Dong, C. W.; Huang, R. W.; Chen, C. L.; Chen, J.; Nematulloev, S.; Guo, X. R.; Ghosh, A.; Alamer, B.; Hedhili, M. N.; Isimjan, T. T. et al. [Cu36H10(PET)24(PPh3)6Cl2] reveals surface vacancy defects in ligand-stabilized metal nanoclusters. J. Am. Chem. Soc. 2021, 143, 11026–11035.

[81]

Jia, T.; Guan, Z. J.; Zhang, C. K.; Zhu, X. Z.; Chen, Y. X.; Zhang, Q.; Yang, Y.; Sun, D. Eight-electron superatomic Cu31 nanocluster with chiral kernel and NIR-II emission. J. Am. Chem. Soc. 2023, 145, 10355–10363.

[82]

Nguyen, T. A. D.; Jones, Z. R.; Goldsmith, B. R.; Buratto, W. R.; Wu, G.; Scott, S. L.; Hayton, T. W. A Cu25 nanocluster with partial Cu(0) character. J. Am. Chem. Soc. 2015, 137, 13319–13324.

[83]

Brestensky, D. M.; Huseland, D. E.; McGettigan, C.; Stryker, J. M. Simplified, “one-pot” procedure for the synthesis of [(Ph3P)CuH]6, a stable copper hydride for conjugate reductions. Tetrahedron Lett. 1988, 29, 3749–3752.

[84]

Qin, Z. X.; Wang, J. H.; Sharma, S.; Malola, S.; Wu, K. F.; Häkkinen, H.; Li, G. Photo-induced cluster-to-cluster transformation of [Au37– x Ag x (PPh3)13Cl10]3+ into [Au25– y Ag y (PPh3)10Cl8]+: Fragmentation of a trimer of 8-electron superatoms by light. J. Phys. Chem. Lett. 2021, 12, 10920–10926.

[85]

Qin, Z. X.; Li, Z. W.; Sharma, S.; Peng, Y. W.; Jin, R. C.; Li, G. Self-assembly of silver clusters into one- and two-dimensional structures and highly selective methanol sensing. Research (Wash. D. C.) 2022, 2022, 0018.

[86]

Sun, J.; Tang, X. K.; Liu, Z. H.; Xie, Z. L.; Yan, B. Z.; Yin, R. F.; Chaolumen, C.; Zhang, J.; Fang, W. H.; Wei, J. Y. et al. Labile ligands protected Cu50 nanoclusters with tailorable optical limiting effect. ACS Mater. Lett. 2024, 6, 281–289.

[87]

Ren, Z. G.; Li, H. X.; Liu, G. F.; Zhang, W. H.; Lang, J. P.; Zhang, Y.; Song, Y. L. Synthesis of two heterobimetallic cluster isomers [(η5-C5Me5)2Mo23-S)3S(CuI)2] and [(η5-C5Me5)2Mo23-S)4(CuI)2] from trans-[(η5-C5Me5)2Mo2(μ-S)2S2] and Their trans-to- cis isomerization, structures, and third-order NLO properties. Organometallics 2006, 25, 4351–4357.

[88]

Li, D. J.; Li, Q. H.; Wang, Z. R.; Ma, Z.; Gu, Z. G.; Zhang, J. Interpenetrated metal-porphyrinic framework for enhanced nonlinear optical limiting. J. Am. Chem. Soc. 2021, 143, 17162–17169.

[89]

Bharathi, M. D.; Ahila, G.; Mohana, J.; Chakkaravarthi, G.; Anbalagan, G. Structural, optical, thermal and mechanical characterization of an organic nonlinear optical material: 4-Methyl-3-nitrobenzoic acid single crystal. J. Phys. Chem. Solids 2016, 98, 290–297.

[90]

Bharathi, M. D.; Ahila, G.; Mohana, J.; Chakkaravarthi, G.; Anbalagan, G. Synthesis, crystal structure, growth, optical and third order nonlinear optical studies of 8HQ2C5N single crystal—An efficient third-order nonlinear optical material. Mater. Chem. Phys. 2017, 192, 215–227.

[91]

Zhuang, S. H.; Meisenheimer, P. B.; Heron, J.; Hu, J. M. Correction to “a narrowband spintronic terahertz emitter based on magnetoelastic heterostructures”. ACS Appl. Mater. Interfaces 2022, 14, 52575–52577.

[92]

Wang, Z. R.; Yan, Y. Y.; Chen, J. L.; Li, Q. H.; Zhang, J. Designed metal-organic π-clusters combining the aromaticity of the metal cluster and ligands for a third-order nonlinear optical response. Mater. Horiz. 2024, 11, 297–302.

[93]

Yang, Z. F.; Cao, Z. Z.; Rehman, A. U.; Yang, J. C. Structural and electronic properties of lutetium doped germanium clusters LuGe n (+/0/−) ( n = 6–19): A density functional theory investigation. Chin. J. Struc. Chem. 2022, 41, 2203155–2203165.

Polyoxometalates
Article number: 9140072
Cite this article:
Gong X, Liu Z-H, Xu Q, et al. Single-molecule manipulation of copper nanoclusters for modulating nonlinear optics. Polyoxometalates, 2025, 4(1): 9140072. https://doi.org/10.26599/POM.2024.9140072

585

Views

149

Downloads

1

Crossref

Altmetrics

Received: 18 January 2024
Revised: 14 May 2024
Accepted: 22 June 2024
Published: 04 July 2024
© The Author(s) 2025. Published by Tsinghua University Press.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the original author(s) and the source, provide a link to the license, and indicate if changes were made. See http://creativecommons.org/licenses/by/4.0/

Return