AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (5 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Room temperature self-assembly and nonenzymatic electrochemical sensing performance of transition metal-embedded wheel-shaped tungstophosphates

Wen-Da LiuHao-Tian Zhu ( )Xue ZhangFang Su ( )Xiao-Jing SangXiao-Lan ZhangLan-Cui Zhang ( )
School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, China
Show Author Information

Graphical Abstract

Abstract

Under heat-free conditions, three wheel-shaped [P8W48O184]40− ({P8W48})-based polyoxometalates (POMs) were controllably synthesized via the reaction of a hexavacant Dawson-type tungstophosphate, K12[H2P2W12O48]·24H2O (K-{P2W12}), with simple transition metal (TM) (TM = Mn, Co, and Ni) salts in room temperature aqueous solutions. The molecular formulas of the POMs were Na24[Mn8(H2O)32P8W48O184]·58H2O (1), K4Na16H4[Co8(H2O)32P8W48O184]·76H2O (2), and Na20H4[Ni8(H2O)32P8W48O184]·72H2O (3). It should be noted that eight TM ions introduced into each POM skeleton were connected in a {P8W48} wheel. To the best of our knowledge, this is the first time that the self-assembly of 3d-TM-{P8W48} with the internal coordination of all metals in an aqueous solution was achieved without heating. Compounds 13 were characterized by elemental, single-crystal X-ray diffraction, and other physical and spectral analyses, and their nonenzymatic electrochemical sensing performance for hydrogen peroxide (H2O2) was investigated by cyclic voltammetry. Compared with K28Li5[H7P8W48O184]·92H2O without 3d-TM and most reported POM electrode materials, the proposed 3d-TM-{P8W48} POMs exhibited higher stability and better activity during H2O2 detection. Composite films formed using 13 and chitosan (CS) on a glassy carbon electrode exhibited a high sensitivity (1.21 μA∙mmol∙L−1), low detection limit (0.02 mmol∙L−1), and rapid response time (2 s) for H2O2 detection. The study findings show that the combination of CS and 13 provides an alternative to soluble TM-{P8W48} compounds, which are not reusable in H2O2 detection systems.

Electronic Supplementary Material

Download File(s)
0073_ESM.pdf (4.9 MB)
0073_ESM_1.cif (745.4 KB)
0073_ESM_1_checkcif.pdf (152.1 KB)
0073_ESM_2.cif (1.3 MB)
0073_ESM_2_checkcif.pdf (149.4 KB)
0073_ESM_3.cif (1.3 MB)
0073_ESM_3_checkcif.pdf (150.3 KB)

References

[1]

Liu, J.; Liu, Y.; Liu, Y.; Wang, Y.; Wu, F. Q.; Zhou, Z.; Zhang, Z. B. Polyoxometalate-supported ionic liquid@core-shell polymer Nanoparticles: Novel pickering interfacial catalysts for efficient and safe epoxidation of allyl chloride with low-concentration H2O2. ACS Sustainable Chem. Eng. 2023, 11, 12934–12945.

[2]

Dziga, D.; Maksylewicz, A.; Maroszek, M.; Marek, S. Combined treatment of toxic cyanobacteria Microcystis aeruginosa with hydrogen peroxide and microcystin biodegradation agents results in quick toxin elimination. Acta Biochim. Pol. 2018, 65, 133–140.

[3]

Barrington, D. J.;Ghadouani, A. Application of hydrogen peroxide for the removal of toxic cyanobacteria and other phytoplankton from wastewater. Environ. Sci. Technol. 2008, 42, 8916–8921.

[4]

Møretrø, T.; Fanebust, H.; Fagerlund, A.; Langsrud, S. Whole room disinfection with hydrogen peroxide mist to control Listeria monocytogenes in food industry related environments. Int. J. Food Microbiol. 2019, 292, 118–125.

[5]

Wang, S.; Guo, C. J.; Yu, M. S.; Ning, X. N.; Yan, B.; Zhao, J.; Yang, A. G.; Yan, H. Identification of H2O2 induced oxidative stress associated microRNAs in HLE-B3 cells and their clinical relevance to the progression of age-related nuclear cataract. BMC Ophthalmol. 2018, 18, 93.

[6]

Watt, B. E.; Proudfoot, A. T.; Vale, J. A. Hydrogen peroxide poisoning. Toxicol. Rev. 2004, 23, 51–57.

[7]

Cheng, Y.; Dai, J.; Sun, C. L.; Liu, R.; Zhai, T. Y.; Lou, X. D.; Xia, F. An intracellular H2O2-responsive AIEgen for the peroxidase-mediated selective imaging and inhibition of inflammatory cells. Angew. Chem., Int. Ed. 2018, 57, 3123–3127.

[8]

Hsu, C. C.; Lo, Y. R.; Lin, Y. C.; Shi, Y. C.; Li, P. L. A spectrometric method for hydrogen peroxide concentration measurement with a reusable and cost-efficient sensor. Sensors 2015, 15, 25716–25729.

[9]

Klassen, N. V.; Marchington, D.; McGowan, H. C. E. H2O2 determination by the I3 method and by KMnO4 titration. Anal. Chem. 1994, 66, 2921–2925.

[10]

Song, M. R.; Wang, J. L.; Chen, B. Y.; Wang, L. A facile, nonreactive hydrogen peroxide (H2O2) detection method enabled by ion chromatography with UV detector. Anal. Chem. 2017, 89, 11537–11544.

[11]

Chen, W.; Cai, S.; Ren, Q. Q.; Wen, W.; Zhao, Y. D. Recent advances in electrochemical sensing for hydrogen peroxide: A review. Analyst 2012, 137, 49–58.

[12]

Thatikayala, D.; Ponnamma, D.; Sadasivuni, K. K.; Cabibihan, J. J.; Al-Ali, A. K.; Malik, R. A.; Min. B. Progress of advanced nanomaterials in the non-enzymatic electrochemical sensing of glucose and H2O2. Biosensors 2020, 10, 151.

[13]

Kazıcı, H. Ç.; Caglar, A.; Aydogmus, T.; Aktas, N.; Kivrak, H. Microstructured prealloyed titanium-nickel powder as a novel nonenzymatic hydrogen peroxide sensor. J. Colloid Interface Sci. 2018, 530, 353–360.

[14]

Bi, H. X.; Yin, X. Y.; He, J. Y.; Song, H.; Lu, S. J.; Ma, Y. Y.; Han, Z. G. Conjugated organic component-functionalized hourglass-type phosphomolybdates for visible-light photocatalytic Cr(VI) reduction in wide pH range. Rare Met. 2023, 42, 3638–3650.

[15]

Yin, X. Y.; Bi, H. X.; Song, H.; He, J. Y.; Ma, Y. Y.; Fang, T. T.; Han, Z. G. Photoactive hourglass-type M{P4Mo6}2 networks for efficient removal of hexavalent chromium. Polyoxometalates 2023, 2, 9140027.

[16]

Zeb, Z.; Huang, Y. C.; Chen, L. L.; Zhou, W. B.; Liao, M. H.; Jiang, Y. Y.; Li, H. T.; Wang, L. M.; Wang, L.; Wang, H. et al. Comprehensive overview of polyoxometalates for electrocatalytic hydrogen evolution reaction. Coord. Chem. Rev. 2023, 482, 215058.

[17]

Liu, Y. F.; Zeng, G. D.; Cheng, Y. T.; Chen, L.; Liu, Y. H.; Wei, Y. G.; Yang, G. P. A H4SiW12O40-catalyzed three-component tandem reaction for the synthesis of 3,3-disubstituted isoindolinones. Chin. Chem. Lett. 2024, 35, 108480.

[18]

Liu, Y. F.; Hu, C. W.; Yang, G. P. Recent advances in polyoxometalates acid-catalyzed organic reactions. Chin. Chem. Lett. 2023, 34, 108097.

[19]

Li, J.; Zhang, D.; Chi, Y. N.; Hu, C. W. Catalytic application of polyoxovanadates in the selective oxidation of organic molecules. Polyoxometalates 2022, 1, 9140012.

[20]

Dai, G. Y.; Li, Q.; Zang, D. J.; Wei, Y. G. A bifunctional molecular catalyst built up of L-proline grafted polyoxometalate for one-pot three-component green synthesis of heterocycles. Green Chem. 2023, 25, 6263–6269.

[21]

Hu, Q. L.; Li, K.; Chen, X. J.; Liu, Y. F.; Yang, G. P. Polyoxometalate catalysts for the synthesis of N-heterocycles. Polyoxometalates 2024, 3, 9140048.

[22]

Song, P. F.; Wang, T. Q. Application of polyoxometalates in chemiresistive gas sensors: A review. ACS Sens. 2022, 7, 3634–3643.

[23]

Song, P. F.; Yang, Y.; Li, F.; Yu, H.; Dong, X. T.; Wang, T. Q. Rapid and highly sensitive detection of formaldehyde gas via a polyoxometalate-CuBi2O4 composite gas sensor. Polyoxometalates 2024, 3, 9140053.

[24]

Dai, Y. C.; Zhang, S. Y.; Xiao, X. X.; Li, M. J.; Liu, J. C.; Chen, L. J.; Zhao, J. W. A double-tartrate-bridged deca-nuclearity europium-tungsten cluster embedded selenotungstate and its selective optical sensing of o-nitrophenol. Polyoxometalates 2023, 2, 9140041.

[25]

Liu, R. J.; Li, S. W.; Yu, X. L.; Zhang, G. J.; Zhang, S. J.; Yao, J. N.; Keita, B.; Nadjo, L.; Zhi, L. J. Facile synthesis of au-nanoparticle/polyoxometalate/graphene tricomponent nanohybrids: An enzyme-free electrochemical biosensor for hydrogen peroxide. Small 2012, 8, 1398–1406.

[26]

Wang, C.; Zhou, M.; Ma, Y. Y.; Tan, H. Q.; Wang, Y. H.; Li, Y. G. Hybridized polyoxometalate-based metal-organic framework with ketjenblack for the nonenzymatic detection of H2O2. Chem.—Asian J. 2018, 13, 2054–2059.

[27]

Zhu, H. T.; Tang, W. S.; Ma, Y. Y.; Wang, Y. H.; Tan, H. Q.; Li, Y. G. Preyssler-type polyoxometalate-based crystalline materials for the electrochemical detection of H2O2. CrystEngComm 2021, 23, 2071–2080.

[28]

An, W. T.; Zhang, X. J.; Niu, J. Q.; Ma, Y. Y.; Han, Z. G. Unusual hexa-nuclear cadmium cluster functionalized phosphomolybdate as effective photoelectrochemical sensor for trace Cr(VI) detection. Chin. Chem. Lett. 2022, 33, 4400–4404.

[29]

Zhu, H. T.; Ma, Y. Y.; Du, J.; Tan, H. Q.; Wang, Y. H.; Li, Y. G. Efficient electrochemical detection of hydrogen peroxide based on silver-centered preyssler-type polyoxometalate hybrids. Inorg. Chem. 2022, 61, 6910–6918.

[30]

Contant, R.; Teze, A. A new crown heteropolyanion K28Li5H7P8W48O184∙92H2O: Synthesis, structure, and properties. Inorg. Chem. 1985, 24, 4610–4614.

[31]

Jabbour, D.; Keita, B.; Nadjo, L.; Kortz, U.; Mal, S. S. The wheel-shaped Cu20-tungstophosphate [Cu20Cl(OH)24(H2O)12(P8W48O184)]25−, redox and electrocatalytic properties. Electrochem. Commun. 2005, 7, 841–847.

[32]

Tourneur, J.; Fabre, B.; Loget, G.; Vacher, A.; Mériadec, C.; Ababou-Girard, S.; Gouttefangeas, F.; Joanny, L.; Cadot, E.; Haouas, M. et al. Molecular and material engineering of photocathodes derivatized with polyoxometalate-supported {Mo3S4} HER Catalysts. J. Am. Chem. Soc. 2019, 141, 11954–11962.

[33]

Ali, B.; Imar, S.; Laffir, F.; McCormac, T. Electrochemical, surface and electrocatalytic properties of electrode multilayer assemblies composed of a ruthenium metallodendrimer and a wheel-shaped Cu-20 Tungstophosphate. J. Electroanal. Chem. 2019, 836, 77–84.

[34]

Yonesato, K.; Yanai, D.; Yamazoe, S.; Yokogawa, D.; Kikuchi, T.; Yamaguchi, K.; Suzuki, K. Surface-exposed silver nanoclusters inside molecular metal oxide cavities. Nat. Chem. 2023, 15, 940–947.

[35]

Kang, L.; Ma, H. Y.; Yu, Y.; Pang, H. J.; Song, Y. B.; Zhang, D. Study on amperometric sensing performance of a crown-shaped phosphotungstate-based multilayer film. Sens. Actuators B: Chem. 2013, 177, 270–278.

[36]

Zhang, X. X.; Bao, Y. Y.; Bai, Y. F.; Chen, Z. Z.; Li, J.; Feng, F. In situ electrochemical reduction assisted assembly of a graphene-gold nanoparticles@polyoxometalate nanocomposite film and its high response current for detection of hydrogen peroxide. Electrochim. Acta. 2019, 300, 380–388.

[37]

Yu, X. S.; Cui, H. J.; Wang, Q. Z.; Li, J. S.; Su, F.; Zhang, L. C.; Sang, X. J.; Zhu, Z. M. Construction and visible-light photocatalytic performance of carboxyethyltin/transition metal-functionalized wheel-like tungstophosphates. Appl. Organomet. Chem. 2020, 34, e5720.

[38]

Sasaki, S.; Yonesato, K.; Mizuno, N.; Yamaguchi, K.; Suzuki, K. Ring-shaped polyoxometalates possessing multiple 3d metal cation sites: [{M2(OH2)2}2{M(OH2)2}4P8W48O176(OCH3)8]16− (M = Mn, Co, Ni, Cu, Zn). Inorg. Chem. 2019, 58, 7722–7729.

[39]

Zhan, C. H.; Zheng, Q.; Long, D. L.; Vilà-Nadal, L.; Cronin, L. Controlling the reactivity of the [P8W48O184]40− inorganic ring and its assembly into POMZite inorganic frameworks with silver ions. Angew. Chem., Int. Ed. 2019, 58, 17282–17286.

[40]

Sato, K.; Yonesato, K.; Yatabe, T.; Yamaguchi, K.; Suzuki, K. Nanostructured manganese oxides within a ring-shaped polyoxometalate exhibiting unusual oxidation catalysis. Chem.—Eur. J. 2022, 28, e2021104051.

[41]

Rehan, K.; Asma, M.; Misawa, T.; Ito, T.; Sokolov, A.; Sher , M.; Tirmizi, S. A.; Sohail, M. Synthesis, characterization, and magnetic/electrochemical properties of Wells-Dawson polyoxometalate containing Ni(II) counter-ion. J. Mol. Struct. 2022, 1254, 132331.

[42]

Ibrahim, M.; Mbomekallé, I. M.; de Oliveira, P.; Kostakis, G. E.; Anson, C. E. Synthesis, structure and electrochemical characterization of an isopolytungstate (W4O16) held by MnII anchors within a superlacunary crown heteropolyanion {P8W48}. Dalton Trans. 2019, 48, 15545–15552.

[43]

Jiao, Y. Q.; Qin, C.; Wang, X. L.; Wang, C. G.; Sun, C. Y.; Wang, H. N.; Shao, K. Z.; Su, Z. M. Three cobalt(II)-linked {P8W48} network assemblies: Syntheses, structures, and magnetic and photocatalysis properties. Chem.—Asian J. 2014, 9, 470–478

[44]

Zhang, L. C.; Xue, H.; Zhu, Z.M.; Zhang, Z. M.; Li, Y. G.; Wang, E. B. Two New {P8W49} wheel-shaped tungstophosphates decorated by Co(II), Ni(II) Ions. J. Clust. Sci. 2010, 21, 679–689.

[45]

Shmakova, A. A.; Volchek, V. V.; Yanshole, V.; Kompankov, N. B.; Martin, N. P.; Nyman, M.; Abramov, P. A.; Sokolov, M. N. Niobium uptake by a [P8W48O184]40– macrocyclic polyanion. New J. Chem. 2019, 43, 9943–9952.

[46]

Dufaye, M.; Duval, S.; Stoclet, G.; Trivelli, X.; Huvé, M.; Moissette, A.; Loiseau, T. Uranyl cation incorporation in the [P8W48O184]40− macrocycle phosphopolytungstate. Inorg. Chem. 2019, 58, 1091–1099.

[47]

Koizumi, Y.; Yonesato, K.; Yamaguchi, K.; Suzuki, K. Ligand-protecting strategy for the controlled construction of multinuclear copper cores within a ring-shaped polyoxometalate. Inorg. Chem. 2022, 61, 9841–9848.

[48]

Knorr, D. Functional properties of chitin and chitosan. J. Food Sci. 1982, 47, 593–595.

[49]

Strmečki, S.; Pereža, L. Electrochemistry of chitosan amino-glycan and BSA protein mixture under seawater conditions. J. Electroanal. Chem. 2021, 898, 115630.

[50]

Ouyang, K.; Jiang, N.; Xue, W.; Xie, S. Enhanced photocatalytic activities of visible light-responsive Ag3PO4-GO photocatalysts for oxytetracycline hydrochloride degradation. Colloids Surf. A: Physicochem. Eng. Asp. 2020, 604, 125312.

Polyoxometalates
Article number: 9140073
Cite this article:
Liu W-D, Zhu H-T, Zhang X, et al. Room temperature self-assembly and nonenzymatic electrochemical sensing performance of transition metal-embedded wheel-shaped tungstophosphates. Polyoxometalates, 2025, 4(1): 9140073. https://doi.org/10.26599/POM.2024.9140073

463

Views

79

Downloads

0

Crossref

Altmetrics

Received: 31 January 2024
Revised: 20 June 2024
Accepted: 04 July 2024
Published: 29 July 2024
© The Author(s) 2024. Published by Tsinghua University Press.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the original author(s) and the source, provide a link to the license, and indicate if changes were made. See http://creativecommons.org/licenses/by/4.0/

Return