AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (24.1 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article | Open Access

Comprehensive and practical guidelines for reduction synthesis of atomically precise coinage–metal nanoclusters

Qinghua Xu1,§Xuekun Gong1,§Zixiao Zhao3Lin Wang1,2Jing Sun1Jinlu He2Simin Li1 ( )Hui Shen1 ( )
College of Energy Materials and Chemistry, Inner Mongolia University, Hohhot 010021, China
College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China

§Qinghua Xu and Xuekun Gong contributed equally to this work.

Show Author Information

Graphical Abstract

Abstract

As a model system for studying the structure–property relationship and surface coordination chemistry of metal nanomaterials, ligand-stabilized, atomically precise coinage–metal (Au, Ag, and Cu) nanoclusters (NCs) have attracted considerable attention. Extensive effort has been devoted to the synthesis and structural determination of metal NCs over the past decades, with the chemical reduction of high-valence metal ions in the presence of protective ligands laying the foundation. After examining over 200 synthetic examples of individual metal NCs prepared through direct reduction methods—using reactants such as single metals (Au, Ag, and Cu) or alloys (e.g., Au-Ag, Au-Pt), along with ligands such as phosphines, thiolates, and alkynyls, N-heterocyclic carbenes, halides, and their combinations, we propose comprehensive and practical guidelines for the reduction synthesis of ligand-stabilized metal NCs. This review aims to elucidate the potential introduction of robust synthetic prototypes for engineering these NCs, which have evolved from one-phase, two-phase, and miscible solution synthesis to solid-state synthesis. Several factors are crucial for optimizing synthesis, including the selection of precursors, reductant systems, and purification strategies. After presenting an expansive and critical perspective on this rapidly evolving field, we outline some promising future trends.

Electronic Supplementary Material

Download File(s)
0075_ESM.pdf (40.9 MB)

References

[1]

King, N. P.; Bale, J. B.; Sheffler, W.; McNamara, D. E.; Gonen, S.; Gonen, T.; Yeates, T. O.; Baker, D. Accurate design of co-assembling multi-component protein nanomaterials. Nature 2014, 510, 103–108.

[2]

Ning, C. Z.; Dou, L. T.; Yang, P. D. Bandgap engineering in semiconductor alloy nanomaterials with widely tunable compositions. Nat. Rev. Mater. 2017, 2, 17070.

[3]

Chen, G. X.; Zhao, Y.; Fu, G.; Duchesne, P. N.; Gu, L.; Zheng, Y. P.; Weng, X. F.; Chen, M. S.; Zhang, P.; Pao, C. W. et al. Interfacial effects in iron-nickel hydroxide-platinum nanoparticles enhance catalytic oxidation. Science 2014, 344, 495–499.

[4]

Smith, B. R.; Gambhir, S. S. Nanomaterials for in vivo imaging. Chem. Rev. 2017, 117, 901–986.

[5]

Cook, A. W.; Nguyen, T. A. D.; Buratto, W. R.; Wu, G.; Hayton, T. W. Synthesis, characterization, and reactivity of the group 11 hydrido clusters [Ag6H4(dppm)4(OAc)2] and [Cu3H(dppm)3(OAc)2]. Inorg. Chem. 2016, 55, 12435–12440.

[6]

Franklin, A. D. Nanomaterials in transistors: From high-performance to thin-film applications. Science 2015, 349, aab2750.

[7]

Hutchison, J. E. The road to sustainable nanotechnology: Challenges, progress and opportunities. ACS Sustainable Chem. Eng. 2016, 4, 5907–5914.

[8]

Meng, H.; Leong, W.; Leong, K. W.; Chen, C. Y.; Zhao, Y. L. Walking the line: The fate of nanomaterials at biological barriers. Biomaterials 2018, 174, 41–53.

[9]
Catita, J. A. M. Challenges in nanomaterial characterization—From definition to analysis. In Nanotoxicology in Safety Assessment of Nanomaterials. Louro, H.; Silva, M. J., Eds.; Springer: Cham, 2022; pp 3–17.
[10]

Miernicki, M.; Hofmann, T.; Eisenberger, I.; von der Kammer, F.; Praetorius, A. Legal and practical challenges in classifying nanomaterials according to regulatory definitions. Nat. Nanotechnol. 2019, 14, 208–216.

[11]

Jadzinsky, P. D.; Calero, G.; Ackerson, C. J.; Bushnell, D. A.; Kornberg, R. D. Structure of a thiol monolayer-protected gold nanoparticle at 1.1 Å resolution. Science 2007, 318, 430–433.

[12]

Desireddy, A.; Conn, B. E.; Guo, J. S.; Yoon, B.; Barnett, R. N.; Monahan, B. M.; Kirschbaum, K.; Griffith, W. P.; Whetten, R. L.; Landman, U. et al. Ultrastable silver nanoparticles. Nature 2013, 501, 399–402.

[13]

Jin, R. C.; Zeng, C. J.; Zhou, M.; Chen, Y. X. Atomically precise colloidal metal nanoclusters and nanoparticles: Fundamentals and opportunities. Chem. Rev. 2016, 116, 10346–10413.

[14]

Liu, X.; Astruc, D. Atomically precise copper nanoclusters and their applications. Coord. Chem. Rev. 2018, 359, 112–126.

[15]

Heaven, M. W.; Dass, A.; White, P. S.; Holt, K. M.; Murray, R. W. Crystal structure of the gold nanoparticle [N(C8H17)4][Au25(SCH2CH2Ph)18]. J. Am. Chem. Soc. 2008, 130, 3754–3755.

[16]

Negishi, Y.; Nobusada, K.; Tsukuda, T. Glutathione-protected gold clusters revisited: Bridging the gap between Gold(I)-thiolate complexes and thiolate-protected gold nanocrystals. J. Am. Chem. Soc. 2005, 127, 5261–5270.

[17]

Yang, H. Y.; Wang, Y.; Yan, J. Z.; Chen, X.; Zhang, X.; Häkkinen, H.; Zheng, N. F. Structural evolution of atomically precise thiolated bimetallic [Au12+ n Cu32(SR)30+ n ]4− ( n = 0, 2, 4, 6) nanoclusters. J. Am. Chem. Soc. 2014, 136, 7197–7200.

[18]

Jin, R. C. Atomically precise metal nanoclusters: Stable sizes and optical properties. Nanoscale 2015, 7, 1549–1565.

[19]

Kang, X.; Li, Y. W.; Zhu, M. Z.; Jin, R. C. Atomically precise alloy nanoclusters: Syntheses, structures, and properties. Chem. Soc. Rev. 2020, 49, 6443–6514.

[20]

Wilcoxon, J. P.; Abrams, B. L. Synthesis, structure and properties of metal nanoclusters. Chem. Soc. Rev. 2006, 35, 1162–1194.

[21]

Xie, Y. P.; Shen, Y. L.; Duan, G. X.; Han, J.; Zhang, L. P.; Lu, X. Silver nanoclusters: Synthesis, structures and photoluminescence. Mater. Chem. Front. 2020, 4, 2205–2222.

[22]

Baghdasaryan, A.; Burgi, T. Copper nanoclusters: Designed synthesis, structural diversity, and multiplatform applications. Nanoscale 2021, 13, 6283–6340.

[23]

Aiken III, J. D.; Finke, R. G. A review of modern transition-metal nanoclusters: Their synthesis, characterization, and applications in catalysis. J. Mol. Catal. A: Chem. 1999, 145, 1–44.

[24]

Yu, Y.; Yao, Q. F.; Luo, Z. T.; Yuan, X.; Lee, J. Y.; Xie, J. P. Precursor engineering and controlled conversion for the synthesis of monodisperse thiolate-protected metal nanoclusters. Nanoscale 2013, 5, 4606–4620.

[25]

Zhang, B. H.; Chen, J. S.; Cao, Y. T.; Chai, O. J. H.; Xie, J. P. Ligand design in ligand-protected gold nanoclusters. Small 2021, 17, 2004381.

[26]

Yao, Q. F.; Yu, Y.; Yuan, X.; Yu, Y.; Xie, J. P.; Lee, J. Y. Two-phase synthesis of small thiolate-protected Au15 and Au18 nanoclusters. Small 2013, 9, 2696–2701.

[27]

Sanwal, P.; Raza, A.; Miao, Y. X.; Lumbers, B.; Li, G. Advances in coinage metal nanoclusters: From synthesis strategies to electrocatalytic performance. Polyoxometalates 2024, 3, 9140057.

[28]

Yuan, P.; Chen, R. H.; Zhang, X. M.; Chen, F. J.; Yan, J. Z.; Sun, C. F.; Ou, D. H.; Peng, J.; Lin, S. C.; Tang, Z. C. et al. Ether-soluble Cu53 nanoclusters as an effective precursor of high-quality CuI films for optoelectronic applications. Angew. Chem., Int. Ed. 2019, 58, 835–839.

[29]

Zhang, Y.; He, S. R.; Yang, Y.; Zhang, T. S.; Zhu, Z. M.; Fei, W. W.; Li, M. B. Preorganized nitrogen sites for Au11 amidation: A generalizable strategy toward precision functionalization of metal nanoclusters. J. Am. Chem. Soc. 2023, 145, 12164–12172.

[30]

Yonesato, K.; Yanai, D.; Yamazoe, S.; Yokogawa, D.; Kikuchi, T.; Yamaguchi, K.; Suzuki, K. Surface-exposed silver nanoclusters inside molecular metal oxide cavities. Nat. Chem. 2023, 15, 940–947.

[31]

Wei, X.; Li, H.; Shen, H. L.; Zhou, C. J.; Wang, S. X.; Kang, X.; Zhu, M. Z. Symmetry breaking of highly symmetrical nanoclusters for triggering highly optical activity. Fundam. Res. 2024, 4, 63–68.

[32]

Malatesta, L.; Naldini, L.; Simonetta, G.; Cariati, F. Triphenylphosphine-gold(0) gold(I) compounds. Chem. Commun. (London) 1965, 212–213.

[33]

Smits, J. M. M.; Beurskens, P. T.; Bour, J. J.; Vollenbroek, F. A. X-ray analysis of octakis(tri- p-tolylphosphine) enneagoldtris(hexafluorophosphate), [Au9{P( p-MeC6H4)3}8](PF6)3: A redetermination. J. Crystallogr. Spectrosc. Res. 1983, 13, 365–372.

[34]

Briant, C. E.; Hall, K. P.; Wheeler, A. C.; Mingos, D. M. P. Structural characterisation of [Au10Cl3(PCy2Ph)6](NO3) (Cy = cyclohexyl) and the development of a structural principle for high nuclearity gold clusters. J. Chem. Soc., Chem. Commun. 1984, 248–250.

[35]

Gutrath, B. S.; Englert, U.; Wang, Y. T.; Simon, U. A missing link in undecagold cluster chemistry: Single-crystal X-ray analysis of [Au11(PPh3)7Cl3]. Eur. J. Inorg. Chem. 2013, 2013, 2002–2006.

[36]

Wan, X. K.; Lin, Z. W.; Wang, Q. M. Au20 nanocluster protected by hemilabile phosphines. J. Am. Chem. Soc. 2012, 134, 14750–14752.

[37]

Kenzler, S.; Schrenk, C.; Schnepf, A. Au54(Et3P)18Cl12: A structurally related cluster to Au32(Et3P)12Cl8 gives insight into the formation process. Dalton Trans. 2020, 49, 10765–10771.

[38]

Teo, B. K.; Shi, X. B.; Zhang, H. Pure gold cluster of 1:9:9:1:9:9:1 layered structure: A novel 39-metal-atom cluster [(Ph3P)14Au39Cl6]Cl2 with an interstitial gold atom in a hexagonal antiprismatic cage. J. Am. Chem. Soc. 1992, 114, 2743–2745.

[39]

Teo, B. K.; Keating, K. Novel triicosahedral structure of the largest metal alloy cluster: Hexachlorododecakis(triphenylphosphine)-gold-silver cluster [(Ph3P)12Au13Ag12Cl6] m+. J. Am. Chem. Soc. 1984, 106, 2224–2226.

[40]

Shichibu, Y.; Konishi, K. HCl-induced nuclearity convergence in diphosphine-protected ultrasmall gold clusters: A novel synthetic route to "magic-number" Au13 clusters. Small 2010, 6, 1216–1220.

[41]

Sugiuchi, M.; Shichibu, Y.; Konishi, K. An inherently chiral Au24 framework with double-helical hexagold strands. Angew. Chem., Int. Ed. 2018, 57, 7855–7859.

[42]

Teo, B. K.; Hong, M. C.; Zhang, H.; Huang, D. B. Cluster of clusters: Structure of the 37-atom cluster [(p-Tol3P)12Au18Ag19Br11]2♁ and a novel series of supraclusters based on vertex-sharing icosahedra. Angew. Chem., Int. Ed. 1987, 26, 897–900.

[43]

Teo, B. K.; Shi, X. B.; Zhang, H. Cluster of clusters. Structure of a novel gold-silver cluster [(Ph3P)10Au13Ag12Br8](SbF6) containing an exact staggered-eclipsed-staggered metal configuration. Evidence of icosahedral units as building blocks. J. Am. Chem. Soc. 1991, 113, 4329–4331.

[44]

Yuan, X.; Chng, L. L.; Yang, J. H.; Ying, J. Y. Miscible-solvent-assisted two-phase synthesis of monolayer-ligand-protected metal nanoclusters with various sizes. Adv. Mater. 2020, 32, 1906063.

[45]

Brust, M.; Walker, M.; Bethell, D.; Schiffrin, D. J.; Whyman, R. Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid-liquid system. J. Chem. Soc., Chem. Commun. 1994, 801–802.

[46]

Dou, X. Y.; Wang, X. Y.; Qian, S. Y.; Liu, N. W.; Yuan, X. From understanding the roles of tetraoctylammonium bromide in the two-phase Brust-Schiffrin method to tuning the size of gold nanoclusters. Nanoscale 2020, 12, 19855–19860.

[47]

Zhu, M. Z.; Lanni, E.; Garg, N.; Bier, M. E.; Jin, R. C. Kinetically controlled, high-yield synthesis of Au25 clusters. J. Am. Chem. Soc. 2008, 130, 1138–1139.

[48]

Whetten, R. L.; Khoury, J. T.; Alvarez, M. M.; Murthy, S.; Vezmar, I.; Wang, Z. L.; Stephens, P. W.; Cleveland, C. L.; Luedtke, W. D.; Landman, U. Nanocrystal gold molecules. Adv. Mater. 1996, 8, 428–433.

[49]

Zhu, M. Z.; Aikens, C. M.; Hollander, F. J.; Schatz, G. C.; Jin, R. C. Correlating the crystal structure of A thiol-protected Au25 cluster and optical properties. J. Am. Chem. Soc. 2008, 130, 5883–5885.

[50]

Qian, H. F.; Eckenhoff, W. T.; Zhu, Y.; Pintauer, T.; Jin, R. C. Total structure determination of thiolate-protected Au38 nanoparticles. J. Am. Chem. Soc. 2010, 132, 8280–8281.

[51]
Yan, J.; Teo, B. K.; Zheng, N. F. Surface chemistry of atomically precise coinage–metal nanoclusters: From structural control to surface reactivity and catalysis. Acc. Chem. Res. 2018 , 51, 3084–3093. Yan, N.; Xia, N.; Liao, L. W.; Zhu, M.; Jin, F. M.; Jin, R. C.; Wu, Z. K. Unraveling the long-pursued Au144 structure by x-ray crystallography. Sci. Adv. 2018 , 4, eaat7259.
[52]

Sun, C. F.; Mammen, N.; Kaappa, S.; Yuan, P.; Deng, G. C.; Zhao, C. W.; Yan, J. Z.; Malola, S.; Honkala, K.; Häkkinen, H. et al. Atomically precise, thiolated copper-hydride nanoclusters as single-site hydrogenation catalysts for ketones in mild conditions. ACS Nano 2019, 13, 5975–5986.

[53]

Yang, H. Y.; Wang, Y.; Huang, H. Q.; Gell, L.; Lehtovaara, L.; Malola, S.; Häkkinen, H.; Zheng, N. F. All-thiol-stabilized Ag44 and Au12Ag32 nanoparticles with single-crystal structures. Nat. Commun. 2013, 4, 2422.

[54]

Yang, H. Y.; Yan, J. Z.; Wang, Y.; Deng, G. C.; Su, H. F.; Zhao, X. J.; Xu, C. F.; Teo, B. K.; Zheng, N. F. From racemic metal nanoparticles to optically pure enantiomers in one pot. J. Am. Chem. Soc. 2017, 139, 16113–16116.

[55]

Quan, B.; Lee, C.; Yoo, J. S.; Piao, Y. Z. Facile scalable synthesis of highly monodisperse small silica nanoparticles using alkaline buffer solution and their application for efficient sentinel lymph node mapping. J. Mater. Chem. B 2017, 5, 586–594.

[56]

Lee, S. H.; Jun, B. H. Silver nanoparticles: Synthesis and application for nanomedicine. Int. J. Mol. Sci. 2019, 20, 865.

[57]

Yuan, S. F.; Li, J. J.; Guan, Z. J.; Lei, Z.; Wang, Q. M. Ultrastable hydrido gold nanoclusters with the protection of phosphines. Chem. Commun. 2020, 56, 7037–7040.

[58]

Lei, Z.; Guan, Z. J.; Pei, X. L.; Yuan, S. F.; Wan, X. K.; Zhang, J. Y.; Wang, Q. M. An atomically precise Au10Ag2 nanocluster with red-near-IR dual emission. Chem.—Eur. J. 2016, 22, 11156–11160.

[59]

Wen, Z. R.; Guan, Z. J.; Zhang, Y.; Lin, Y. M.; Wang, Q. M. [Au7Ag9(dppf)3(CF3CO2)7BF4] n : A linear nanocluster polymer from molecular Au7Ag8 clusters covalently linked by silver atoms. Chem. Commun. 2019, 55, 12992–12995.

[60]

Wan, X. K.; Wang, J. Q.; Wang, Q. M. Ligand-protected Au55 with a novel structure and remarkable CO2 electroreduction performance. Angew. Chem., Int. Ed. 2021, 60, 20748–20753.

[61]

Yang, H. Y.; Wang, Y.; Edwards, A. J.; Yan, J. Z.; Zheng, N. F. High-yield synthesis and crystal structure of a green Au30 cluster co-capped by thiolate and sulfide. Chem. Commun. 2014, 50, 14325–14327.

[62]

Diecke, M.; Schrenk, C.; Schnepf, A. Synthesis and characterization of the highly unstable metalloid cluster Ag64(P nBu3)16Cl6. Angew. Chem., Int. Ed. 2020, 59, 14418–14422.

[63]

Bootharaju, M. S.; Kozlov, S. M.; Cao, Z.; Harb, M.; Maity, N.; Shkurenko, A.; Parida, M. R.; Hedhili, M. N.; Eddaoudi, M.; Mohammed, O. F. et al. Doping-induced anisotropic self-assembly of silver icosahedra in [Pt2Ag23Cl7(PPh3)10] nanoclusters. J. Am. Chem. Soc. 2017, 139, 1053–1056.

[64]

Takano, S.; Hirai, H.; Nakashima, T.; Iwasa, T.; Taketsugu, T.; Tsukuda, T. Photoluminescence of doped superatoms M@Au12 (M = Ru, Rh, Ir) homoleptically capped by (Ph2)PCH2P(Ph2): Efficient room-temperature phosphorescence from Ru@Au12. J. Am. Chem. Soc. 2021, 143, 10560–10564.

[65]

Dhayal, R. S.; Liao, J. H.; Liu, Y. C.; Chiang, M. H.; Kahlal, S.; Saillard, J. Y.; Liu, C. W. [Ag21{S2P(O iPr)2}12]+: An eight-electron superatom. Angew. Chem., Int. Ed. 2015, 54, 3702–3706.

[66]

Dhayal, R. S.; Lin, Y. R.; Liao, J. H.; Chen, Y. J.; Liu, Y. C.; Chiang, M. H.; Kahlal, S.; Saillard, J. Y.; Liu, C. W. [Ag20{S2P(OR)2}12]: A superatom complex with a chiral metallic core and high potential for isomerism. Chem.—Eur. J. 2016, 22, 9943–9947.

[67]

Gharib, M.; Galchenko, M.; Klinke, C.; Parak, W. J.; Chakraborty, I. Mechanistic insights and selected synthetic routes of atomically precise metal nanoclusters. Nano Select 2021, 2, 831–846.

[68]

Rao, T. U. B.; Nataraju, B.; Pradeep, T. Ag9 quantum cluster through a solid-state route. J. Am. Chem. Soc. 2010, 132, 16304–16307.

[69]

Chakraborty, I.; Kurashige, W.; Kanehira, K.; Gell, L.; Häkkinen, H.; Negishi, Y.; Pradeep, T. Ag44(SeR)30: A hollow cage silver cluster with selenolate protection. J. Phys. Chem. Lett. 2013, 4, 3351–3355.

[70]

Chakraborty, I.; Govindarajan, A.; Erusappan, J.; Ghosh, A.; Pradeep, T.; Yoon, B.; Whetten, R. L.; Landman, U. The superstable 25 kDa monolayer protected silver nanoparticle: Measurements and interpretation as an icosahedral Ag152(SCH2CH2Ph)60 cluster. Nano Lett. 2012, 12, 5861–5866.

[71]

Vajda, S.; White, M. G. Catalysis applications of size-selected cluster deposition. ACS Catal. 2015, 5, 7152–7176.

[72]

Negreiros, F. R.; Halder, A.; Yin, C. R.; Singh, A.; Barcaro, G.; Sementa, L.; Tyo, E. C.; Pellin, M. J.; Bartling, S.; Meiwes-Broer, K. H. et al. Bimetallic Ag-Pt sub-nanometer supported clusters as highly efficient and robust oxidation catalysts. Angew. Chem., Int. Ed. 2018, 57, 1209–1213.

[73]

von Weber, A.; Anderson, S. L. Electrocatalysis by mass-selected Pt n clusters. Acc. Chem. Res. 2016, 49, 2632–2639.

[74]

Du, Y. X.; Sheng, H. T.; Astruc, D.; Zhu, M. Z. Atomically precise noble metal nanoclusters as efficient catalysts: A bridge between structure and properties. Chem. Rev. 2020, 120, 526–622.

[75]

Yao, L. Y.; Yam, V. W. W. Diphosphine-stabilized small gold nanoclusters: From crystal structure determination to ligation-driven symmetry breaking and anion exchange properties. J. Am. Chem. Soc. 2016, 138, 15736–15742.

[76]

Bernardes, C. E. S.; Lopes, M. L. S. M.; Ascenso, J. R.; da Piedade, M. E. M. From molecules to crystals: The solvent plays an active role throughout the nucleation pathway of molecular organic crystals. Cryst. Growth Des. 2014, 14, 5436–5441.

[77]

Wang, Z. Y.; Wang, M. Q.; Li, Y. L.; Luo, P.; Jia, T. T.; Huang, R. W.; Zang, S. Q.; Mak, T. C. W. Atomically precise site-specific tailoring and directional assembly of superatomic silver nanoclusters. J. Am. Chem. Soc. 2018, 140, 1069–1076.

[78]

Deng, G. C.; Malola, S.; Yuan, P.; Liu, X. H.; Teo, B. K.; Häkkinen, H.; Zheng, N. F. Enhanced surface ligands reactivity of metal clusters by bulky ligands for controlling optical and chiral properties. Angew. Chem., Int. Ed. 2021, 60, 12897–12903.

[79]

Wen, F.; Englert, U.; Gutrath, B.; Simon, U. Crystal structure, electrochemical and optical properties of [Au9(PPh3)8](NO3)3. Eur. J. Inorg. Chem. 2008, 2008, 106–111.

[80]

Teo, B. K.; Zhang, H.; Shi, X. B. Cluster of clusters: A modular approach to large metal clusters. Structural characterization of a 38-atom cluster [(p-Tol3P)12Au18Ag20Cl14] based on vertex-sharing triicosahedra. J. Am. Chem. Soc. 1990, 112, 8552–8562.

[81]

Shen, H.; Wang, L. Z.; López-Estrada, O.; Hu, C. Y.; Wu, Q. Y.; Cao, D. X.; Malola, S.; Teo, B. K.; Häkkinen, H.; Zheng, N. F. Copper-hydride nanoclusters with enhanced stability by N-heterocyclic carbenes. Nano Res. 2021, 14, 3303–3308.

[82]

Schmid, G.; Pfeil, R.; Boese, R.; Bandermann, F.; Meyer, S.; Calis, G. H. M.; van der Velden, J. W. A. Au55[p(C6H5)3]12CI6—ein goldcluster ungewöhnlicher größe. Chem. Ber. 1981, 114, 3634–3642.

[83]

Schmid, G.; Chi, L. F. Metal clusters and colloids. 3.0.CO;2-Y">Adv. Mater. 1998, 10, 515–526.

[84]

Hu, F.; Li, J. J.; Guan, Z. J.; Yuan, S. F.; Wang, Q. M. Formation of an alkynyl-protected Ag112 silver nanocluster as promoted by chloride released in situ from CH2Cl2. Angew. Chem., Int. Ed. 2020, 59, 5312–5315.

[85]

Shen, H.; Kubo, K.; Kume, S.; Zhang, L. M.; Mizuta, T. Novel chloride-centered Ag18 clusters featuring a cuboctahedral Ag12 skeleton. Dalton Trans. 2017, 46, 16199–16204.

[86]

Shichibu, Y.; Kamei, Y.; Konishi, K. Unique [core+two] structure and optical property of a dodeca-ligated undecagold cluster: Critical contribution of the exo gold atoms to the electronic structure. Chem. Commun. 2012, 48, 7559–7561.

[87]

Teo, B. K.; Hong, M.; Zhang, H.; Huang, D.; Shi, X. Cluster of clusters: Structure of a novel 38-atom cluster ( p-tolyl3P)12Au18Ag20Cl14. J. Chem. Soc., Chem. Commun 1988, 204–206.

[88]

Teo, B. K.; Zhang, H.; Shi, X. B. Molecular architecture of a novel vertex-sharing biicosahedral cluster [( p-Tol3P)10Au13Ag12Br8](PF6) containing a staggered-staggered-staggered configuration for the 25-atom metal framework. Inorg. Chem. 1990, 29, 2083–2091.

[89]

Pan, P. Y.; Zhang, D.; Zou, X. J.; Kang, X.; Zhu, M. Z. Ligand-correlated crystalline assembly of nanoclusters with atomic precision. Polyoxometalates 2023, 2, 9140035.

[90]

Shi, W. Q.; Guan, Z. J.; Li, J. J.; Han, X. S.; Wang, Q. M. Site-specific doping of silver atoms into a Au25 nanocluster as directed by ligand binding preferences. Chem. Sci. 2022, 13, 5148–5154.

[91]

Zhang, Y.; Zhang, W.; Zhang, T. S.; Ge, C.; Tao, Y.; Fei, W. W.; Fan, W. G.; Zhou, M.; Li, M. B. Site-recognition-induced structural and photoluminescent evolution of the gold-pincer nanocluster. J. Am. Chem. Soc. 2024, 146, 9631–9639.

[92]

Zeng, C. J.; Li, T.; Das, A.; Rosi, N. L.; Jin, R. C. Chiral structure of thiolate-protected 28-gold-atom nanocluster determined by X-ray crystallography. J. Am. Chem. Soc. 2013, 135, 10011–10013.

[93]

Zeng, C. J.; Qian, H. F.; Li, T.; Li, G.; Rosi, N. L.; Yoon, B.; Barnett, R. N.; Whetten, R. L.; Landman, U.; Jin, R. C. Total structure and electronic properties of the gold nanocrystal Au36(SR)24. Angew. Chem., Int. Ed. 2012, 51, 13114–13118.

[94]

Zhuang, S. L.; Liao, L. W.; Yuan, J. Y.; Xia, N.; Zhao, Y.; Wang, C. M.; Gan, Z. B.; Yan, N.; He, L. Z.; Li, J. et al. Fcc versus Non-fcc structural isomerism of gold nanoparticles with kernel atom packing dependent photoluminescence. Angew. Chem., Int. Ed. 2019, 58, 4510–4514.

[95]

Zeng, C. J.; Chen, Y. X.; Iida, K.; Nobusada, K.; Kirschbaum, K.; Lambright, K. J.; Jin, R. C. Gold quantum boxes: On the periodicities and the quantum confinement in the Au28, Au36, Au44, and Au52 magic series. J. Am. Chem. Soc. 2016, 138, 3950–3953.

[96]

Zeng, C. J.; Liu, C.; Chen, Y. X.; Rosi, N. L.; Jin, R. C. Atomic structure of self-assembled monolayer of thiolates on a tetragonal Au92 nanocrystal. J. Am. Chem. Soc. 2016, 138, 8710–8713.

[97]

Wan, X. K.; Guan, Z. J.; Wang, Q. M. Homoleptic alkynyl-protected gold nanoclusters: Au44(PhC≡C)28 and Au36(PhC≡C)24. Angew. Chem., Int. Ed. 2017, 56, 11494–11497.

[98]

Yonesato, K.; Ito, H.; Itakura, H.; Yokogawa, D.; Kikuchi, T.; Mizuno, N.; Yamaguchi, K.; Suzuki, K. Controlled assembly synthesis of atomically precise ultrastable silver nanoclusters with polyoxometalates. J. Am. Chem. Soc. 2019, 141, 19550–19554.

[99]

Chen, S.; Fang, W.-H.; Zhang, L.; Zhang J. Atomically precise multimetallic semiconductive nanoclusters with optical limiting effects. Angew. Chem., Int. Ed. 2018, 57, 11252–11256.

[100]

Guan, Z. J.; Hu, F.; Li, J. J.; Liu, Z. R.; Wang, Q. M. Homoleptic alkynyl-protected gold nanoclusters with unusual compositions and structures. Nanoscale 2020, 12, 13346–13350.

[101]

Wang, J. Q.; Shi, S.; He, R. L.; Yuan, S. F.; Yang, G. Y.; Liang, G. J.; Wang, Q. M. Total structure determination of the largest alkynyl-protected fcc gold nanocluster Au110 and the study on its ultrafast excited-state dynamics. J. Am. Chem. Soc. 2020, 142, 18086–18092.

[102]

Lei, Z.; Li, J. J.; Wan, X. K.; Zhang, W. H.; Wang, Q. M. Isolation and total structure determination of an all-alkynyl-protected gold nanocluster Au144. Angew. Chem., Int. Ed. 2018, 57, 8639–8643.

[103]

Yang, X. J.; Lin, X. Z.; Liu, C.; Wu, R. A.; Yan, J. H.; Huang, J. H. Reversible conversion between phosphine protected Au6 and Au8 nanoclusters under oxidative/reductive conditions. Nanoscale 2017, 9, 2424–2427.

[104]

Chen, J.; Zhang, Q. F.; Bonaccorso, T. A.; Williard, P. G.; Wang, L. S. Controlling gold nanoclusters by diphospine ligands. J. Am. Chem. Soc. 2014, 136, 92–95.

[105]

Takano, S.; Tsukuda, T. Amplification of the optical activity of gold clusters by the proximity of BINAP. J. Phys. Chem. Lett. 2016, 7, 4509–4513.

[106]

Deng, G. C.; Malola, S.; Yan, J. Z.; Han, Y. Z.; Yuan, P.; Zhao, C. W.; Yuan, X. T.; Lin, S. C.; Tang, Z. C.; Teo, B. K. et al. From symmetry breaking to unraveling the origin of the chirality of ligated Au13Cu2 nanoclusters. Angew. Chem., Int. Ed. 2018, 57, 3421–3425.

[107]

Wang, J. Q.; Guan, Z. J.; Liu, W. D.; Yang, Y.; Wang, Q. M. Chiroptical activity enhancement via structural control: The chiral synthesis and reversible interconversion of two intrinsically chiral gold nanoclusters. J. Am. Chem. Soc. 2019, 141, 2384–2390.

[108]

Narouz, M. R.; Osten, K. M.; Unsworth, P. J.; Man, R. W. Y.; Salorinne, K.; Takano, S.; Tomihara, R.; Kaappa, S.; Malola, S.; Dinh, C. T. et al. N-heterocyclic carbene-functionalized magic-number gold nanoclusters. Nat. Chem. 2019, 11, 419–425.

[109]

Shen, H.; Deng, G. C.; Kaappa, S.; Tan, T. D.; Han, Y. Z.; Malola, S.; Lin, S. C.; Teo, B. K.; Häkkinen, H.; Zheng, N. F. Highly robust but surface-active: An N-heterocyclic carbene-stabilized Au25 nanocluster. Angew. Chem., Int. Ed. 2019, 58, 17731–17735.

[110]

Shen, H.; Xiang, S. J.; Xu, Z.; Liu, C.; Li, X. H.; Sun, C. F.; Lin, S. C.; Teo, B. K.; Zheng, N. F. Superatomic Au13 clusters ligated by different N-heterocyclic carbenes and their ligand-dependent catalysis, photoluminescence, and proton sensitivity. Nano Res. 2020, 13, 1908–1911.

[111]

Shen, H.; Xu, Z.; Hazer, M. S. A.; Wu, Q. Y.; Peng, J.; Qin, R. X.; Malola, S.; Teo, B. K.; Häkkinen, H.; Zheng, N. F. Surface coordination of multiple ligands endows N-heterocyclic carbene-stabilized gold nanoclusters with high robustness and surface reactivity. Angew. Chem., Int. Ed. 2021, 60, 3752–3758.

[112]

Jin, L. Q.; Weinberger, D. S.; Melaimi, M.; Moore, C. E.; Rheingold, A. L.; Bertrand, G. Trinuclear gold clusters supported by cyclic (alkyl)(amino)carbene ligands: Mimics for gold heterogeneous catalysts. Angew. Chem., Int. Ed. 2014, 53, 9059–9063.

[113]

Narouz, M. R.; Takano, S.; Lummis, P. A.; Levchenko, T. I.; Nazemi, A.; Kaappa, S.; Malola, S.; Yousefalizadeh, G.; Calhoun, L. A.; Stamplecoskie, K. G. et al. Robust, highly luminescent Au13 superatoms protected by N-heterocyclic carbenes. J. Am. Chem. Soc. 2019, 141, 14997–15002.

[114]

Su, H. F.; Wang, Y.; Ren, L. T.; Yuan, P.; Teo, B. K.; Lin, S. C.; Zheng, L. S.; Zheng, N. F. Fractal patterns in nucleation and growth of icosahedral core of [Au n Ag44− n (SC6H3F2)30]4− ( n = 0–12) via ab initio synthesis: Continuously tunable composition control. Inorg. Chem. 2019, 58, 259–264.

[115]

Chen, Z. N.; Zhao, N.; Fan, Y.; Ni, J. Luminescent groups 10 and 11 heteropolynuclear complexes based on thiolate or alkynyl ligands. Coord. Chem. Rev. 2009, 253, 1–20.

[116]

Jin, S.; Wang, S. X.; Xiong, L.; Zhou, M.; Chen, S.; Du, W. J.; Xia, A. D.; Pei, Y.; Zhu, M. Z. Two electron reduction: From quantum dots to metal nanoclusters. Chem. Mater. 2016, 28, 7905–7911.

[117]

Wan, X. K.; Tang, Q.; Yuan, S. F.; Jiang, D. E.; Wang, Q. M. Au19 nanocluster featuring a V-shaped alkynyl-gold motif. J. Am. Chem. Soc. 2015, 137, 652–655.

[118]

Wan, X. K.; Yuan, S. F.; Tang, Q.; Jiang, D. E.; Wang, Q. M. Alkynyl-protected Au23 nanocluster: A 12-electron system. Angew. Chem., Int. Ed. 2015, 54, 5977–5980.

[119]

Lei, Z.; Wan, X. K.; Yuan, S. F.; Guan, Z. J.; Wang, Q. M. Alkynyl approach toward the protection of metal nanoclusters. Acc. Chem. Res. 2018, 51, 2465–2474.

[120]

Shen, H.; Xu, Z.; Wang, L. Z.; Han, Y. Z.; Liu, X. H.; Malola, S.; Teo, B. K.; Häkkinen, H.; Zheng, N. F. Tertiary chiral nanostructures from C–H···F directed assembly of chiroptical superatoms. Angew. Chem., Int. Ed. 2021, 60, 22411–22416.

[121]

Kawawaki, T.; Imai, Y.; Suzuki, D.; Kato, S.; Kobayashi, I.; Suzuki, T.; Kaneko, R.; Hossain, S.; Negishi, Y. Atomically precise alloy nanoclusters. Chem.—Eur. J. 2020, 26, 16150–16193.

[122]

Chakraborty, I.; Pradeep, T. Atomically precise clusters of noble metals: Emerging link between atoms and nanoparticles. Chem. Rev. 2017, 117, 8208–8271.

[123]

Jin, R. C.; Li, G.; Sharma, S.; Li, Y. W.; Du, X. S. Toward active-site tailoring in heterogeneous catalysis by atomically precise metal nanoclusters with crystallographic structures. Chem. Rev. 2021, 121, 567–648.

[124]

Smith, C. A.; Narouz, M. R.; Lummis, P. A.; Singh, I.; Nazemi, A.; Li, C. H.; Crudden, C. M. N-heterocyclic carbenes in materials chemistry. Chem. Rev. 2019, 119, 4986–5056.

[125]

Teo, B. K.; Zhang, H. Polyicosahedricity: Icosahedron to icosahedron of icosahedra growth pathway for bimetallic (Au-Ag) and trimetallic (Au-Ag-M; M = Pt, Pd, Ni) supraclusters; synthetic strategies, site preference, and stereochemical principles. Coord. Chem. Rev. 1995, 143, 611–636.

[126]

Hossain, S.; Suzuki, D.; Iwasa, T.; Kaneko, R.; Suzuki, T.; Miyajima, S.; Iwamatsu, Y.; Pollitt, S.; Kawawaki, T.; Barrabés, N. et al. Determining and controlling Cu-substitution sites in thiolate-protected gold-based 25-atom alloy nanoclusters. J. Phys. Chem. C 2020, 124, 22304–22313.

[127]

Yi, H.; Han, S. M.; Song, S.; Kim, M.; Sim, E.; Lee, D. Superatom-in-superatom [RhH@Ag24(SPhMe2)18]2− nanocluster. Angew. Chem., Int. Ed. 2021, 60, 22293–22300.

[128]

Kikukawa, Y.; Kuroda, Y.; Suzuki, K.; Hibino, M.; Yamaguchi, K.; Mizuno, N. A discrete octahedrally shaped [Ag6]4+ cluster encapsulated within silicotungstate ligands. Chem. Commun. 2013, 49, 376–378.

[129]

Suzuki, W.; Takahata, R.; Chiga, Y.; Kikkawa, S.; Yamazoe, S.; Mizuhata, Y.; Tokitoh, N.; Teranishi, T. Control over ligand-exchange positions of thiolate-protected gold nanoclusters using steric repulsion of protecting ligands. J. Am. Chem. Soc. 2022, 144, 12310–12320.

[130]

AbdulHalim, L. G.; Kothalawala, N.; Sinatra, L.; Dass, A.; Bakr, O. M. Neat and complete: Thiolate-ligand exchange on a silver molecular nanoparticle. J. Am. Chem. Soc. 2014, 136, 15865–15868.

[131]

Hornstein, B. J.; Finke, R. G. Transition-metal nanocluster kinetic and mechanistic studies emphasizing nanocluster agglomeration: Demonstration of a kinetic method that allows monitoring of all three phases of nanocluster formation and aging. Chem. Mater. 2004, 16, 139–150.

[132]

Finney, E. E.; Finke, R. G. Nanocluster nucleation and growth kinetic and mechanistic studies: A review emphasizing transition-metal nanoclusters. J. Colloid Interface Sci. 2008, 317, 351–374.

[133]

Zhu, M. Z.; Qian, H. F.; Jin, R. C. Thiolate-protected Au20 clusters with a large energy gap of 2.1 eV. J. Am. Chem. Soc. 2009, 131, 7220–7221.

[134]

Yan, J. Z.; Malola, S.; Hu, C. Y.; Peng, J.; Dittrich, B.; Teo, B. K.; Häkkinen, H.; Zheng, L. S.; Zheng, N. F. Co-crystallization of atomically precise metal nanoparticles driven by magic atomic and electronic shells. Nat. Commun. 2018, 9, 3357.

[135]

Yuan, X.; Zhang, B.; Luo, Z. T.; Yao, Q. F.; Leong, D. T.; Yan, N.; Xie, J. P. Balancing the rate of cluster growth and etching for gram-scale synthesis of thiolate-protected Au25 nanoclusters with atomic precision. Angew. Chem., Int. Ed. 2014, 53, 4623–4627.

[136]

Pyo, K.; Thanthirige, V. D.; Kwak, K.; Pandurangan, P.; Ramakrishna, G.; Lee, D. Ultrabright luminescence from gold nanoclusters: Rigidifying the Au(I)-thiolate shell. J. Am. Chem. Soc. 2015, 137, 8244–8250.

[137]

Yuan, S. F.; He, R. L.; Han, X. S.; Wang, J. Q.; Guan, Z. J.; Wang, Q. M. Robust gold nanocluster protected with amidinates for electrocatalytic CO2 reduction. Angew. Chem., Int. Ed. 2021, 60, 14345–14349.

[138]

Yuan, S. F.; Guan, Z. J.; Liu, W. D.; Wang, Q. M. Solvent-triggered reversible interconversion of all-nitrogen-donor-protected silver nanoclusters and their responsive optical properties. Nat. Commun. 2019, 10, 4032.

[139]

Luty-Blocho, M.; Wojnicki, M.; Csapo, E.; Fitzner, K. On the rate of interaction of sodium borohydride with platinum (IV) chloride complexes in alkaline media. Materials 2021, 14, 3137.

[140]

Zheng, N. F.; Fan, J.; Stucky, G. D. One-step one-phase synthesis of monodisperse noble-metallic nanoparticles and their colloidal crystals. J. Am. Chem. Soc. 2006, 128, 6550–6551.

[141]

Ghosh, A.; Udayabhaskararao, T.; Pradeep, T. One-step route to luminescent Au18SG14 in the condensed phase and its closed shell molecular ions in the gas phase. J. Phys. Chem. Lett. 2012, 3, 1997–2002.

[142]

Deetz, J. D.; Cao, F. L.; Sun, H. Exploring the synergy of LiBH4/NaBH4 additives with Mg(BH4)2 electrolyte using density functional theory. J. Electrochem. Soc. 2018, 165, A2451–A2457.

[143]

Nguyen, T. A. D.; Jones, Z. R.; Goldsmith, B. R.; Buratto, W. R.; Wu, G.; Scott, S. L.; Hayton, T. W. A Cu25 nanocluster with partial Cu(0) character. J. Am. Chem. Soc. 2015, 137, 13319–13324.

[144]

Cook, A. W.; Jones, Z. R.; Wu, G.; Scott, S. L.; Hayton, T. W. An organometallic Cu20 nanocluster: Synthesis, characterization, immobilization on silica, and "click" chemistry. J. Am. Chem. Soc. 2018, 140, 394–400.

[145]

Ito, H.; Saito, T.; Miyahara, T.; Zhong, C. M.; Sawamura, M. Gold(I) hydride intermediate in catalysis: Dehydrogenative alcohol silylation catalyzed by gold(I) complex. Organometallics 2009, 28, 4829–4840.

[146]

Han, X. S.; Luan, X. Q.; Su, H. F.; Li, J. J.; Yuan, S. F.; Lei, Z.; Pei, Y.; Wang, Q. M. Structure determination of alkynyl-protected gold nanocluster Au22( tBuC≡C)18 and its thermochromic luminescence. Angew. Chem., Int. Ed. 2020, 59, 2309–2312.

[147]

Sun, D.; Wang, H.; Lu, H. F.; Feng, S. Y.; Zhang, Z. W.; Sun, G. X.; Sun, D. F. Two birds with one stone: Anion templated ball-shaped Ag56 and disc-like Ag20 clusters. Dalton Trans. 2013, 42, 6281–6284.

[148]

Liu, J. W.; Wang, Z.; Chai, Y. M.; Kurmoo, M.; Zhao, Q. Q.; Wang, X. P.; Tung, C. H.; Sun, D. Core modulation of 70-nuclei core-shell silver nanoclusters. Angew. Chem., Int. Ed. 2019, 58, 6276–6279.

[149]

Yu, Y.; Chen, X.; Yao, Q. F.; Yu, Y.; Yan, N.; Xie, J. P. Scalable and precise synthesis of thiolated Au10-12, Au15, Au18, and Au25 nanoclusters via pH controlled CO reduction. Chem. Mater. 2013, 25, 946–952.

[150]

Wu, Z. K.; MacDonald, M. A.; Chen, J.; Zhang, P.; Jin, R. C. Kinetic control and thermodynamic selection in the synthesis of atomically precise gold nanoclusters. J. Am. Chem. Soc. 2011, 133, 9670–9673.

[151]

Shen, H.; Han, Y. Z.; Wu, Q. Y.; Peng, J.; Teo, B. K.; Zheng, N. F. Simple and selective synthesis of copper-containing metal nanoclusters using (PPh3)2CuBH4 as reducing agent. Small Methods 2021, 5, 2000603.

[152]

Wang, Y.; Su, H. F.; Xu, C. F.; Li, G.; Gell, L.; Lin, S. C.; Tang, Z. C.; Häkkinen, H.; Zheng, N. F. An intermetallic Au24Ag20 superatom nanocluster stabilized by labile ligands. J. Am. Chem. Soc. 2015, 137, 4324–4327.

[153]

Jin, S.; Zhou, M. M.; Kang, X.; Li, X. W.; Du, W. J.; Wei, X.; Chen, S.; Wang, S. X.; Zhu, M. Z. Three-dimensional octameric assembly of icosahedral M13 units in [Au8Ag57(Dppp)4(C6H11S)32Cl2]Cl and its [Au8Ag55(Dppp)4(C6H11S)34][BPh4]2 derivative. Angew. Chem., Int. Ed. 2020, 59, 3891–3895.

[154]

Ghosh, A.; Huang, R. W.; Alamer, B.; Abou-Hamad, E.; Hedhili, M. N.; Mohammed, O. F.; Bakr, O. M. [Cu61(StBu)26S6Cl6H14]+: A core-shell superatom nanocluster with a Quasi- J36 Cu19 core and an “18-crown-6” metal-sulfide-like stabilizing belt. ACS Mater. Lett. 2019, 1, 297–302.

[155]

Huang, R. W.; Yin, J.; Dong, C. W.; Ghosh, A.; Alhilaly, M. J.; Dong, X. L.; Hedhili, M. N.; Abou-Hamad, E.; Alamer, B.; Nematulloev, S. et al. [Cu81(PhS)46( t BuNH2)10(H)32]3+ reveals the coexistence of large planar cores and hemispherical shells in high-nuclearity copper nanoclusters. J. Am. Chem. Soc. 2020, 142, 8696–8705.

[156]

Ma, X. S.; Ma, G. Y.; Qin, L. B.; Chen, G. X.; Chen, S. W.; Tang, Z. H. A synchronous nucleation and passivation strategy for controllable synthesis of Au36(PA)24: Unveiling the formation process and the role of Au22(PA)18 intermediate. Sci. China Chem. 2020, 63, 1777–1784.

[157]

Yao, Q. F.; Chen, T. K.; Yuan, X.; Xie, J. P. Toward total synthesis of thiolate-protected metal nanoclusters. Acc. Chem. Res. 2018, 51, 1338–1348.

[158]

Yu, Y.; Luo, Z. T.; Yu, Y.; Lee, J. Y.; Xie, J. P. Observation of cluster size growth in CO-directed synthesis of Au25(SR)18 nanoclusters. ACS Nano 2012, 6, 7920–7927.

[159]

Fetzer, F.; Schrenk, C.; Pollard, N.; Adeagbo, A.; Clayborne, A. Z.; Schnepf, A. A new reductant in gold cluster chemistry gives a superatomic gold gallium cluster. Chem. Commun. 2021, 57, 3551–3554.

[160]

Wang, Y. X.; Zhang, J.; Su, H. F.; Cui, X. Q.; Wei, C. Y.; Li, H.; Zhang, X. M. Photochemical synthesis of atomically precise Ag nanoclusters. ACS Nano 2023, 17, 11607–11615.

[161]

Metin, E.; Batibay, G. S.; Arsu, N. In-situ formation of self-assembled Ag nanoclusters on ct-DNA in the presence of 2-mercaptothioxanthone by using UV-vis light irradiation. J. Photochem. Photobiol. A: Chem. 2018, 356, 1–6.

[162]

Dhanalakshmi, L.; Udayabhaskararao, T.; Pradeep, T. Conversion of double layer charge-stabilized Ag@citrate colloids to thiol passivated luminescent quantum clusters. Chem. Commun. 2012, 48, 859–861.

[163]

Wang, Z.; Wang, Y. C.; Xu, T. Y.; Li, L.; Aikens, C. M.; Gao, Z. Y.; Azam, M.; Tung, C. H.; Sun, D. Temperature-controlled selective formation of silver nanoclusters and their transformation to the same product. Angew. Chem., Int. Ed. 2024, 63, e202403464

[164]

Wu, Z. K.; Suhan, J.; Jin, R. C. One-pot synthesis of atomically monodisperse, thiol-functionalized Au25 nanoclusters. J. Mater. Chem. 2009, 19, 622–626.

[165]

Qian, H. F.; Zhu, Y.; Jin, R. C. Size-focusing synthesis, optical and electrochemical properties of monodisperse Au38(SC2H4Ph)24 nanoclusters. ACS Nano 2009, 3, 3795–3803.

[166]

Shichibu, Y.; Suzuki, K.; Konishi, K. Facile synthesis and optical properties of magic-number Au13 clusters. Nanoscale 2012, 4, 4125–4129.

[167]

Qian, H. F.; Jiang, D. E.; Li, G.; Gayathri, C.; Das, A.; Gil, R. R.; Jin, R. C. Monoplatinum doping of gold nanoclusters and catalytic application. J. Am. Chem. Soc. 2012, 134, 16159–16162.

[168]

Ghosh, A.; Hassinen, J.; Pulkkinen, P.; Tenhu, H.; Ras, R. H. A.; Pradeep, T. Simple and efficient separation of atomically precise noble metal clusters. Anal. Chem. 2014, 86, 12185–12190.

[169]

Niihori, Y.; Matsuzaki, M.; Pradeep, T.; Negishi, Y. Separation of precise compositions of noble metal clusters protected with mixed ligands. J. Am. Chem. Soc. 2013, 135, 4946–4949.

[170]

Kang, X.; Wei, X.; Jin, S.; Wang, S. X.; Zhu, M. Z. Controlling the crystallographic packing modes of Pt1Ag28 nanoclusters: Effects on the optical properties and nitrogen adsorption-desorption performances. Inorg. Chem. 2021, 60, 4198–4206.

[171]

Zhang, X.; Yang, H. Y.; Zhao, X. J.; Wang, Y.; Zheng, N. F. The effects of surface ligands and counter cations on the stability of anionic thiolated M12Ag32 (M = Au, Ag) nanoclusters. Chin. Chem. Lett. 2014, 25, 839–843.

[172]

Wang, Y.; Wan, X. K.; Ren, L. T.; Su, H. F.; Li, G.; Malola, S.; Lin, S. C.; Tang, Z. C.; Häkkinen, H.; Teo, B. K. et al. Atomically precise alkynyl-protected metal nanoclusters as a model catalyst: Observation of promoting effect of surface ligands on catalysis by metal nanoparticles. J. Am. Chem. Soc. 2016, 138, 3278–3281.

[173]

Ren, L. T.; Yuan, P.; Su, H. F.; Malola, S.; Lin, S. C.; Tang, Z. C.; Teo, B. K.; Häkkinen, H.; Zheng, L. S.; Zheng, N. F. Bulky surface ligands promote surface reactivities of [Ag141X12(S-Adm)40]3+ (X = Cl, Br, I) nanoclusters: Models for multiple-twinned nanoparticles. J. Am. Chem. Soc. 2017, 139, 13288–13291.

[174]

Dietz, W. Effect of cooling on crystallization and microstructure of polypropylene. Polym. Eng. Sci. 2016, 56, 1291–1302.

[175]

Wang, J. Y.; Cao, W. Q.; Zhu, L. Y.; Wang, J. L.; Lakerveld, R. Emulsion-assisted cooling crystallization of ibuprofen. Chem. Eng. Sci. 2020, 226, 115861.

[176]

Zaykovskaya, A.; Louhi-Kultanen, M. Batch crystallization of xylitol by cooling, evaporative, and antisolvent crystallization. Cryst. Growth Des. 2023, 23, 1813–1820.

[177]

Zhai, J.; Jia, Y. W.; Zhao, L. N.; Yuan, Q.; Gao, F. P.; Zhang, X. C.; Cai, P. J.; Gao, L.; Guo, J. J.; Yi, S. H. et al. Turning on/off the anti-tumor effect of the au cluster via atomically controlling its molecular size. ACS Nano 2018, 12, 4378–4386.

[178]

Wang, L. W.; Xu, S. H.; Zhou, H. W.; Sun, Z. W.; Xu, F. Effect of void structures in crystalline structure on the shear moduli of charged colloidal crystals. Colloids Surf. A 2017, 516, 115–120.

[179]

Yan, J. Z.; Su, H. F.; Yang, H. Y.; Hu, C. Y.; Malola, S.; Lin, S. C.; Teo, B. K.; Häkkinen, H.; Zheng, N. F. Asymmetric synthesis of chiral bimetallic [Ag28Cu12(SR)24]4− nanoclusters via ion pairing. J. Am. Chem. Soc. 2016, 138, 12751–12754.

[180]

He, L. Z.; Gan, Z. B.; Xia, N.; Liao, L. W.; Wu, Z. K. Alternating array stacking of Ag26Au and Ag24Au nanoclusters. Angew. Chem., Int. Ed. 2019, 58, 9897–9901.

[181]

Yoo, S.; Yoo, S.; Deng, G. C.; Sun, F.; Lee, K.; Jang, H.; Lee, C. W.; Liu, X. L.; Jang, J.; Tang, Q. et al. Nanocluster surface microenvironment modulates electrocatalytic CO2 reduction. Adv. Mater. 2024, 36, 2313032.

[182]

Lei, Z.; Li, J. J.; Nan, Z. A.; Jiang, Z. G.; Wang, Q. M. Cluster from cluster: A quantitative approach to magic gold nanoclusters [Au25(SR)18]-. Angew. Chem., Int. Ed. 2021, 60, 14415–14419.

[183]

Zhu, Z. M.; Zhao, Y.; Zhao, H. L.; Liu, C.; Zhang, Y.; Fei, W. W.; Bi, H.; Li, M. B. Photochemical route for synthesizing atomically precise metal nanoclusters from disulfide. Nano Lett. 2023, 23, 7508–7515.

[184]

Shi, W. Q.; Zeng, L. L.; He, R. L.; Han, X. S.; Guan, Z. J.; Zhou, M.; Wang, Q. M. Near-unity NIR phosphorescent quantum yield from a room-temperature solvated metal nanocluster. Science 2024, 383, 326–330.

[185]

Wang, H.; Zhang, X. Y.; Zhang, W.; Zhou, M.; Jiang, H. L. Heteroatom-doped Ag25 nanoclusters encapsulated in metal-organic frameworks for photocatalytic hydrogen production. Angew. Chem., Int. Ed. 2024, 63, e202401443.

[186]

Ma, A. L.; Wang, J. W.; Wang, Y. F.; Zuo, Y.; Ren, Y. G.; Ma, X. S.; Wang, S. X. Atomically precise M15 (M = Au/Ag/Cu) alloy nanoclusters: Structural analysis, optical and electrocatalytic CO2 reduction properties. Polyoxometalates 2024, 3, 9140054.

[187]

Chen, R. Y.; Chen, G. H.; He, Y. P.; Zhang, J. Coordination assembly of tetrahedral Ti4(embonate)6 cages with alkaline-earth metal ions. Chin. J. Struct. Chem. 2022, 41, 2201001–2201006.

[188]

Chen, W. J.; Zhang, T. Y.; Wu, X. Q.; Li, Y. S.; Liu, Y. L.; Wu, Y. P.; He, Z. B.; Li, D. S. A 3D Ni8-cluster-based MOF as a molecular electrocatalyst for alcohol oxidation in alkaline media. Chin. J. Struct. Chem. 2023, 42, 100018.

Polyoxometalates
Article number: 9140075
Cite this article:
Xu Q, Gong X, Zhao Z, et al. Comprehensive and practical guidelines for reduction synthesis of atomically precise coinage–metal nanoclusters. Polyoxometalates, 2025, 4(2): 9140075. https://doi.org/10.26599/POM.2024.9140075

491

Views

228

Downloads

0

Crossref

Altmetrics

Received: 02 April 2024
Revised: 30 July 2024
Accepted: 06 August 2024
Published: 02 September 2024
© The Author(s) 2025. Published by Tsinghua University Press.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the original author(s) and the source, provide a link to the license, and indicate if changes were made. See http://creativecommons.org/licenses/by/4.0/

Return