AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (13.1 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Polyoxovanadate-modified SnO2 electron transport layer for perovskite photodetectors

Ziting LiuYijia HaoJing ZhangYi HeWeilin Chen( )
Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
Show Author Information

Graphical Abstract

Abstract

SnO2 is widely used in perovskite photodetectors as an electron transport layer material. The matching of the energy levels of SnO2 and perovskite is important in carrier transport. Polyoxovanadates (POVs), as semiconductor-like molecules, exhibit good redox and excellent optical properties, which can regulate the energy band structure of SnO2. Here, K5MnV11O32·10H2O (MnV11), K7MnV13O38·18H2O (MnV13), (NH4)8[V19O41(OH)9]·11H2O (V19), and K10[V34O82]·20H2O (V34) were used to modify an SnO2 colloidal solution. Energy level tests demonstrated that the conduction band potential (ECB) of MnV13-modified SnO2 increased from −4.43 to −4.03 eV, which matched more with the energy level of perovskite. This facilitated the extraction and transmission of photogenerated carriers. X-ray diffraction showed that POV-modified SnO2 exhibited better crystallinity. Scanning electron microscopy revealed that the grain size of perovskite increased to 580 nm after modification using MnV13. The final results showed that the MnV13-modified perovskite photodetector demonstrated the best efficiency. The photocurrent of the photodetector increased from 26 to 80 μA, and its stability was good. After 720 h, the normalized current values of unencapsulated devices on the MnV13@SnO2 substrate were maintained at more than 70% of the initial values. The study findings show that introducing POVs into photodetectors is a potential strategy for optimizing the performance of photovoltaic devices.

Electronic Supplementary Material

Download File(s)
0076_ESM.pdf (5.1 MB)

References

[1]

Wang, F.; Zou, X. M.; Xu, M. J.; Wang, H.; Wang, H. L.; Guo, H. J.; Guo, J. X.; Wang, P.; Peng, M.; Wang, Z. et al. Recent progress on electrical and optical manipulations of perovskite photodetectors. Adv. Sci. 2021, 8, 2100569.

[2]

Zhou, X. Y.; Lu, Z. H.; Zhang, L. C.; Ke, Q. Q. Wide-bandgap all-inorganic lead-free perovskites for ultraviolet photodetectors. Nano Energy 2023, 117, 108908.

[3]

Yang, Y.; You, J. B. Make perovskite solar cells stable. Nature 2017, 544, 155–156.

[4]

Pazos-Outón, L. M.; Szumilo, M.; Lamboll, R.; Richter, J. M.; Crespo-Quesada, M.; Abdi-Jalebi, M.; Beeson, H. J.; Vrućinić, M.; Alsari, M.; Snaith, H. J. et al. Photon recycling in lead iodide perovskite solar cells. Science 2016, 351, 1430–1433.

[5]

Tian, W.; Zhou, H. P.; Li, L. Hybrid organic-inorganic perovskite photodetectors. Small 2017, 13, 1702107.

[6]

Wang, H. Y.; Sun, Y.; Chen, J.; Wang, F. C.; Han, R. Y.; Zhang, C. Y.; Kong, J. F.; Li, L.; Yang, J. A review of perovskite-based photodetectors and their applications. Nanomaterials 2022, 12, 4390.

[7]

Li, L.; Tong, S. C.; Zhao, Y.; Wang, C.; Wang, S. T.; Lyu, L.; Huang, Y. B.; Huang, H.; Yang, J. L.; Niu, D. M. et al. Interfacial electronic structures of photodetectors based on C8BTBT/perovskite. ACS Appl. Mater. Interfaces 2018, 10, 20959–20967.

[8]

Yan, T.; Zhang, C. X.; Li, S. Q.; Wu, Y. K.; Sun, Q. J.; Cui, Y. X.; Hao, Y. Y. Multifunctional aminoglycoside antibiotics modified SnO2 enabling high efficiency and mechanical stability perovskite solar cells. Adv. Funct. Mater. 2023, 33, 2302336.

[9]

Stolterfoht, M.; Caprioglio, P.; Wolff, C. M.; Márquez, J. A.; Nordmann, J.; Zhang, S. S.; Rothhardt, D.; Hörmann, U.; Amir, Y.; Redinger, A. et al. The impact of energy alignment and interfacial recombination on the internal and external open-circuit voltage of perovskite solar cells. Energy Environ. Sci. 2019, 12, 2778–2788.

[10]

Yang, D.; Yang, R. X.; Zhang, C.; Ye, T.; Wang, K.; Hou, Y. C.; Zheng, L. Y.; Priya, S.; Liu, S. Z. Highest-efficiency flexible perovskite solar module by interface engineering for efficient charge-transfer. Adv. Mater. 2023, 35, 2302484.

[11]

Chang, C. Y.; Wu, K. S.; Chang, C. Y. N-type conjugated polymer as multi-functional interfacial layer for high-performance and ultra-stable self-powered photodetectors based on perovskite nanowires. Adv. Funct. Mater. 2022, 32, 2108356.

[12]

Subbiah, A. S.; Mathews, N.; Mhaisalkar, S.; Sarkar, S. K. Novel plasma-assisted low-temperature-processed SnO2 thin films for efficient flexible perovskite photovoltaics. ACS Energy Lett. 2018, 3, 1482–1491.

[13]

Min, H.; Lee, D. Y.; Kim, J.; Kim, G.; Lee, K. S.; Kim, J.; Paik, M. J.; Kim, Y. K.; Kim, K. S.; Kim, M. G. et al. Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes. Nature 2021, 598, 444–450.

[14]

Jung, E. H.; Chen, B.; Bertens, K.; Vafaie, M.; Teale, S.; Proppe, A.; Hou, Y.; Zhu, T.; Zheng, C.; Sargent, E. H. Bifunctional surface engineering on SnO2 reduces energy loss in perovskite solar cells. ACS Energy Lett. 2020, 5, 2796–2801.

[15]

Xiong, Z. H.; Lan, L. K.; Wang, Y. Y.; Lu, C. X.; Qin, S. C.; Chen, S. S.; Zhou, L. Y.; Zhu, C.; Li, S. G.; Meng, L. et al. Multifunctional polymer framework modified SnO2 enabling a photostable α-FAPbI3 perovskite solar cell with efficiency exceeding 23%. ACS Energy Lett. 2021, 6, 3824–3830.

[16]

Yang, L.; Feng, J. S.; Liu, Z. K.; Duan, Y. W.; Zhan, S.; Yang, S. M.; He, K.; Li, Y.; Zhou, Y. W.; Yuan, N. Y. et al. Record-efficiency flexible perovskite solar cells enabled by multifunctional organic ions interface passivation. Adv. Mater. 2022, 34, 2201681.

[17]

Gu, Y.; Wu, A. P.; Jiao, Y. Q.; Zheng, H. R.; Wang, X. Q.; Xie, Y.; Wang, L.; Tian, C. G.; Fu, H. G. Two-dimensional porous molybdenum phosphide/nitride heterojunction nanosheets for pH-universal hydrogen evolution reaction. Angew. Chem., Int. Ed. 2021, 60, 6673–6681.

[18]

Guo, H. K.; Li, L. B.; Xu, X. L.; Zeng, M. H.; Chai, S. C.; Wu, L. X.; Li, H. L. Semi-solid superprotonic supramolecular polymer electrolytes based on deep eutectic solvents and polyoxometalates. Angew. Chem. 2022, 134, e202210695.

[19]

Chen, L.; Chen, W. L.; Wang, X. L.; Li, Y. G.; Su, Z. M.; Wang, E. B. Polyoxometalates in dye-sensitized solar cells. Chem. Soc. Rev. 2019, 48, 260–284.

[20]

Wang, T.; Ji, T.; Chen, W. L.; Li, X. H.; Guan, W.; Geng, Y.; Wang, X. L.; Li, Y. G.; Kang, Z. H. Polyoxometalate film simultaneously converts multiple low-value all-weather environmental energy to electricity. Nano Energy. 2020, 68, 104349.

[21]

Ji, T.; Chen, W. L.; Kang, Z. H.; Zhang, L. M. Polyoxometalates for continuous power generation by atmospheric humidity. Nano Res. 2024, 17, 1875–1885.

[22]

Zhang, G. Y.; Wang, Y. F. Metal-oxide clusters with semiconductive heterojunction counterparts. Polyoxometalates 2023, 2, 9140020.

[23]

Li, J.; Zhang, D.; Chi, Y. N.; Hu, C. W. Catalytic application of polyoxovanadates in the selective oxidation of organic molecules. Polyoxometalates 2022, 1, 9140012.

[24]

Li, H. F.; Yuan, Z. L.; Chen, W. J.; Yang, M. N.; Sun, Y. H.; Zhang, S. H.; Ma, P. T.; Wang, J. P.; Niu, J. Y. Controllable redox reaction cycle enabled by multifunctional Ru-containing polyoxometalate-based catalysts. J. Mater. Chem. A 2023, 11, 10813–10822.

[25]

Yin, P. C.; Wu, P. F.; Xiao, Z. C.; Li, D.; Bitterlich, E.; Zhang, J.; Cheng, P.; Vezenov, D. V.; Liu, T. B.; Wei, Y. G. A double-tailed fluorescent surfactant with a hexavanadate cluster as the head group. Angew. Chem., Int. Ed. 2011, 50, 2521–2525.

[26]

Prabhakaran, V.; Lang, Z. L.; Clotet, A.; Poblet, J. M.; Johnson, G. E.; Laskin, J. Controlling the activity and stability of electrochemical interfaces using atom-by-atom metal substitution of redox species. ACS Nano 2019, 13, 458–466.

[27]

Müller, A.; Penk, M.; Krickemeyer, E.; Bögge, H.; Walberg, H. J. [V19O41(OH)9]8, an ellipsoid-shaped cluster anion belonging to the unusual family of VIV/VV oxygen clusters. Angew. Chem., Int. Ed. 1988, 27, 1719–1721.

[28]

Flynn, C. M. Jr; Pope, M. T. Heteropolyvanadomanganates (IV) with Mn:V= 1:11 and 1:4. Inorg. Chem. 1970, 9, 2009–2014.

[29]

Flynn, C. M. Jr; Pope, M. T. 1:13 Heteropolyvanadates of manganese (IV) and nickel (IV). J. Am. Chem. Soc. 1970, 92, 85–90.

[30]

Müller, A.; Rohlfing, R.; Döring, J.; Penk, M. Formation of a cluster sheath around a central cluster by a “self-organization process”: The mixed valence polyoxovanadate [V24O82]10. Angew. Chem., Int. Ed. 1991, 30, 588–590.

[31]

Ahn, N.; Son, D. Y.; Jang, I. H.; Kang, S. M.; Choi, M.; Park, N. G. Highly reproducible perovskite solar cells with average efficiency of 18.3% and best efficiency of 19.7% fabricated via Lewis base adduct of lead(II) iodide. J. Am. Chem. Soc. 2015, 137, 8696–8699.

[32]

Jeon, N. J.; Noh, J. H.; Yang, W. S.; Kim, Y. C.; Ryu, S.; Seo, J.; Seok, S. I. Compositional engineering of perovskite materials for high-performance solar cells. Nature 2015, 517, 476–480.

[33]

Bob, B.; Song, T. B.; Chen, C. C.; Xu, Z.; Yang, Y. Nanoscale dispersions of gelled SnO2: Material properties and device applications. Chem. Mater. 2013, 25, 4725–4730.

[34]

Wang, Y. D.; Djerdj, I.; Smarsly, B.; Antonietti, M. Antimony-doped SnO2 nanopowders with high crystallinity for lithium-ion battery electrode. Chem. Mater. 2009, 21, 3202–3209.

[35]

Makuła, P.; Pacia, M.; Macyk, W. How to correctly determine the band gap energy of modified semiconductor photocatalysts based on UV-Vis spectra. J. Phys. Chem. Lett. 2018, 9, 6814–6817.

[36]

Kanda, H.; Shibayama, N.; Huckaba, A. J.; Lee, Y.; Paek, S.; Klipfel, N.; Roldan-Carmona, C.; Queloz, V. I. E.; Grancini, G.; Zhang, Y. et al. Band-bending induced passivation: High performance and stable perovskite solar cells using a perhydropoly (silazane) precursor. Energy Environ. Sci. 2020, 13, 1222–1230.

[37]

Wu, Y.; Wang, Y. Q.; Li, M. Z.; Wang, Z. Z.; Wu, W. F.; Song, H. F.; Liu, Q. S.; Shi, C. W. Modifying SnO2 with ammonium polyacrylate to enhance the performance of perovskite solar cells. New J. Chem. 2023, 47, 6789–6795.

[38]

Liu, Y. F.; Lin, J. T.; Han, Q.; Yang, C. G.; Li, L.; Xiao, J. R.; Yi, R. N.; Liu, X. L. Phase transition mechanism of CsPbI2Br perovskite films induced by moisture. J. Phys. D: Appl. Phys. 2024, 57, 245103.

[39]

Chen, Q.; Zhou, H. P.; Song, T. B.; Luo, S.; Hong, Z. R.; Duan, H. S.; Dou, L. T.; Liu, Y. S.; Yang, Y. Controllable self-induced passivation of hybrid lead iodide perovskites toward high performance solar cells. Nano Lett. 2014, 14, 4158–4163.

[40]

Su, H.; Zhang, J.; Hu, Y. J.; Du, X. Y.; Yang, Y.; You, J. X.; Gao, L. L.; Liu, S. Z. Fluoroethylamine engineering for effective passivation to attain 23.4% efficiency perovskite solar cells with superior stability. Adv. Energy Mater. 2021, 11, 2101454.

[41]

Bi, C.; Wang, Q.; Shao, Y. C.; Yuan, Y. B.; Xiao, Z. G.; Huang, J. S. Non-wetting surface-driven high-aspect-ratio crystalline grain growth for efficient hybrid perovskite solar cells. Nat. Commun. 2015, 6, 7747.

[42]

Li, Q.; Zhao, Y. C.; Fu, R.; Zhou, W. K.; Zhao, Y.; Liu, X.; Yu, D. P.; Zhao, Q. Efficient perovskite solar cells fabricated through CsCl-enhanced PbI2 precursor via sequential deposition. Adv. Mater. 2018, 30, 1803095.

[43]

Liu, X. L.; Han, Q.; Liu, Y. F.; Xie, C. Y.; Yang, C. G.; Niu, D. M.; Li, Y. Z.; Wang, H. Y.; Xia, L. X.; Yuan, Y. B. et al. Light-induced degradation and self-healing inside CH3NH3PbI3-based solar cells. Appl. Phys. Lett. 2020, 116, 253303.

[44]

Friedl, J.; Holland-Cunz, M. V.; Cording, F.; Pfanschilling, F. L.; Wills, C.; McFarlane, W.; Schricker, B.; Fleck, R.; Wolfschmidt, H.; Stimming, U. Asymmetric polyoxometalate electrolytes for advanced redox flow batteries. Energy Environ. Sci. 2018, 11, 3010–3018.

[45]

Wang, H.; Kim, D. H. Perovskite-based photodetectors: Materials and devices. Chem. Soc. Rev. 2017, 46, 5204–5236.

[46]

Chun, D. H.; Choi, Y. J.; In, Y.; Nam, J. K.; Choi, Y. J.; Yun, S.; Kim, W.; Choi, D.; Kim, D.; Shin, H. et al. Halide perovskite nanopillar photodetector. ACS Nano 2018, 12, 8564–8571.

[47]

Fang, H. J.; Li, Q.; Ding, J.; Li, N.; Tian, H.; Zhang, L. J.; Ren, T. L.; Dai, J. Y.; Wang, L. D.; Yan, Q. F. A self-powered organolead halide perovskite single crystal photodetector driven by a DVD-based triboelectric nanogenerator. J. Mater. Chem. C 2016, 4, 630–636.

[48]

Lin, J. T.; Ding, Z. W.; Li, Y. R.; Yang, X. H.; Yuan, X. M.; Yang, J. L.; Jiang, J.; Liu, K.; Liu, X. L. Formation mechanism of α-phase CsPbI2Br induced by excessive CsBr without an annealing treatment. Synth. Met. 2024, 303, 117573.

Polyoxometalates
Article number: 9140076
Cite this article:
Liu Z, Hao Y, Zhang J, et al. Polyoxovanadate-modified SnO2 electron transport layer for perovskite photodetectors. Polyoxometalates, 2025, 4(1): 9140076. https://doi.org/10.26599/POM.2024.9140076

375

Views

70

Downloads

0

Crossref

Altmetrics

Received: 27 May 2024
Revised: 03 August 2024
Accepted: 09 August 2024
Published: 26 August 2024
© The Author(s) 2025. Published by Tsinghua University Press.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the original author(s) and the source, provide a link to the license, and indicate if changes were made. See http://creativecommons.org/licenses/by/4.0/

Return