Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
The development of novel proton exchange membranes (PEMs) with high proton conductivity and good mechanical performance as alternatives to Nafion is crucial. Polyoxometalates (POMs), a type of solid-state nanoclusters, possess high proton conductivity and good structural stability, making them suitable functional inorganic fillers to improve the performance of PEMs. Herein, the Keggin-type POM H3PW12O40·nH2O (PW12) was introduced into sulfonated polyaryletherketone (SPAEK) with closely packed and flexible side chains to construct hybrid membranes (SPAEK-PW12-x%, x = 5, 10, 13, 15). Because of its structural characteristics, the nanosized PW12 induced precise hybridization of the nanophase structure of this ionomeric polymer and the formation of proton transport channels. Additionally, the hydrogen-bonding networks formed by PW12 and sulfonic acid groups increased the proton conductivity and mechanical strength of the resulting hybrid PEMs and improved the close-packed structure of the PEMs to achieve an appropriate balance between conductivity and fuel permeation. In particular, SPAEK-PW12-13% achieved an enhanced proton conductivity of 0.167 S∙cm−1 at 80 °C, which was 2.2 times greater than that of the pristine membrane. Moreover, the mechanical properties, chemical stability, resistance to methanol penetration, and ionic selectivity of the hybrid membrane were significantly improved upon addition of a moderate amount of PW12. This work provides an approach for the design and development of new-generation organic–inorganic hybrid membranes through precise hybridization of POMs.
Li, J. B.; Cui, N.; Liu, D.; Zhao, Z.; Yang, F.; Zhong, J. D.; Pang, J. H. SPEEK-co-PEK-x proton exchange membranes with controllable sulfonation degree for proton exchange membrane fuel cells. Int. J. Hydrogen Energy 2024, 50, 606–617.
Zhu, S. H.; Zhang, Y. Y.; Zhang, J.; Ma, J. Y.; Li, S. H.; Dai, P.; Wu, Y. X. High-performance proton exchange membrane of sulfonated polystyrene- b-polyisobutylene- b-polystyrene. ACS Appl. Polym. Mater. 2024, 6, 3930–3941.
Gittleman, C. S.; Jia, H. F.; De Castro, E. S.; Chisholm, C. R. I.; Kim, Y. S. Proton conductors for heavy-duty vehicle fuel cells. Joule 2021, 5, 1660–1677.
Guan, J. Y.; Sun, X.; Yu, H. T.; Zheng, J. F.; Sun, Y. X.; Li, S. H.; Qin, G. R.; Zhang, S. B. High conductive and dimensional stability proton exchange membranes with an all-carbon main chain and densely sulfonated structure. J. Membr. Sci. 2024, 700, 122664.
Bai, X. T.; Cao, L. H.; Ji, C.; Zhao, F.; Chen, X. Y.; Cao, X. J.; Huang, M. F. Ultra-high proton conductivity iHOF based on guanidinium arylphosphonate for proton exchange membrane fuel cells. Chem. Mater. 2023, 35, 3172–3180.
Chao, G.; Zhang, Z. G.; Lv, Z. X.; Yang, E. Q.; Gao, R. F.; Ju, Q.; Gao, H.; Niu, C. Y.; Qian, H. D.; Geng, K. et al. Copolymerized sulfonated poly(oxindole biphenylene) polymer electrolyte for proton exchange membrane fuel cells. J. Membr. Sci. 2024, 700, 122674.
Katzenberg, A.; Chowdhury, A.; Fang, M. F.; Weber, A. Z.; Okamoto, Y.; Kusoglu, A.; Modestino, M. A. Highly permeable perfluorinated sulfonic acid ionomers for improved electrochemical devices: Insights into structure-property relationships. J. Am. Chem. Soc. 2020, 142, 3742–3752.
Zuo, P. P.; Li, Y. Y.; Wang, A. Q.; Tan, R.; Liu, Y. H.; Liang, X.; Sheng, F. M.; Tang, G. G.; Ge, L.; Wu, L. et al. Sulfonated microporous polymer membranes with fast and selective ion transport for electrochemical energy conversion and storage. Angew. Chem., Int. Ed. 2020, 59, 9564–9573.
Ji, J. Y.; Han, Y. Y.; Xu, F.; Chu, F. Q.; Li, Y. T.; Lin, B. C. Guanidinium/hydroxyl-functionalized polybenzimidazole for high-temperature proton exchange membrane fuel cell applications. ACS Appl. Energy Mater. 2023, 6, 11754–11761.
Li, T. T.; Chai, S. C.; Liu, B. H.; Zhao, C. J.; Li, H. L. All-carbon backbone aromatic polymers for proton exchange membranes. J. Polym. Sci. 2023, 61, 2796–2814.
Wang, Y.; Wang, Y. M.; Wang, Y. Z.; Su, B. H.; Shi, L. L.; Li, F. B.; Mu, J. B.; Che, H. W.; Zhang, Z. X.; Zhang, X. L. et al. Preparation and performance study of ionic liquid @ boron nitride modified polyimide proton exchange membrane. Polym. Compos. 2023, 44, 5527–5538.
Shao, Z. C.; Xue, X. J.; Gao, K. X.; Chen, J. S.; Zhai, L. P.; Wen, T. Y.; Xiong, S. L.; Hou, H. W.; Mi, L. W. Sulfonated covalent organic framework packed Nafion membrane with high proton conductivity for H2/O2 fuel cell applications. J. Mater. Chem. A 2023, 11, 3446–3453.
Zhao, S. Q.; Liao, Y. C.; Wang, R.; Liu, G. L.; Zhang, H. N.; Tang, H. L. Polyphenol synergistic cerium oxide surface engineering constructed core-shell nanostructures as antioxidants for durable and high-performance proton exchange membrane fuel cells. Chem. Eng. J. 2023, 472, 144804.
Poongan, A.; Kesava, M.; Mandal, A.; Murugan, E. Effect of ZrO2 nanoparticles on phosphoric acid-doped poly(ethylene imine)/polyvinyl alcohol) membrane for medium-temperature polymer electrolyte membrane fuel cell applications. Int. J. Hydrogen Energy 2023, 48, 27371–27382.
Liu, Q. T.; Ling, Z. W.; Wang, X. H.; Fu, X. D.; Wu, W. Z.; Xiong, C. Y.; Wang, B.; Zhang, R.; Li, X.; Zhao, F. et al. Polyethyleneimine-confined halloysite nanotubes for poly(2,5-benzimidazole) composite membranes with phosphoric acid retention and proton conductivity via ion pairs for wide-temperature PEMFCs. Compos. Sci. Technol. 2023, 242, 110199.
Liu, K.; Wei, X. Q.; Hu, S.; Li, Q. Q.; Gao, W. M.; Wu, D.; Che, Q. T. Enhancing proton conduction of high temperature proton exchange membranes based on carbon dots doped polyvinyl chloride nanofibers. Sep. Purif. Technol. 2023, 325, 124679.
Zhai, S. X.; Lu, Z. R.; Ai, Y. N.; Jia, X. Y.; Yang, Y. M.; Liu, X.; Tian, M.; Bian, X. M.; Lin, J.; He, S. J. High performance nanocomposite proton exchange membranes based on the nanohybrids formed by chemically bonding phosphotungstic acid with covalent organic frameworks. J. Power Sources 2023, 554, 232332.
Maegawa, K.; Nagai, H.; Kumar, R.; Abdel-Galeil, M. M.; Tan, W. K.; Matsuda, A. Development of polybenzimidazole modification with open-edges/porous-reduced graphene oxide composite membranes for excellent stability and improved PEM fuel cell performance. Mater. Chem. Phys. 2023, 294, 126994.
Wei, P.; Sui, Y.; Zhu, B. S.; Meng, X. Y.; Zhou, Q. Construction of continuous proton transport channels in SPEEK using porous titanium dioxide nanotubes. Solid State Ionics 2023, 399, 116321.
Chen, X.; Ren, Q.; Xu, J. M.; Ju, M. C.; Meng, L. X.; Wang, Z. Design, transport efficiency and structure-activity relationship of sulfonated poly (aryl ether ketone) proton exchange membrane based on multi-functional MOFs. Electrochim. Acta 2023, 469, 143210.
Aziz, A.; Shanmugam, S. Ultra-high proton/vanadium selectivity of a modified sulfonated poly(arylene ether ketone) composite membrane for all vanadium redox flow batteries. J. Mater. Chem. A 2017, 5, 16663–16671.
Chaturvedi, P.; Moehring, N. K.; Knight, T.; Shah, R.; Vlassiouk, I.; Kidambi, P. R. The parameter space for scalable integration of atomically thin graphene with Nafion for proton exchange membrane (PEM) applications. Mater. Adv. 2023, 4, 3473–3481.
Yin, C. S.; Xiong, B. Y.; Liu, Q. C.; Li, J. J.; Qian, L. B.; Zhou, Y. W.; He, C. Q. Lateral-aligned sulfonated carbon-nanotubes/Nafion composite membranes with high proton conductivity and improved mechanical properties. J. Membr. Sci. 2019, 591, 117356.
Ogiwara, N.; Iwano, T.; Ito, T.; Uchida, S. Proton conduction in ionic crystals based on polyoxometalates. Coord. Chem. Rev. 2022, 462, 214524.
Zhai, L.; Zhu, Y. L.; Wang, G.; He, H. B.; Wang, F. R.; Jiang, F. J.; Chai, S. C.; Li, X.; Guo, H. K.; Wu, L. X. et al. Ionic-nanophase hybridization of nafion by supramolecular patching for enhanced proton selectivity in redox flow batteries. Nano Lett. 2023, 23, 3887–3896.
Liu, M. L.; Han, X.; He, W. W.; Jiang, F. Y.; Ji, F.; Shen, W. W.; Zhou, T.; Xu, J. M.; Lan, Y. Q. Sulfonated poly (aryl ether ketone sulfone) modified by polyoxometalates LaW10 clusters for proton exchange membranes with high proton conduction performance. Tungsten 2024, 6, 454–464.
Wang, G.; Li, J. L.; Zhai, L.; Li, X.; He, H. B.; Guo, H. K.; Li, H. B.; Zhao, C. J.; Wu, L. X.; Li, H. L. Polyoxometalate-polymer nanocomposites with multiplex proton transport channels for high-performance proton exchange membranes. Compos. Sci. Technol. 2023, 232, 109842.
Glibin, V.; Vajihinejad, V.; Pupkevich, V.; Karamanev, D. G. Tailor-made phosphorylated polyvinyl alcohol/tungsten polyoxometalate proton exchange membrane for a bio-electrochemical energy storage system. Energies 2021, 14, 7975.
Zeng, M. H.; Liu, W. Q.; Guo, H. K.; Li, T. T.; Li, Q. J.; Zhao, C. J.; Li, X. J.; Li, H. L. Polyoxometalate-cross-linked proton exchange membranes with post-assembled nanostructures for high-temperature proton conduction. ACS Appl. Energy Mater. 2022, 5, 9058–9069.
Kondinski, A. Superchaotropic polyoxometalates as membrane carriers. Polyoxometalates 2024, 3, 9140058.
Liu, Q. Q.; Cui, Y. Z.; Zhu, L. J.; Cheng, D. M.; Wang, C.; Lu, S. Q.; Li, B.; Chen, X. Y.; Zang, H. Y. Ionic liquid-mediated PEO-based solid-state electrolyte membrane modified with Dawson-type polyoxometalates. Polyoxometalates 2023, 2, 9140036.
Zhai, L.; Li, H. L. Polyoxometalate-polymer hybrid materials as proton exchange membranes for fuel cell applications. Molecules 2019, 24, 3425.
Cheng, D. M.; Li, K.; Zang, H. Y.; Chen, J. J. Recent advances on polyoxometalate-based ion-conducting electrolytes for energy-related devices. Energy Environ. Mater. 2023, 6, e12341.
Liu, W. J.; Dong, L. Z.; Li, R. H.; Chen, Y. J.; Sun, S. N.; Li, S. L.; Lan, Y. Q. Different protonic species affecting proton conductivity in hollow spherelike polyoxometalates. ACS Appl. Mater. Interfaces 2019, 11, 7030–7036.
Li, S. J.; Zhao, Y.; Knoll, S.; Liu, R. J.; Li, G.; Peng, Q. P.; Qiu, P. T.; He, D. F.; Streb, C.; Chen, X. N. High proton-conductivity in covalently linked polyoxometalate-organoboronic acid-polymers. Angew. Chem., Int. Ed. 2021, 60, 16953–16957.
Hu, Q. L.; Li, K.; Chen, X. J.; Liu, Y. F.; Yang, G. P. Polyoxometalate catalysts for the synthesis of N-heterocycles. Polyoxometalates 2024, 3, 9140048.
Wang, P.; Wang, Z. T.; Wang, P. S.; Chishti, A. N.; Zhang, H. X.; Shi, J. H.; Ni, L. B.; Jamil, S.; Wei, Y. G. Supramolecular self-assembly of polyoxometalates and cyclodextrin: Progress and perspectives. Polyoxometalates 2024, 3, 9140047.
Zhang, H. Y.; Zhao, W. L.; Li, H. Q.; Zhuang, Q. H.; Sun, Z. Q.; Cui, D. Y.; Chen, X. J.; Guo, A.; Ji, X.; An, S. et al. Latest progress in covalently modified polyoxometalates-based molecular assemblies and advanced materials. Polyoxometalates 2022, 1, 9140011.
Liu, Y. F.; Lin, X. L.; Ming, B. M.; Hu, Q. L.; Liu, H. Q.; Chen, X. J.; Liu, Y. H.; Yang, G. P. Three polyoxometalate-based Ag-organic compounds as heterogeneous catalysts for the synthesis of benzimidazoles. Inorg. Chem. 2024, 63, 5681–5688.
Wang, Y. D.; Wang, J. X.; Wei, M. J.; Liu, B. L.; Zang, H. Y.; Tan, H. Q.; Wang, Y. H.; Li, Y. G. Niobium oxyhydroxide-polyoxometalate composite as an efficient proton-conducting solid electrolyte. ChemElectroChem 2018, 5, 1125–1129.
Liu, W. D.; Zhu, H. T.; Zhang, X.; Su, F.; Sang, X. J.; Zhang, X. L.; Zhang, L. C. Room temperature self-assembly and nonenzymatic electrochemical sensing performance of transition metal-embedded wheel-shaped tungstophosphates. Polyoxometalates 2025, 4, 9140073.
Niinomi, K.; Miyazawa, S.; Hibino, M.; Mizuno, N.; Uchida, S. High proton conduction in crystalline composites based on preyssler-type polyoxometalates and polymers under nonhumidified or humidified conditions. Inorg. Chem. 2017, 56, 15187–15193.
Li, X. X.; Li, C. H.; Hou, M. J.; Zhu, B.; Chen, W. C.; Sun, C. Y.; Yuan, Y.; Guan, W.; Qin, C.; Shao, K. Z. et al. Ce-mediated molecular tailoring on gigantic polyoxometalate {Mo132} into half-closed {Ce11Mo96} for high proton conduction. Nat. Commun. 2023, 14, 5025.
Wang, Y. X.; Lu, Y.; Zhang, W. S.; Dang, T. Y.; Yang, Y. L.; Bai, X.; Liu, S. X. Construction of hydrogel composites with superior proton conduction and flexibility using a new POM-based inorganic-organic hybrid. Polyoxometalates 2022, 1, 9140005.
Liu, B. L.; Hu, B.; Du, J.; Cheng, D. M.; Zang, H. Y.; Ge, X.; Tan, H. Q.; Wang, Y. H.; Duan, X. Z.; Jin, Z. et al. Precise molecular-level modification of nafion with bismuth oxide clusters for high-performance proton-exchange membranes. Angew. Chem., Int. Ed. 2021, 60, 6076–6085.
He, H. B.; Zhu, Y. L.; Li, T. T.; Song, S. H.; Zhai, L.; Li, X.; Wu, L. X.; Li, H. L. Supramolecular anchoring of polyoxometalate amphiphiles into nafion nanophases for enhanced proton conduction. ACS Nano 2022, 16, 19240–19252.
Ji, F.; Jiang, F. Y.; Luo, H. W.; He, W. W.; Han, X.; Shen, W. W.; Liu, M. L.; Zhou, T.; Xu, J. M.; Wang, Z. et al. Hybrid membrane of sulfonated poly(aryl ether ketone sulfone) modified by molybdenum clusters with enhanced proton conductivity. Small 2024, 20, 2312209.
Wang, C. Y.; Li, N. W.; Shin, D. W.; Lee, S. Y.; Kang, N. R.; Lee, Y. M.; Guiver, M. D. Fluorene-based poly(arylene ether sulfone)s containing clustered flexible pendant sulfonic acids as proton exchange membranes. Macromolecules 2011, 44, 7296–7306.
Liu, Y. F.; Zeng, G. D.; Cheng, Y. T.; Chen, L.; Liu, Y. H.; Wei, Y. G.; Yang, G. P. A H4SiW12O40-catalyzed three-component tandem reaction for the synthesis of 3, 3-disubstituted isoindolinones. Chin. Chem. Lett. 2024, 35, 108480.
Hu, B.; Liu, L. D.; Zhao, Y. X.; Lü, C. L. A facile construction of quaternized polymer brush-grafted graphene modified polysulfone based composite anion exchange membranes with enhanced performance. RSC Adv. 2016, 6, 51057–51067.
He, H. B.; Song, S. H.; Zhai, L.; Li, Z. X.; Wang, S. H.; Zuo, P.; Zhu, Y. L.; Li, H. L. Supramolecular modifying nafion with fluoroalkyl-functionalized polyoxometalate nanoclusters for high-selective proton conduction. Angew. Chem., Int. Ed. 2024, 63, e202409006.
Gahlot, S.; Sharma, P. P.; Kulshrestha, V.; Jha, P. K. SGO/SPES-based highly conducting polymer electrolyte membranes for fuel cell application. ACS Appl. Mater. Interfaces 2014, 6, 5595–5601.
Neelakandan, S.; Jacob, K. N.; Kanagaraj, P.; Sabarathinam, R. M.; Muthumeenal, A.; Nagendran, A. Effect of sulfonated graphene oxide on the performance enhancement of acid-base composite membranes for direct methanol fuel cells. RSC Adv. 2016, 6, 51599–51608.
Sweety, M. N.; Salam, A. Proton conductivity performance and its correlation with physio-chemical properties of proton exchange membrane (PEM). Chin. J. Chem. Eng. 2024, 74, 100–116.
Xu, M. H.; Xue, H.; Wang, Q. F.; Jia, L. C. Sulfonated poly(arylene ether)s based proton exchange membranes for fuel cells. Int. J. Hydrogen Energy 2021, 46, 31727–31753.
Maiti, T. K.; Singh, J.; Dixit, P.; Majhi, J.; Bhushan, S.; Bandyopadhyay, A.; Chattopadhyay, S. Advances in perfluorosulfonic acid-based proton exchange membranes for fuel cell applications: A review. Chem. Eng. J. Adv. 2022, 12, 100372.
Wang, S. J.; Wahiduzzaman, M.; Davis, L.; Tissot, A.; Shepard, W.; Marrot, J.; Martineau-Corcos, C.; Hamdane, D.; Maurin, G.; Devautour-Vinot, S. et al. A robust zirconium amino acid metal-organic framework for proton conduction. Nat. Commun. 2018, 9, 4937.
Li, Y. X.; Liang, L.; Liu, C. P.; Li, Y.; Xing, W.; Sun, J. Q. Self-healing proton-exchange membranes composed of nafion-poly(vinyl alcohol) complexes for durable direct methanol fuel cells. Adv. Mater. 2018, 30, 1707146.
Shigematsu, A.; Yamada, T.; Kitagawa, H. Wide control of proton conductivity in porous coordination polymers. J. Am. Chem. Soc. 2011, 133, 2034–2036.
Shen, X. H.; Liang, X.; Xu, Y.; Yu, W. S.; Li, Q. H.; Ge, X. L.; Wu, L.; Xu, T. W. In-situ growth of PPy/MnO x radical quenching layer for durability enhancement of proton exchange membrane in PEMFCs. J. Membr. Sci. 2023, 675, 121556.
Bokare, A. D.; Choi, W. Review of iron-free Fenton-like systems for activating H2O2 in advanced oxidation processes. J. Hazard. Mater. 2014, 275, 121–135.
Lei, S.; Yang, H.; Li, J. X.; Li, Y.; Wang, L.; Chen, B. N.; Li, J. A study of the antioxidant properties of Keggin-type polyoxometalates. Dalton Trans. 2023, 52, 9673–9683.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the original author(s) and the source, provide a link to the license, and indicate if changes were made. See http://creativecommons.org/licenses/by/4.0/