Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Atomically precise copper nanoclusters have emerged as a promising class of catalysts. However, the exploration of copper nanocluster catalysts has been slow, likely because of their complicated synthesis, limited stability, and low activity under mild conditions. Herein, we present highly stable copper nanoclusters [Cu8(S2CN(CH3)2)6(PPh3)4]2+ (where S2CN(CH3)2 is dimethyldithiocarbamate and PPh3 is triphenylphosphine) with facile synthesis and high photocatalytic performance. The nanoclusters were obtained on a gram-scale through a one-pot reduction of Cu(S2CN(CH3)2)2 with (PPh3)2CuBH4 in the presence of 3,5-bis(trifluoromethyl)pyrazole. Comprehensive experimental and theoretical characterization of the nanoclusters was performed to elucidate their atomic and electronic structure and explain their high stability under light irradiation. Importantly, the nanoclusters exhibit photocatalytic activity in the difluoroalkylarylation of alkenes at room temperature, yielding a wide range of complex difluoromethyl compounds under mild conditions. This study not only presents an efficient strategy for the synthesis of copper nanoclusters with atomically precise and highly robust structures but also highlights the potential of atomically precise copper nanocluster catalysts in the rapid construction of molecular complexity with substantial material economy.
Zang, D. J.; Wang, H. Q. Polyoxometalate-based nanostructures for electrocatalytic and photocatalytic CO2 reduction. Polyoxometalates 2022, 1, 9140006.
Cheng, Y.; Qin, K. J.; Zang, D. J. Polyoxometalates based nanocomposites for bioapplications. Rare Met. 2023, 42, 3570–3600.
Jaramillo, T. F.; Jørgensen, K. P.; Bonde, J.; Nielsen, J. H.; Horch, S.; Chorkendorff, I. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 2007, 317, 100–102.
Joo, S. H.; Park, J. Y.; Tsung, C. K.; Yamada, Y.; Yang, P. D.; Somorjai, G. A. Thermally stable Pt/mesoporous silica core-shell nanocatalysts for high-temperature reactions. Nat. Mater. 2009, 8, 126–131.
Liu, G.; Chen, Y. F.; Chen, Y. L.; Shi, Y. Q.; Zhang, M. Y.; Shen, G. D.; Qi, P. F.; Li, J. K.; Ma, D. L.; Yu, F. et al. Indirect electrocatalysis S-N/S-S bond construction by robust polyoxometalate based foams. Adv. Mater. 2023, 35, 2304716.
Huang, X. Q.; Liu, S.; Liu, G.; Tao, Y. W.; Wang, C. R.; Zhang, Y. L.; Li, Z.; Wang, H. W.; Zhou, Z.; Shen, G. D. et al. An unprecedented 2-fold interpenetrated lvt open framework built from Zn6 ring seamed trivacant polyoxotungstates used for photocatalytic synthesis of pyridine derivatives. Appl. Catal. B: Environ. 2023, 323, 122134.
Zang, D. J.; Gao, X. J.; Li, L. Y.; Wei, Y. G.; Wang, H. Q. Confined interface engineering of self-supported Cu@N-doped graphene for electrocatalytic CO2 reduction with enhanced selectivity towards ethanol. Nano Res. 2022, 15, 8872–8879.
Chakraborty, I.; Pradeep, T. Atomically precise clusters of noble metals: Emerging link between atoms and nanoparticles. Chem. Rev. 2017, 117, 8208–8271.
Xie, C. L.; Niu, Z. Q.; Kim, D.; Li, M. F.; Yang, P. D. Surface and interface control in nanoparticle catalysis. Chem. Rev. 2020, 120, 1184–1249.
Du, X. S.; Jin, R. C. Atomically precise metal nanoclusters for catalysis. ACS Nano 2019, 13, 7383–7387.
Guan, Z. J.; Li, J. J.; Hu, F.; Wang, Q. M. Structural engineering toward gold nanocluster catalysis. Angew. Chem., Int. Ed. 2022, 61, e202209725.
Xu, X. X.; Liu, Y.; Sun, F.; Jia, Y. Y.; Xu, Q. H.; Tang, J. Q.; Xie, Z. L.; Sun, J.; Li, S. M.; Tang, Q. et al. Array-based clusters of copper with largely exposed metal sites for promoting catalysis. Chem. Mater. 2023, 35, 7588–7596.
Liu, Y. F.; Hu, C. W.; Yang, G. P. Recent advances in polyoxometalates acid-catalyzed organic reactions. Chin. Chem. Lett. 2023, 34, 108097.
Qin, K. J.; Zang, D. J.; Wei, Y. G. Polyoxometalates based compounds for green synthesis of aldehydes and ketones. Chin. Chem. Lett. 2023, 34, 107999.
Xu, T. T.; Wang, E. D.; Liu, S.; Wei, Z. Z.; Yin, P. Q.; Sun, J. N.; Xu, W. W.; Song, Y. B. Large-scale synthesis, mechanism, and application of a luminescent copper hydride nanocluster. Dalton Trans. 2023, 52, 18442–18448.
Xiang, H. X.; Yan, H.; Liu, J. H.; Cheng, R. R.; Xu, C. Q.; Li, J.; Yao, C. H. Identifying the real chemistry of the synthesis and reversible transformation of AuCd bimetallic clusters. J. Am. Chem. Soc. 2022, 144, 14248–14257.
Yao, C. H.; Lin, Y. J.; Yuan, J. Y.; Liao, L. W.; Zhu, M.; Weng, L. H.; Yang, J. L.; Wu, Z. K. Mono-cadmium vs mono-mercury doping of Au25 nanoclusters. J. Am. Chem. Soc. 2015, 137, 15350–15353.
Yao, C. H.; Chen, J. S.; Li, M. B.; Liu, L. R.; Yang, J. L.; Wu, Z. K. Adding two active silver atoms on Au25 nanoparticle. Nano Lett. 2015, 15, 1281–1287.
Gong, X. K.; Liu, Z. H.; Xu, Q. H.; Wang, L.; Guo, Q. X.; Zhang, J.; Li, Q. H.; Fang, W. H.; Shen, H. Single-molecule manipulation of copper nanoclusters for modulating nonlinear optics. Polyoxometalates 2025, 4, 9140072.
Gao, Z. H.; Wei, K. C.; Wu, T.; Dong, J.; Jiang, D. E.; Sun, S. H.; Wang, L. S. A heteroleptic gold hydride nanocluster for efficient and selective electrocatalytic reduction of CO2 to CO. J. Am. Chem. Soc. 2022, 144, 5258–5262.
Sagadevan, A.; Ghosh, A.; Maity, P.; Mohammed, O. F.; Bakr, O. M.; Rueping, M. Visible-light copper nanocluster catalysis for the C–N coupling of aryl chlorides at room temperature. J. Am. Chem. Soc. 2022, 144, 12052–12061.
Yan, J. Z.; Teo, B. K.; Zheng, N. F. Surface chemistry of atomically precise coinage-metal nanoclusters: From structural control to surface reactivity and catalysis. Acc. Chem. Res. 2018, 51, 3084–3093.
Nematulloev, S.; Sagadevan, A.; Alamer, B.; Shkurenko, A.; Huang, R. W.; Yin, J.; Dong, C. W.; Yuan, P.; Yorov, K. E.; Karluk, A. A. et al. Atomically precise defective copper nanocluster catalysts for highly selective C−C cross-coupling reactions. Angew. Chem., Int. Ed. 2023, 62, e202303572.
Wang, Y. M.; Cai, J. M.; Wang, Q. Y.; Li, Y.; Han, Z.; Li, S.; Gong, C. H.; Wang, S.; Zang, S. Q.; Mak, T. C. W. Electropolymerization of metal clusters establishing a versatile platform for enhanced catalysis performance. Angew. Chem., Int. Ed. 2022, 61, e202114538.
Cai, X.; Li, G. J.; Hu, W. G.; Zhu, Y. Catalytic conversion of CO2 over atomically precise gold-based cluster catalysts. ACS Catal. 2022, 12, 10638–10653.
Sharma, S.; Chakrahari, K. K.; Saillard, J. Y.; Liu, C. W. Structurally precise dichalcogenolate-protected copper and silver superatomic nanoclusters and their alloys. Acc. Chem. Res. 2018, 51, 2475–2483.
Yonesato, K.; Yamazoe, S.; Yokogawa, D.; Yamaguchi, K.; Suzuki, K. A molecular hybrid of an atomically precise silver nanocluster and polyoxometalates for h2 cleavage into protons and electrons. Angew. Chem., Int. Ed. 2021, 60, 16994–16998.
Zhao, M. H.; Huang, S.; Fu, Q.; Li, W. F.; Guo, R.; Yao, Q. X.; Wang, F. L.; Cui, P.; Tung, C. H.; Sun, D. Ambient chemical fixation of CO2 using a robust Ag27 cluster-based two-dimensional metal-organic framework. Angew. Chem., Int. Ed. 2020, 59, 20031–20036.
Xu, C.; Yuan, Q. Q.; Wei, X.; Li, H.; Shen, H. L.; Kang, X.; Zhu, M. Z. Surface environment complication makes Ag29 nanoclusters more robust and leads to their unique packing in the supracrystal lattice. Chem. Sci. 2022, 13, 1382–1389.
Dhayal, R. S.; van Zyl, W. E.; Liu, C. W. Polyhydrido copper clusters: Synthetic advances, structural diversity, and nanocluster-to-nanoparticle conversion. Acc. Chem. Res. 2016, 49, 86–95.
Huang, R. W.; Yin, J.; Dong, C. W.; Maity, P.; Hedhili, M. N.; Nematulloev, S.; Alamer, B.; Ghosh, A.; Mohammed, O. F.; Bakr, O. M. [Cu23(PhSe)16(Ph3P)8(H)6]·BF4: Atomic-level insights into cuboidal polyhydrido copper nanoclusters and their quasi-simple cubic self-assembly. ACS Materials Lett. 2021, 3, 90–99.
Ramani, A.; Desai, B.; Dholakiya, B. Z.; Naveen, T. Recent advances in visible-light-mediated functionalization of olefins and alkynes using copper catalysts. Chem. Commun. 2022, 58, 7850–7873.
Zhang, Y. F.; Zhang, J. J.; Li, Z. W.; Qin, Z. X.; Sharma, S.; Li, G. Atomically precise copper dopants in metal clusters boost up stability, fluorescence, and photocatalytic activity. Commun. Chem. 2023, 6, 24.
Sun, J.; Yan, X. D.; Wang, L. Z.; Xie, Z. L.; Tian, G. L.; Wang, L.; He, A. Y. S.; Li, S. M.; Guo, Q. X.; Chaolumen, N. et al. Decorating an anticuboctahedral copper kernel with labile surface coatings for controlling optical and catalytic properties. Inorg. Chem. 2023, 62, 9005–9013.
Tang, Q.; Lee, Y.; Li, D. Y.; Choi, W.; Liu, C. W.; Lee, D.; Jiang, D. E. Lattice-hydride mechanism in electrocatalytic CO2 reduction by structurally precise copper-hydride nanoclusters. J. Am. Chem. Soc. 2017, 139, 9728–9736.
Baghdasaryan, A.; Bürgi, T. Copper nanoclusters: Designed synthesis, structural diversity, and multiplatform applications. Nanoscale 2021, 13, 6283–6340.
Sun, C. F.; Mammen, N.; Kaappa, S.; Yuan, P.; Deng, G. C.; Zhao, C. W.; Yan, J. Z.; Malola, S.; Honkala, K.; Häkkinen, H. et al. Atomically precise, thiolated copper-hydride nanoclusters as single-site hydrogenation catalysts for ketones in mild conditions. ACS Nano 2019, 13, 5975–5986.
Dong, C. W.; Huang, R. W.; Sagadevan, A.; Yuan, P.; Gutiérrez-Arzaluz, L.; Ghosh, A.; Nematulloev, S.; Alamer, B.; Mohammed, O. F.; Hussain, I. et al. Isostructural nanocluster manipulation reveals pivotal role of one surface atom in click chemistry. Angew. Chem., Int. Ed. 2023, 62, e202307140.
Liu, L. J.; Wang, Z. Y.; Wang, Z. Y.; Wang, R.; Zang, S. Q.; Mak, T. C. W. Mediating CO2 electroreduction activity and selectivity over atomically precise copper clusters. Angew. Chem., Int. Ed. 2022, 61, e202205626.
Liu, C. Y.; Yuan, S. F.; Wang, S.; Guan, Z. J.; Jiang, D. E.; Wang, Q. M. Structural transformation and catalytic hydrogenation activity of amidinate-protected copper hydride clusters. Nat. Commun. 2022, 13, 2082.
Li, S. M.; Yan, X. D.; Tang, J. Q.; Cao, D. X.; Sun, X. L.; Tian, G. L.; Tang, X. K.; Guo, H. F.; Wu, Q. Y.; Sun, J. et al. Cu26 nanoclusters with quintuple ligand shells for CO2 electrocatalytic reduction. Chem. Mater. 2023, 35, 6123–6132.
Brocha Silalahi, R. P.; Jo, Y.; Liao, J. H.; Chiu, T. H.; Park, E.; Choi, W.; Liang, H.; Kahlal, S.; Saillard, J. Y.; Lee, D. et al. Hydride-containing 2-electron Pd/Cu superatoms as catalysts for efficient electrochemical hydrogen evolution. Angew. Chem., Int. Ed. 2023, 62, e202301272.
Cao, Y. D.; Hao, H. P.; Liu, H. S.; Yin, D.; Wang, M. L.; Gao, G. G.; Fan, L. L.; Liu, H. A 20-core copper(I) nanocluster as electron-hole recombination inhibitor on TiO2 nanosheets for enhancing photocatalytic H2 evolution. Nanoscale 2021, 13, 16182–16188.
Cook, A. W.; Jones, Z. R.; Wu, G.; Scott, S. L.; Hayton, T. W. An organometallic Cu20 nanocluster: Synthesis, characterization, immobilization on silica, and “click” chemistry. J. Am. Chem. Soc. 2018, 140, 394–400.
Shen, H.; Han, Y. Z.; Wu, Q. Y.; Peng, J.; Teo, B. K.; Zheng, N. F. Simple and selective synthesis of copper-containing metal nanoclusters using (PPh3)2CuBH4 as reducing agent. Small Methods 2021, 5, 2000603.
Liao, P. K.; Sarkar, B.; Chang, H. W.; Wang, J. C.; Liu, C. W. Facile entrapment of a hydride inside the tetracapped tetrahedral CuI8 cage inscribed in a S12 icosahedral framework. Inorg. Chem. 2009, 48, 4089–4097.
Delley, B. From molecules to solids with the DMol3 approach. J. Chem. Phys. 2000, 113, 7756–7764.
Mulliken, R. S. Electronic population analysis on LCAO-MO molecular wave functions. I. J. Chem. Phys. 1955, 23, 1833–1840.
Lu, T.; Chen, F. W. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580–592.
Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.
Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.
Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.
Shangguan, Y.; Yang, F. Z.; Deng, H.; Liu, H.; Liu, Z. Y.; Zhuang, W. Y.; Qiao, C. X.; Wang, A. Z.; Xiao, Y. M.; Zhang, C. Copper-catalyzed three-component difunctionalization of aromatic alkenes with 2-amino-1,4-naphthoquinones and α-bromocarboxylates. J. Org. Chem. 2019, 84, 10649–10657.
Gao, P.; Niu, Y. J.; Yang, F.; Guo, L. N.; Duan, X. H. Three-component 1,2-dicarbofunctionalization of alkenes involving alkyl radicals. Chem. Commun. 2022, 58, 730–746.
Lv, X. L.; Wang, C.; Wang, Q. L.; Shu, W. Rapid synthesis of γ-arylated carbonyls enabled by the merge of copper- and photocatalytic radical relay alkylarylation of alkenes. Org. Lett. 2018, 21, 56–59.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the original author(s) and the source, provide a link to the license, and indicate if changes were made. See http://creativecommons.org/licenses/by/4.0/