In this study, the controlled synthesis of highly stable Ag56 clusters was achieved using 4-vinylbenzoic acid (p-VBA) and tert-butyl mercaptan as ligands by accurately tuning reaction parameters such as temperature and solvent. Additionally, intermediates Ag20, Ag31, Ag32, along with the dimers of Ag31/Ag32, Ag30-bpbenz (bpbenz: 1,4-di(4-pyridyl)benzene), and Ag31-bpe (bpe: 1,2-bis(4-pyridyl)) were successfully captured. This series of nanoclusters exhibited a distinctive fluorescence aggregation-induced redshift phenomenon owing to the π–π interactions of the ligand. Additionally, the Ag56 nanocluster serves as a near-infrared fluorescence sensor for Br− and I−, with detection limits as low as 85 and 105 nM, respectively. This study offers new insights and methodologies for the synthesis of metal clusters and their applications in ion sensing.
Tang, K. L.; Xie, X. J.; Zhang, Y. H.; Zhao, X.; Jin, X. L. Synthesis and crystal structure of a novel pentaconta-nuclear silver anionic cluster complex [HNEt3]4[Ag50S7(SC6H4Bu t -4)40]·2CS2·6C3H6O. Chem. Commun. 2002, 1024–1025.
Wang, X. J.; Langetepe, T.; Persau, C.; Kang, B. S.; Sheldrick, G. M.; Fenske, D. Syntheses and crystal structures of the new Ag–S clusters [Ag70S16(SPh)34(PhCO2)4(triphos)4] and [Ag188S94(PR3)30]. Angew. Chem., Int. Ed. 2002, 41, 3818–3822.
Fenske, D.; Persau, C.; Dehnen, S.; Anson, C. E. Syntheses and crystal structures of the Ag–S cluster compounds [Ag70S20(SPh)28(dppm)10] (CF3CO2)2 and [Ag262S100(S t Bu)62(dppb)6]. Angew. Chem., Int. Ed. 2004, 43, 305–309.
Tang, K. L.; Xie, X. J.; Zhao, L.; Zhang, Y. H.; Jin, X. L. Synthesis and crystal structure of {[HNEt3]2 n [Ag8Ag4/2(SC6H4 t Bu-4)12] n · nC2H5OH} and its reaction product with CS2. Eur. J. Inorg. Chem. 2004, 2004, 78–85.
Fenske, D.; Anson, C. E.; Eichhöfer, A.; Fuhr, O.; Ingendoh, A.; Persau, C.; Richert, C. Syntheses and crystal structures of [Ag123S35(S t Bu)50] and [Ag344S124(S t Bu)96]. Angew. Chem., Int. Ed. 2005, 44, 5242–5246.
Chitsaz, S.; Fenske, D.; Fuhr, O. Silver chalcogenide clusters with dimethylanilinomercapto ligands: Syntheses and crystal structures of [Ag65S13(SC6H4NMe2)39(dppm)5], [Ag76Se13(SC6H4NMe2)50(PPh3)65], and [Ag88Se12(SC6H4NMe2)63(PPh3)6]. Angew. Chem., Int. Ed. 2006, 45, 8055–8059.
Crespo, O.; Gimeno, M. C.; Laguna, A.; Larraz, C.; Villacampa, M. D. Highly luminescent gold(I)-silver(I) and gold(I)-copper(I) chalcogenide clusters. Chem.—Eur. J. 2007, 13, 235–246.
Anson, C. E.; Eichhöfer, A.; Issac, I.; Fenske, D.; Fuhr, O.; Sevillano, P.; Persau, C.; Stalke, D.; Zhang, J. T. Synthesis and crystal structures of the ligand-stabilized silver chalcogenide clusters [Ag154Se77(dppxy)18], [Ag320(S t Bu)60S130(dppp)12], [Ag352S128(S t C5H11)96], and [Ag490S188(S t C5H11)114]. Angew. Chem., Int. Ed. 2008, 47, 1326–1331.
Ahlrichs, R.; Eichhöfer, A.; Fenske, D.; Hampe, O.; Kappes, M. M.; Nava, P.; Olkowska-Oetzel, J. Synthesis and structure of [Ag26In18S36Cl6(dppm)10(thf)4][InCl4(thf)]2-A combined approach of theory and experiment. Angew. Chem., Int. Ed. 2004, 43, 3823–3827.
Wang, Z.; Zhu, Y. J.; Han, B. L.; Li, Y. Z.; Tung, C. H.; Sun, D. A route to metalloligands consolidated silver nanoclusters by grafting thiacalix[4]arene onto polyoxovanadates. Nat. Commun. 2023, 14, 5295.
Sheng, K.; Wang, Z.; Li, L.; Gao, Z. Y.; Tung, C. H.; Sun, D. Solvent-mediated separation and reversible transformation of 1D supramolecular polymorphs built from [W10O32]4− templated 48-nuclei silver(I) cluster. J. Am. Chem. Soc. 2023, 145, 10595–10603.
Gupta, R. K.; Li, L.; Wang, Z.; Han, B. L.; Feng, L.; Gao, Z. Y.; Tung, C. H.; Sun, D. Regulating the assembly and expansion of the silver cluster from the Ag37 to Ag46 nanowheel driven by heteroanions. Chem. Sci. 2023, 14, 1138–1144.
Wang, Z.; Zhu, Y. J.; Li, Y. Z.; Zhuang, G. L.; Song, K. P.; Gao, Z. Y.; Dou, J. M.; Kurmoo, M.; Tung, C. H.; Sun, D. Nuclearity enlargement from [PW9O34@Ag51] to [(PW9O34)2@Ag72] and 2D and 3D network formation driven by bipyridines. Nat. Commun. 2022, 13, 1802.
Luo, X. M.; Huang, S.; Luo, P.; Ma, K.; Wang, Z. Y.; Dong, X. Y.; Zang, S. Q. Snapshots of key intermediates unveiling the growth from silver ions to Ag70 nanoclusters. Chem. Sci. 2022, 13, 11110–11118.
Das, A. K.; Biswas, S.; Manna, S. S.; Pathak, B.; Mandal, S. An atomically precise silver nanocluster for artificial light-harvesting system through supramolecular functionalization. Chem. Sci. 2022, 13, 8355–8364.
Biswas, S.; Das, A. K.; Manna, S. S.; Pathak, B.; Mandal, S. Template-assisted alloying of atom-precise silver nanoclusters: A new approach to generate cluster functionality. Chem. Sci. 2022, 13, 11394–11404.
He, W. M.; Zhou, Z.; Han, Z.; Li, S.; Zhou, Z.; Ma, L. F.; Zang, S. Q. Ultrafast size expansion and turn-on luminescence of atomically precise silver clusters by hydrogen sulfide. Angew. Chem., Int. Ed. 2021, 60, 8505–8509.
Zhao, M. H.; Huang, S.; Fu, Q.; Li, W. F.; Guo, R.; Yao, Q. X.; Wang, F. L.; Cui, P.; Tung, C. H.; Sun, D. Ambient chemical fixation of CO2 using a robust Ag27 cluster-based two-dimensional metal-organic framework. Angew. Chem., Int. Ed. 2020, 59, 20031–20036.
Yang, J. S.; Han, Z.; Dong, X. Y.; Luo, P.; Mo, H. L.; Zang, S. Q. Extra silver atom triggers room-temperature photoluminescence in atomically precise radarlike silver clusters. Angew. Chem., Int. Ed. 2020, 59, 11898–11902.
Li, S.; Yan, Z. P.; Li, X. L.; Kong, Y. J.; Li, H. Y.; Gao, G. G.; Zheng, Y. X.; Zang, S. Q. Stepwise achievement of circularly polarized luminescence on atomically precise silver clusters. Adv. Sci. 2020, 7, 2000738.
Gao, M. Y.; Wang, K.; Sun, Y. Y.; Li, D. J.; Song, B. Q.; Andaloussi, Y. H.; Zaworotko, M. J.; Zhang, J.; Zhang, L. Tetrahedral geometry induction of stable Ag–Ti nanoclusters by flexible trifurcate TiL3 metalloligand. J. Am. Chem. Soc. 2020, 142, 12784–12790.
Dong, X. Y.; Si, Y. B.; Yang, J. S.; Zhang, C.; Han, Z.; Luo, P.; Wang, Z. Y.; Zang, S. Q.; Mak, T. C. W. Ligand engineering to achieve enhanced ratiometric oxygen sensing in a silver cluster-based metal-organic framework. Nat. Commun. 2020, 11, 3678.
Ueda, M.; Goo, Z. L.; Minami, K.; Yoshinari, N.; Konno, T. Structurally precise silver sulfide nanoclusters protected by rhodium(III) octahedra with aminothiolates. Angew. Chem., Int. Ed. 2019, 58, 14673–14678.
Cao, M.; Pang, R.; Wang, Q. Y.; Han, Z.; Wang, Z. Y.; Dong, X. Y.; Li, S. F.; Zang, S. Q.; Mak, T. C. W. Porphyrinic silver cluster assembled material for simultaneous capture and photocatalysis of mustard-gas simulant. J. Am. Chem. Soc. 2019, 141, 14505–14509.
Alhilaly, M. J.; Huang, R. W.; Naphade, R.; Alamer, B.; Hedhili, M. N.; Emwas, A. H.; Maity, P.; Yin, J.; Shkurenko, A.; Mohammed, O. F. et al. Assembly of atomically precise silver nanoclusters into nanocluster-based frameworks. J. Am. Chem. Soc. 2019, 141, 9585–9592.
Wang, Z.; Su, H. F.; Tung, C. H.; Sun, D.; Zheng, L. S. Deciphering synergetic core-shell transformation from [Mo6O22@Ag44] to [Mo8O28@Ag50]. Nat. Commun. 2018, 9, 4407.
Wang, Z.; Su, H. F.; Kurmoo, M.; Tung, C. H.; Sun, D.; Zheng, L. S. Trapping an octahedral Ag6 kernel in a seven-fold symmetric Ag56 nanowheel. Nat. Commun. 2018, 9, 2094.
Li, S.; Wang, Z. Y.; Gao, G. G.; Li, B.; Luo, P.; Kong, Y. J.; Liu, H.; Zang, S. Q. Smart transformation of a polyhedral oligomeric silsesquioxane shell controlled by thiolate silver(I) nanocluster core in cluster@clusters dendrimers. Angew. Chem., Int. Ed. 2018, 57, 12775–12779.
Li, S.; Du, X. S.; Li, B.; Wang, J. Y.; Li, G. P.; Gao, G. G.; Zang, S. Q. Atom-precise modification of silver(I) thiolate cluster by shell ligand substitution: A new approach to generation of cluster functionality and chirality. J. Am. Chem. Soc. 2018, 140, 594–597.
Lei, Z.; Pei, X. L.; Guan, Z. J.; Wang, Q. M. Full protection of intensely luminescent gold(I)-silver(I) cluster by phosphine ligands and inorganic anions. Angew. Chem., Int. Ed. 2017, 56, 7117–7120.
Jin, J. L.; Xie, Y. P.; Cui, H.; Duan, G. X.; Lu, X.; Mak, T. C. W. Structure-directing role of phosphonate in the synthesis of high-nuclearity silver(I) sulfide-ethynide-thiolate clusters. Inorg. Chem. 2017, 56, 10412–10417.
Liu, H.; Song, C. Y.; Huang, R. W.; Zhang, Y.; Xu, H.; Li, M. J.; Zang, S. Q.; Gao, G. G. Acid-base-triggered structural transformation of a polyoxometalate core inside a dodecahedrane-like silver thiolate shell. Angew. Chem., Int. Ed. 2016, 55, 3699–3703.
Wang, Z.; Zhu, Y. J.; Ahlstedt, O.; Konstantinou, K.; Akola, J.; Tung, C. H.; Alkan, F.; Sun, D. Three in one: Three different molybdates trapped in a thiacalix[4]arene protected Ag72 nanocluster for structural transformation and photothermal conversion. Angew. Chem., Int. Ed. 2024, 63, e202314515.
Li, B.; Huang, R. W.; Qin, J. H.; Zang, S. Q.; Gao, G. G.; Hou, H. W.; Mak, T. C. W. Thermochromic luminescent nest-like silver thiolate cluster. Chem.—Eur. J. 2014, 20, 12416–12420.
Li, G.; Lei, Z.; Wang, Q. M. Luminescent molecular Ag−S nanocluster [Ag62S13(SBu t )32](BF4)4. J. Am. Chem. Soc. 2010, 132, 17678–17679.
Zhang, S. S.; Havenridge, S.; Zhang, C. K.; Wang, Z.; Feng, L.; Gao, Z. Y.; Aikens, C. M.; Tung, C. H.; Sun, D. Sulfide boosting near-unity photoluminescence quantum yield of silver nanocluster. J. Am. Chem. Soc. 2022, 144, 18305–18314.
Huang, R. W.; Wei, Y. S.; Dong, X. Y.; Wu, X. H.; Du, C. X.; Zang, S. Q.; Mak, T. C. W. Hypersensitive dual-function luminescence switching of a silver-chalcogenolate cluster-based metal-organic framework. Nat. Chem. 2017, 9, 689–697.
Kong, Y. J.; Hu, J. H.; Dong, X. Y.; Si, Y. B.; Wang, Z. Y.; Luo, X. M.; Li, H. R.; Chen, Z. W.; Zang, S. Q.; Mak, T. C. W. Achiral-core-metal change in isomorphic enantiomeric Ag12Ag32 and Au12Ag32 clusters triggers circularly polarized phosphorescence. J. Am. Chem. Soc. 2022, 144, 19739–19747.
Li, M. D.; He, J. Y.; Shang, X.; Yang, C. L.; Zhang, Y. Q.; Zuo, S. Y.; Yuan, R.; Xu, W. J. A reciprocal-amplifiable fluorescence sensing platform via replicated hybridization chain reaction for hosting concatenated multi-Ag nanoclusters as signal reporter. Anal. Chem. 2022, 94, 16427–16435.
Hong, S.; Walker, J. N.; Luong, A. T.; Mathews, J.; Shields, S. W. J.; Kuo, Y. A.; Chen, Y. I.; Nguyen, T. D.; He, Y. J.; Nguyen, A. T. et al. A non-FRET DNA reporter that changes fluorescence colour upon nuclease digestion. Nat. Nanotechnol. 2024, 19, 810–817.
Tian, Y. Q.; Mu, W. L.; Wu, L. L.; Yi, X. Y.; Yan, J.; Liu, C. Stepwise assembly of thiacalix[4]arene-protected Ag/Ti bimetallic nanoclusters: Accurate identification of catalytic Ag sites in CO2 electroreduction. Chem. Sci. 2023, 14, 10212–10218.
Chen, H. Y.; Huang, J. R.; Liu, J. C.; Huang, N. Y.; Chen, X. M.; Liao, P. Q. Integration of plasmonic Ag(I) clusters and Fe(II) porphyrinates into metal-organic frameworks for efficient photocatalytic CO2 reduction coupling with photosynthesis of pure H2O2. Angew. Chem., Int. Ed. 2024, 63, e202412553.
Gong, C. H.; Sun, Z. B.; Cao, M.; Luo, X. M.; Wu, J.; Wang, Q. Y.; Zang, S. Q.; Mak, T. C. W. Phosphate anion-induced silver-chalcogenide cluster-based metal organic frameworks as dual-functional catalysts for detoxifying chemical warfare agent simulants. Chem. Commun. 2022, 58, 9806–9809.
Mossburg, K. J.; Shepherd, S. J.; Barragan, D.; O, N. H.; Berkow, E. K.; Maidment, P. S. N.; Rosario Berrios, D. N.; Hsu, J. C.; Siedlik, M. J.; Yadavali, S. et al. Towards the clinical translation of a silver sulfide nanoparticle contrast agent: Large scale production with a highly parallelized microfluidic chip. Eur. J. Nucl. Med. Mol. Imaging 2025, 52, 1177–1188.
Zhang, B. W.; Wang, Y.; Wang, Y. H.; Huo, F.; Karmaker, P. G.; Chen, L. F.; Yang, X. P.; Zhao, B. Chameleon-like response mechanism of gold-silver bimetallic nanoclusters stimulated by sulfur ions and their application in visual fluorescence sensing. Anal. Chem. 2024, 96, 5029–5036.
He, D.; Garg, S.; Wang, Z. M.; Li, L. X. Y.; Rong, H. Y.; Ma, X. M.; Li, G. Y.; An, T. C.; Waite, T. D. Silver sulfide nanoparticles in aqueous environments: Formation, transformation and toxicity. Environ. Sci.: Nano 2019, 6, 1674–1687.
Wang, J. Y.; Yuan, J. W.; Liu, X. M.; Liu, Y. J.; Bai, F.; Dong, X. Y.; Zang, S. Q. Engineering intelligent chiral silver cluster-assembled materials for temperature-triggered dynamic circularly polarized luminescence. Aggregate 2024, 5, e508.
Jin, Y.; Zhang, C.; Dong, X. Y.; Zang, S. Q.; Mak, T. C. W. Shell engineering to achieve modification and assembly of atomically-precise silver clusters. Chem. Soc. Rev. 2021, 50, 2297–2319.
Zimmermann, M. B.; Jooste, P. L.; Pandav, C. S. Iodine-deficiency disorders. Lancet 2008, 372, 1251–1262.
Leung, A. M.; Braverman, L. E. Consequences of excess iodine. Nat. Rev. Endocrinol. 2014, 10, 136–142.
Fu, L. L.; Li, C. J.; Li, Y.; Chen, S.; Long, Y. F.; Zeng, R. J. Simultaneous determination of iodide and bromide using a novel LSPR fluorescent Ag nanocluster probe. Sens. Actuators B: Chem. 2017, 240, 315–321.
Pena-Pereira, F.; García-Figueroa, A.; Lavilla, I.; Bendicho, C. Ratiometric detection of total bromine in E-waste polymers by colloidal gold-based headspace single-drop microextraction and microvolume spectrophotometry. Sens. Actuators B: Chem. 2018, 261, 481–488.
Fan, Y. Z.; Han, L.; Liu, S. G.; Zhang, Y.; Luo, H. Q.; Li, N. B. A ratiometric optical strategy for bromide and iodide ion sensing based on target-induced competitive coordination of a metal-organic nanosystem. J. Mater. Chem. C 2020, 8, 11517–11524.
Liu, L. J.; Zhang, M. Y.; Guo, Q. Z.; Zhang, Z. H.; Guo, J. F. A terbium(III) lanthanide-organic framework as a selective and sensitive iodide/bromide sensor in aqueous medium. Dalton Trans. 2021, 50, 1697–1702.
Dou, W. T.; Han, H. H.; Sedgwick, A. C.; Zhu, G. B.; Zang, Y.; Yang, X. R.; Yoon, J.; James, T. D.; Li, J.; He, X. P. Fluorescent probes for the detection of disease-associated biomarkers. Sci. Bull. 2022, 67, 853–878.
Cai, M. F.; Ding, C. P.; Wang, F. F.; Ye, M. Q.; Zhang, C. L.; Xian, Y. Z. A ratiometric fluorescent assay for the detection and bioimaging of alkaline phosphatase based on near infrared Ag2S quantum dots and calcein. Biosens. Bioelectron. 2019, 137, 148–153.
Tang, X. D.; Yu, H. M.; Bui, B.; Wang, L. Y.; Xing, C.; Wang, S. Y.; Chen, M. L.; Hu, Z. Z.; Chen, W. Nitrogen-doped fluorescence carbon dots as multi-mechanism detection for iodide and curcumin in biological and food samples. Bioact. Mater. 2021, 6, 1541–1554.
Li, Z. H.; Liu, R. Y.; Xing, G. F.; Wang, T.; Liu, S. Y. A novel fluorometric and colorimetric sensor for iodide determination using DNA-templated gold/silver nanoclusters. Biosens. Bioelectron. 2017, 96, 44–48.
Chen, J. Q.; Liu, X. W.; Hou, X. L.; Chen, Y. Y.; Xing, F. F.; Feng, L. Y. Label-free iodide detection using functionalized carbon nanodots as fluorescent probes. Anal. Bioanal. Chem. 2020, 412, 2893–2901.
Nan, Z. A.; Xiao, Y.; Liu, X. Y.; Wang, T.; Cheng, X. L.; Yang, Y.; Lei, Z.; Wang, Q. M. Monitoring the growth of Ag–S clusters through crystallization of intermediate clusters. Chem. Commun. 2019, 55, 6771–6774.
Yuan, S.; Deng, Y.-K.; Wang, X.-P.; Sun, D. A temperature-sensitive luminescent Ag20 nanocluster templated by carbonate in situ generated from atmospheric CO2 fixation. New J. Chem. 2013, 37, 2973–2977.
Feng, Y. H.; Lin, Z. S.; Liu, S. Q.; Shi, J. F.; Zhou, K.; Ji, J. Y.; Bi, Y. F. A stably discrete 31-nuclearity silver(I) thiolate nanocluster luminescent thermometer supported by DMF auxiliary ligands. New J. Chem. 2020, 44, 663–667.
Shen, Y. L.; Jin, J. L.; Duan, G. X.; Xie, Y. P.; Lu, X. Formation of spindle-like Ag58 cluster induced by isomerization of [Ag14]. Acta Chim. Sin. 2020, 78, 1255–1259.
Zeng, Y.; Havenridge, S.; Gharib, M.; Baksi, A.; Weerawardene, K. L. D. M.; Ziefuß, A. R.; Strelow, C.; Rehbock, C.; Mews, A.; Barcikowski, S. et al. Impact of ligands on structural and optical properties of Ag29 nanoclusters. J. Am. Chem. Soc. 2021, 143, 9405–9414.
Liu, X.; Zhang, Y. F.; Li, Z. W.; Li, G.; Taherkhani, F. Surface ligand engineering on the optical properties of atomically precise AuAg nanoclusters. Chin. J. Struct. Chem. 2023, 42, 100154.
Mei, J.; Leung, N. L. C.; Kwok, R. T. K.; Lam, J. W. Y.; Tang, B. Z. Aggregation-induced emission: Together we shine, united we soar! Chem. Rev. 2015, 115, 11718–11940.
Kang, X.; Zhu, M. Z. Tailoring the photoluminescence of atomically precise nanoclusters. Chem. Soc. Rev. 2019, 48, 2422–2457.