Polyoxometalates (POMs), as a unique type of metal–oxygen cluster compound, undergo multi-electron transfer while maintaining their structures. In this study, an electrochemical sensor that rapidly and sensitively detects vanillic acid was synthesized using vanadium-substituted POM (H4PMo11VO40, PMoV), reduced graphene oxide (rGO), and platinum (Pt) nanoparticles, where PMoV acted as both the photoreductant and stabilizer. In particular, PMoV/rGO/Pt composite was prepared and identified using various methods. Under optimal conditions, the limit of detection of the synthesized electrochemical sensor was estimated to be 0.9 μM at vanillic acid concentrations of 50–1350 μM. In addition, the practical application of PMoV/rGO/Pt/GCE (GCE = glassy carbon electrode) was considered by determining the concentration of vanillic acid in tap and lake water with good recovery (98.36%–102.11% and 97.11%–100.22%, respectively). The synthesized sensor realizes simple, rapid, and economical detection of vanillic acid and can serve as an important analytical tool in this direction.
Buffon, E.; Stradiotto, N. R. Using a disposable platform based on reduced graphene oxide, iron nanoparticles and molecularly imprinted polymer for voltammetric determination of vanillic acid in fruit peels. Food Chem. 2022, 397, 133786.
Vinothiya, K.; Ashokkumar, N. Modulatory effect of vanillic acid on antioxidant status in high fat diet-induced changes in diabetic hypertensive rats. Biomed. Pharmacother. 2017, 87, 640–652.
Chuang, H. W.; Wei, I. H.; Lin, F. Y.; Li, C. T.; Chen, K. T.; Tsai, M. H.; Huang, C. C. Roles of akt and ERK in mTOR-dependent antidepressant effects of vanillic acid. ACS Omega 2020, 5, 3709–3716.
Li, X. F.; Gao, Y. T.; Xiong, H. B.; Yang, Z. The electrochemical redox mechanism and antioxidant activity of polyphenolic compounds based on inlaid multi-walled carbon nanotubes-modified graphite electrode. Open Chem. 2021, 19, 961–973.
Víctor-Ortega, M. D.; Fajardo, A. S.; Airado-Rodríguez, D. Sustainable development: Use of agricultural waste materials for vanillic acid recovery from wastewater. Sustainability 2022, 14, 2818.
Zaripour, M.; Zare-Shahabadi, V.; Jahromi, H. J. Application of ultrasonic-assisted inclusion complex formation with α-cyclodextrin for simultaneous spectrophotometric determination of gallic acid and vanillic acids in fruit samples. Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 2019, 222, 117197.
Kaur, J.; Gulati, M.; Singh, S. K.; Kuppusamy, G.; Kapoor, B.; Mishra, V.; Gupta, S.; Arshad, M. F.; Porwal, O.; Jha, N. K. et al. Discovering multifaceted role of vanillic acid beyond flavours: Nutraceutical and therapeutic potential. Trends Food Sci. Technol. 2022, 122, 187–200.
Jeong, H. J.; Nam, S. Y.; Kim, H. Y.; Jin, M. H.; Kim, M. H.; Roh, S. S.; Kim, H. M. Anti-allergic inflammatory effect of vanillic acid through regulating thymic stromal lymphopoietin secretion from activated mast cells. Nat. Prod. Res. 2018, 32, 2945–2949.
Xu, Z. J.; Li, P. P.; Chen, H. Y.; Zhu, X. H.; Zhang, Y. Y.; Liu, M. L.; Yao, S. Z. Picomolar glutathione detection based on the dual-signal self-calibration electrochemical sensor of ferrocene-functionalized copper metal-organic framework via solid-state electrochemistry of cuprous chloride. J. Colloid Interface Sci. 2022, 628, 798–806.
Tajik, S.; Orooji, Y.; Ghazanfari, Z.; Karimi, F.; Beitollahi, H.; Varma, R. S.; Jang, H. W.; Shokouhimehr, M. Nanomaterials modified electrodes for electrochemical detection of Sudan I in food. J. Food Measure. Charact. 2021, 15, 3837–3852.
Qi, Y. F.; Sun, R. M.; Lv, R. J.; Li, Y. H.; Du, T.; Chen, L. X.; Zhang, Y.; Yang, W. Polyoxometalates-graphene nanocomposites modified electrode for electro-sensing detection of sudan I in food. Food Chem. Toxicol. 2022, 166, 113222.
Karimi-Maleh, H.; Darabi, R.; Shabani-Nooshabadi, M.; Baghayeri, M.; Karimi, F.; Rouhi, J.; Alizadeh, M.; Karaman, O.; Vasseghian, Y.; Karaman, C. Determination of D&C red 33 and patent blue V Azo dyes using an impressive electrochemical sensor based on carbon paste electrode modified with ZIF-8/g-C3N4/Co and ionic liquid in mouthwash and toothpaste as real samples. Food Chem. Toxicol. 2022, 162, 112907.
Chai, X.; Li, Y. B.; Ma, C. N.; Guo, M. J.; Fan, Z.; Zhao, J.; Cheng, B. W. A voltammetric sensor based on a reduced graphene oxide/β-cyclodextrin/silver nanoparticle/polyoxometalate nanocomposite for detecting uric acid and tyrosine. Anal. Methods 2023, 15, 2528–2535.
Aslam, M.; Kalyar, M. A.; Raza, Z. A. Synthesis and structural characterization of separate graphene oxide and reduced graphene oxide nanosheets. Mater. Res. Express 2016, 3, 105036.
dos Santos, J. R. N.; Alves, I. C. B.; Marques, A. L. B.; Marques, E. P. Ni-Ag supported on reduced graphene oxide as efficient electrocatalyst for alcohol oxidation reactions. Electrocatalysis 2022, 13, 713–730.
Gijare, M. S.; Chaudhari, S. R.; Ekar, S.; Shaikh, S. F.; Al-Enizi, A. M.; Pandit, B.; Garje, A. D. Green synthesis of reduced graphene oxide (rGO) and its applications in non-enzymatic electrochemical glucose sensors. J. Photochem. Photobiol. A: Chem. 2024, 450, 115434.
Jiang, X. D.; Wang, J. K.; Zhou, B. M. A two-step chemical-hydrothermal reduction method to prepare reduced graphene oxide with high electrical conductivity. Diamond Relat. Mater. 2022, 130, 109437.
Kumar, N.; Setshedi, K.; Masukume, M.; Ray, S. S. Facile scalable synthesis of graphene oxide and reduced graphene oxide: Comparative investigation of different reduction methods. Carbon Lett. 2022, 32, 1031–1046.
Verma, V.; Gurnani, L.; Das, A.; Kumari, N.; Dasgupta, T.; Mukhopadhyay, A. Reduced graphene oxides prepared via explosive and non-explosive thermal reduction: Structural evolution, functional properties and reinforcing efficacy. Carbon 2023, 209, 118007.
Gómez-Mancebo, M. B.; Fernández-Martínez, R.; Ruiz-Perona, A.; Rubio, V.; Bastante, P.; García-Pérez, F.; Borlaf, F.; Sánchez, M.; Hamada, A.; Velasco, A. et al. Comparison of thermal and laser-reduced graphene oxide production for energy storage applications. Nanomaterials 2023, 13, 1391.
Xian, Z. W.; Liu, R. J.; Li, H.; Zhang, S. S.; Yang, Z. H.; Zheng, W. Q.; Chen, C. H.; Cao, H. B.; Zhang, G. J. Photocatalytic reduction synthesis of ternary Ag nanoparticles/polyoxometalate/graphene nanohybrids and its activity in the electrocatalysis of oxygen reduction. J. Clust. Sci. 2016, 27, 241–256.
Yang, M. L.; Rong, S.; Wang, X. M.; Ma, H. Y.; Pang, H. J.; Tan, L. C.; Jiang, Y. X.; Gao, K. Q. Preparation and application of keggin polyoxometalate-based 3D coordination polymer materials as supercapacitors and amperometric sensors. ChemNanoMat 2021, 7, 299–306.
Wang, D.; Liu, L. L.; Jiang, J.; Chen, L. J.; Zhao, J. W. Polyoxometalate-based composite materials in electrochemistry: State-of-the-art progress and future outlook. Nanoscale 2020, 12, 5705–5718.
Guedes, G.; Wang, S. Q.; Santos, H. A.; Sousa, F. L. Polyoxometalate composites in cancer therapy and diagnostics. Eur. J. Inorg. Chem. 2020, 2020, 2121–2132.
Zhang, S. S.; Liu, R. J.; Streb, C.; Zhang, G. J. Design and synthesis of novel polyoxometalate-based binary and ternary nanohybrids for energy conversion and storage. Polyoxometalates 2023, 2, 9140037–9140037.
Zheng, S. T.; Yang, G. Y. Recent advances in paramagnetic-TM-substituted polyoxometalates (TM = Mn, Fe, Co, Ni, Cu). Chem. Soc. Rev. 2012, 41, 7623–7646.
Yaqub, A.; Gilani, S. R.; Bilal, S.; Hayat, A.; Asif, A.; Siddique, S. A. Efficient preparation of a nonenzymatic nanoassembly based on cobalt-substituted polyoxometalate and polyethylene imine-capped silver nanoparticles for the electrochemical sensing of carbofuran. ACS Omega 2022, 7, 149–159.
Li, S.; Ma, H. Y.; O’Halloran, K. P.; Pang, H. J.; Ji, H. R.; Zhou, C. L. Enhancing characteristics of a composite film by combination of vanadium-substituted molybdophosphate and platinum nanoparticles for an electrochemical sensor. Electrochim. Acta 2013, 108, 717–726.
Zhang, Y. M.; An, C. W.; Zhang, D. F.; Liu, T.; Yan, J. S.; Zhang, J. Photocatalytic activity of vanadium-substituted polyoxometalate doped magnetic carbon nitride towards antibiotics. Russ. J. Inorg. Chem. 2021, 66, 679–683.
Fernandes, D. M.; Nunes, M.; Carvalho, R. J.; Bacsa, R.; Mbomekalle, I. M.; Serp, P.; De Oliveira, P.; Freire, C. Biomolecules electrochemical sensing properties of a PMo11V@N-Doped few layer graphene nanocomposite. Inorganics 2015, 3, 178–193.
Zhang, L.; Ning, L.; Zhang, Z. F.; Li, S. B.; Yan, H.; Pang, H. J.; Ma, H. Y. Fabrication and electrochemical determination of l-cysteine of a composite film based on V-substituted polyoxometalates and Au@2Ag core-shell nanoparticles. Sens. Actuators B: Chem. 2015, 221, 28–36.
Chu, M. Y.; Bai, Z. Y.; Zhu, D.; Chen, W. J.; Yang, G. X.; Xin, J. J.; Ma, H. Y.; Pang, H. J.; Tan, L. C.; Wang, X. M. A β-nicotinamide adenine dinucleotide electrochemical sensor based on polyoxometalate built by the combination of electrodeposition and self-assembly. J. Electroanal. Chem. 2022, 907, 116083.
Yu, S. P.; Zhao, X. H.; Su, G. Y.; Wang, Y.; Wang, Z. M.; Han, K. F.; Zhu, H. Synthesis and electrocatalytic performance of a P-Mo-V Keggin heteropolyacid modified Ag@Pt/MWCNTs catalyst for oxygen reduction in proton exchange membrane fuel cell. Ionics 2019, 25, 5141–5152.
Dhayagude, A. C.; Newase, S. K.; Joshi, S. S.; Kapadnis, B. P.; Kapoor, S. Preparation of silver nanoparticles in the presence of polyoxometalates. Mater. Sci. Eng.: C 2019, 94, 437–444.
Wang, Y. Z.; Li, H. L.; Wu, C.; Yang, Y.; Shi, L.; Wu, L. X. Chiral heteropoly blues and controllable switching of achiral polyoxometalate clusters. Angew. Chem., Int. Ed. 2013, 52, 4577–4581.
Han, H.; Liu, C.; Sha, J. Q.; Wang, Y.; Dong, C. Y.; Li, M. J.; Jiao, T. Y. Ferrocene-reduced graphene oxide-polyoxometalates based ternary nanocomposites as electrochemical detection for acetaminophen. Talanta 2021, 235, 122751.
Tong, X.; Thangadurai, V. Hybrid gel electrolytes derived from Keggin-type polyoxometalates and imidazolium-based ionic liquid with enhanced electrochemical stability and fast ionic conductivity. J. Phys. Chem. C 2015, 119, 7621–7630.
Albers, R. F.; Bini, R. A.; Souza, J. B. Jr. ; Machado, D. T.; Varanda, L. C. A general one-pot synthetic strategy to reduced graphene oxide (rGO) and rGO-nanoparticle hybrid materials. Carbon 2019, 143, 73–84.
Zhang, C.; Cui, M.; Ren, J. J.; Xing, Y. F.; Li, N.; Zhao, H. Y.; Liu, P.; Ji, X. P.; Li, M. Facile synthesis of novel spherical covalent organic frameworks integrated with Pt nanoparticles and multiwalled carbon nanotubes as electrochemical probe for tanshinol drug detection. Chem. Eng. J. 2020, 401, 126025.
Shafiei, H.; Karim Hassaninejad-Darzi, S. Electroanalytical application of Ag@POM@rGO nanocomposite and ionic liquid modified carbon paste electrode for the quantification of ciprofloxacin antibiotic. J. Electroanal. Chem. 2023, 935, 117321.
Zhu, D.; Bai, Z. Y.; Ma, H. Y.; Tan, L. C.; Pang, H. J.; Wang, X. M. High performance simultaneous detection of β-nicotinamide adenine dinucleotide and L-tryptophan in human serum based on a novel nanocomposite of ferroferric oxide-functionalized polyoxometalates. Sens. Actuators: B Chem. 2020, 309, 127787.
Hu, J.; Wu, X. F.; Zhang, Q. F.; Gao, M. Y.; Qiu, H. F.; Huang, K. K.; Feng, S. H.; Yang, Y.; Liu, Z. L.; Zhao, B. Preparation of a highly active palladium nanoparticle/polyoxometalate/reduced graphene oxide nanocomposite by a simple photoreduction method and its application to the electrooxidation of ethylene glycol and glycerol. Electrochem. Commun. 2017, 83, 56–60.
Murtada, K.; Moreno, V. Nanomaterials-based electrochemical sensors for the detection of aroma compounds- towards analytical approach. J. Electroanal. Chem. 2020, 861, 113988.
Kumari, R.; Kumar, H.; Yadav, A.; Sharma, R.; Kumari, A.; Kumar, A. Metal nanocomposites-based electrochemical sensor for the detection of vanillin (food additives): Experimental and theoretical approach. Food Biosci. 2023, 52, 102464.
Haghighi, B.; Rahmati-Panah, A.; Shleev, S.; Gorton, L. Carbon ceramic electrodes modified with laccase from Trametes hirsuta: Fabrication, characterization and their use for phenolic compounds detection. Electroanalysis 2007, 19, 907–917.
Silva, T. R.; Brondani, D.; Zapp, E.; Vieira, I. C. Electrochemical sensor based on gold nanoparticles stabilized in poly (allylamine hydrochloride) for determination of vanillin. Electroanalysis 2015, 27, 465–472.
Lahouidak, S.; Salghi, R.; Zougagh, M.; Ríos, A. Capillary electrophoresis method for the discrimination between natural and artificial vanilla flavor for controlling food frauds. Electrophoresis 2018, 39, 1628–1633.
Sordoń, W.; Jakubowska, M. Electrochemical evaluation and voltammetric determination of some phenolic acids on the boron-doped diamond electrode. Diamond Relat. Mater. 2023, 138, 110236.